
research papers

1420 https://doi.org/10.1107/S1600577522008232 J. Synchrotron Rad. (2022). 29, 1420–1428

Received 3 November 2021

Accepted 17 August 2022

Edited by V. Favre-Nicolin, ESRF and
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As synchrotron facilities continue to generate increasingly brilliant X-rays and

detector speeds increase, swift data reduction from the collected area detector

images to more workable 1D diffractograms becomes of increasing importance.

This work reports an integration algorithm that can integrate diffractograms

in real time on modern laptops and can reach 10 kHz integration speeds on

modern workstations using an efficient pixel-splitting and parallelization

scheme. This algorithm is limited not by the computation of the integration

itself but is rather bottlenecked by the speed of the data transfer to the

processor, the data decompression and/or the saving of results. The algorithm

and its implementation is described while the performance is investigated on 2D

scanning X-ray diffraction/fluorescence data collected at the interface between

an implant and forming bone.

1. Introduction

The increased brilliance of synchrotron sources means that

diffraction experiments on materials increasingly contain very

large amounts of data. Such experiments include scanning or

tomographic diffraction experiments. In a recent publication,

for example, human bone was investigated by X-ray powder

diffraction computed tomography (XRD-CT) (Wittig et al.,

2019). The raw dataset comprised over 2.6 million diffraction

patterns, each measured on a large 2D detector with 4 million

pixels. Other experiments involving large data volumes

include SAXS/WAXS tensor tomography (Grünewald et al.,

2020). Optimized beamlines for XRD-CT and similar experi-

ments have been designed (Vaughan et al., 2020). As such

experiments become more frequent (Palle et al., 2020; Wittig et

al., 2019; Dong et al., 2021; Jacques et al., 2011; Vamvakeros et

al., 2018, 2020, 2021; Jensen et al., 2021), the speed of inte-

gration, i.e. the transformation of the data from pixel coordi-

nates to azimuthal and scattering vector length coordinates,

becomes a critical component in the data analysis pipeline.

This calls for highly efficient data integration methods. Two

such data-treatment platforms are PyFAI (Kieffer et al., 2018,

2020; Ashiotis et al., 2015; Kieffer & Ashiotis, 2014; Kieffer &

Karkoulis, 2013) and SAXSDOG (Burian et al., 2020) which

operate efficiently and with great flexibility. However, a need

remains for even faster implementation of integration. Herein

we describe further improvements to integration that are very

efficient and in practice enable data reduction to be completed

during synchrotron experiments.
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2. Methods

We first describe the proposed algorithm and its imple-

mentation followed by a description of a test experiment.

2.1. Matrix-multiplication facilitated radial and azimuthal
integration algorithm

Integration of 2D XRD data from detector pixel coordi-

nates into polar coordinates [scattering angle 2� (or scattering

vector length q) and azimuthal angle �] involves two steps:

a coordinate transformation and subsequent summation of

weighted contributions to each 2�,� bin. Done directly with

an indexing matrix is very inefficient. The core concept in the

matrix-multiplication facilitated radial and azimuthal inte-

gration algorithm (MatFRAIA) is to conduct these operations

by indexing using sparse matrices (our implementation uses a

compressed sparse row on the GPU and a compressed sparse

column on the CPU to comply with cuBLAS and BLAS,

respectively). Prior to integration, an indexing matrix is

calculated that contains the location in 2�,� space of each

pixel as well as the weight with which it contributes, defined as

its relative area. Once this indexing matrix is at hand, inte-

gration is a matter of simple matrix multiplication between the

index matrix and the current detector frame, which is a linear

transformation.

2.1.1. Pixel splitting. Integration involves a transformation

from Cartesian detector coordinates to polar coordinates

(2�,�), where 2� is the radial coordinate expressed as the

scattering angle and � is the azimuthal angle around the direct

beam. Due to the finite area of detector pixels, their effective

weight in (2�,�) space varies with location on the detector

with pixels close to the beam center covering a larger area in

(2�,�) than pixels far from the center. Similarly, pixels along

the diagonal (� = 45�, 135�, 225�, 315�) are longer in the 2�
direction than pixels along the cardinal directions (� = 0�, 90�,

180�, 270�). To ensure effective attribution of intensity, it has

been proposed that pixel splitting should be used, where each

detector pixel is virtually split, either to fit with the resulting

bins, as done by PyFAI (Kieffer & Ashiotis, 2014), or by

splitting the pixel into an arbitrarily fine set of sub-pixels

chosen to reduce the nonlinear transformation effects while

not being too computationally heavy. MatFRAIA adopts the

latter approach, which is especially important for azimuthally

resolved analyses. One way to deal with this problem is to

virtually split detector pixels to allow for a more accurate

account of their contributions to a given (2�,�) bin in the

integrated data. There have been multiple suggested methods

of such pixel splitting. In Fig. 1, we illustrate some of these.

With no splitting at all, only pixels that have their centers

within the final bin will fall into said bin. This method

describes the bins poorly as seen in Fig. 1(a), unless very large

bins are used. One possible solution is that employed by

PyFAI as full splitting assuming straight bin edges (van der

Walt & Herbst, 2007, 2012; Ashiotis et al., 2015), which is

illustrated in Fig. 1(b). It approximates the �-dependent

curvature of the bins to straight lines, which is not fully

accurate. Another approach is super-sampling the detector

frame; this is employed in both MatFRAIA and SAXSDOG

(Burian et al., 2020). This approach is illustrated with super-

sampling each pixel either 9 (3 � 3) or 400 (20 � 20) times in

Figs. 1(c) and 1(d), respectively. This approach provides means

of systematically reducing the curvature problem and with

infinite, but in practice much lower, splitting resulting in a

perfect transformation. Initially the idea of super-sampling

each pixel say 400 times might seem too computationally

heavy, but it only needs to be performed once for each setup

(i.e. calibration and integration settings). After that, a linear

transformation from pixel space to (�,�) space is computa-

tionally efficient and fast. Storing this transform as a sparse

matrix makes the integration both efficient and heavily

reduces its memory footprint.

The index matrix is typically sparse and significant memory

savings are obtained by employing sparse data representa-

tions. This use of sparse matrices is similar to the procedure

used by PyFAI; however, since the data are super-sampled in a

grid, geometrical corrections such as the Lorentz, polarization

or solid-angle correction can be applied on a subpixel level

instead of on a pixel level, and this can be incorporated

directly into the integration transformation.

The required level of pixel splitting has previously been

suggested to be rather low; the SAXSDOG (Burian et al.,

2020) documentation suggests that going above S = 3 is

‘overkill’ whereas the DIOPTAS program (Prescher &
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Figure 1
Pixel splitting improves assignment of areas of the detector into the
appropriate (2�,�) bin during integration. (a) No splitting. Here only the
pixels with their center within a (2�,�) bin are assigned entirely to said
bin. (b) Method employed by PyFAI. Here the analytical area of the
trapeze spanned by the azimuthal lines fall into the bin, yet it does not
take into account the curvature of the arc. Pixel splitting by super-
sampling (c) 3 or (d) 20 times in both cardinal directions. This is the
method employed by MatFRAIA. The red area shows which part of the
detector will be included in the resulting (2�,�) bin.



Prakapenka, 2015) has the feature disabled by default. We

suggest that much larger scaling is needed depending on the

end goal of the integration, i.e. the number of output bins

in (2�,�), especially if �-resolved analyses are required. To

estimate the required level of pixel splitting, the effective area

of the pixels is needed. They can be described using four

factors: (1) the number of azimuthal bins, NAb; (2) the number

of sub-pixels desired in each (2�,�) bin, �sp, which is effec-

tively a pixel-splitting precision measure; (3) the relation of

this area to the smallest effective detector area (in pixels),

given by the smallest radial distance that one wishes to include

(corresponding to the smallest value of 2�), rmin ; and (4) the

effective �2�, which is given by the largest radial bin width,

�r, measured in pixels. This is illustrated in Fig. 2(a). To get an

estimated appropriate pixel-splitting number, the square root

of the area ratio is needed. To find the required pixel splitting

the following formula can then be used:

Smin ¼ max 10;

&
2NAb �sp

� rmin þ�rð Þ
2
� r 2

min

� �
( )1=2 ’0

@
1
A;

where we suggest a minimum splitting of 10 for azimuthally

resolved integration, i.e. a minimum splitting of each pixel into

100 sub-pixels. Splitting pixels into 100 sub-pixels is sufficient

to remove the effects of the diagonal pixels being longer in the

2� direction, but it might not always be enough to reach the

desired statistics in the final bins, thus sometimes a larger

splitting is required. Figs. 2(b)–2(c) show examples of how the

size of 2� bins (�r) and the minimum 2� values (rmin) influence

Smin. For most real-world scenarios, our experience suggests

that a splitting factor of 20–30 (splitting each pixel into 400–

900 sub-pixels) is plenty. Splitting by these larger factors

greatly increases the calculation time and memory footprint of

the indexing matrix, as they both scale with O(S 2); however, in

the next section, we also show how to reduce the memory

footprint during the calculation of O(S). We further stress that

the choice of the degree of pixel splitting is strongly influenced

by the choice of rmin, hence, in many cases of diffraction

analyses, smaller pixel splittings can be used. The level of pixel

splitting is thus a parameter provided to the algorithm by the

experimenter.

2.1.2. MatFRAIA. The MatFRAIA algorithm involves the

following steps assuming the detector center, tilt and sample-

to-detector distance have been obtained by calibration. The

MatFRAIA MATLAB scripts include a subfunction for

reading PONI files to represent the point of normal incidence

rather than the detector center and tilt. In the following, we

assume that a number of frames were collected and organized

into files containing a number of individual frames. The

algorithm is split into two parts, creating the integration

transform and applying the integration transform to the data.

(1) The indexing matrix is built given a chosen pixel split-

ting, S, and bin sizes in 2�,� spaces:

(a) To reduce the memory footprint, the indexing matrix is

built in sections. Thus a matrix sized by a subsection of the

detector frame of size 1/S of the detector frame is allocated,

our implementation uses vertical slices going from the left to

the right of the detector, then this image is rescaled S � S

times the original size, splitting all pixels into S � S sub-pixels.

(b) Tilt, polarization correction and Lorentz corrections

are applied.

(c) Linearized pixel indices are calculated: a pixel is labelled

using m, n and a linear index is calculated by i = (m� 1)nmax +

n, where nmax is the largest value of n. The same linearization is

used for the radial (2�) and azimuthal (�) indexes to give the

polar coordinate index vector j. The indexing matrix is then

spanned by the index vectors j and i with the (j, i) entry in the

matrix being the weight, w, of the ith detector pixel in the jth

2�,� bin. This matrix is effectively sparse, which strongly

reduces the memory requirements when saved in a

compressed format. w values for (j, i) are computed from the

pixel-splitting image.

(d) Steps (a)–(c) are repeated s times, appending the sparse

matrices.

(e) Any required masks are applied, i.e. corrections on all

the weights in i that point on the same j where some i should

be masked out (Zingers, beam stop or detector units).

( f) The indexing matrix A is now of size ( jmax, imax) or

(2�max�max, nmax mmax). To further reduce its memory footprint

and processing time, all bins that are masked out due to

insufficient number of unmasked-subpixels going into the bin

are all removed except for the first entry ( j, i = 1), which is set
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Figure 2
Minimum splitting factor. (a) Splitting area illustration. The blue dot shows the beam center, the red shaded area corresponds to the 1D 2� bin with a full
integration and the blue shaded area corresponds to a possible (2�,�) resolved bin with �� = NAb /2�. (b, c) Graphs of the minimum pixel-splitting curve
with NAb = 360 and �sp = 5 as a function of (b) rmin and (c) �r.



to NaN (not a number), resulting in the jth output bin

being NaN.

(2) For parallelization purposes one worker for every

thread of a processor can work on a given file simultaneously;

this will however increase memory consumption. To work

around this, each worker can load a subset of its file, keeping

the total memory consumption constant. Parallelization is

done on a file-by-file basis, in order to optimally utilize the

connection to the storage drive/server, as well as to allow

parallel decompression, even when using deprecated

compression algorithms:

(a) A part of the datafile is loaded, e.g. d detector frames

(d < 20 is common for parallelization work).

(b) Hot pixels/accidental high-intensity signals not caught in

the original mask are temporarily removed.

(c) The data matrix B is reshaped to shape (imax, d) so the

indexing matrix can be applied.

(d) The integrated data in 2�,� space is calculated by

applying the indexing matrix to the detector frame [i.e. matrix

multiplication; C = AB has the shape ( jmax, d)].

(e) C is reshaped to size (2�max, �max, d).

( f) The first d integrated data frames are saved.

(g) Steps (a)–(e) are repeated until the file has been fully

integrated.

(h) Steps (a)–( f) are repeated for every datafile.

Before integration the detector frames typically need to be

masked, e.g. due to dead pixels, detector mount, beam stop

shadow etc. This is achieved by creating a logical matrix, where

all data pixels are marked as ‘true’ and all non-data are

marked as ‘false’. This mask is given to the indexing algorithm.

We implemented MatFRAIA in both MATLAB and

Python. The benchmarking performed herein was conducted

on the MATLAB version; a similar performance was observed

with the Python version. The MATLAB version of the algo-

rithm is available at https://gitlab.au.dk/hb-group/matfraia.

The Python version of the algorithm is available at https://

github.com/maxiv-science/azint.

2.1.3. Performance benchmarking. The performance of the

MatFRAIA code was tested both on a standard laptop running

Debian Linux with an Intel Core i7-8550U (4 cores and

8 threads running at 1.8–4 GHz) with 16 GB of RAM as well

as on a workstation running Windows with an AMD EPYC

7502p (32 cores and 64 threads processor running at 2.5–

3.35 GHz) and equipped with 512 GB RAM. These perfor-

mance tests were carried out using a dataset consisting of

38152 detector frames across 340 lz4-compressed hdf5-

formated files taking up 150 GB of disk space. We note that

a more recent compression scheme is available, bitshuffle

(Masui et al., 2015), which allows for parallel decompression.

However, our algorithm decompresses multiple files in

parallel, so the performance should be portable between the

compression schemes.

On the laptop, the data were loaded both from a server over

a 1 GB s�1 connection and from an HDD over a 1.6 GB s�1

USB-3 connection. On the workstation, the data were loaded

from a server over a 1 GB s�1 connection as well as with the

datafiles saved onto a local 300 GB RAM-disk to examine

efficiency when file transfer/loading is as unlimited as it can be

for this amount of data. We measured the transfer speed on

this RAM-disk to be �1.9 GiB s�1.

While the indexing time changes with increased pixel

splitting, the integration time does not change significantly,

thus benchmarking the effect of different pixel-splitting

factors was only conducted for the indexing with splitting S =

20. Changing the number of output bins in the integration will

change the integration time slightly.

For the benchmarking, the code ran for 1 min without

performing any calculations to find the baseline system

memory usage. The average of this level was then subtracted

to set the zero-level memory consumption before MatFRAIA

started calculations.

2.2. Experimental

We collected scanning XRD and X-ray fluorescence (XRF)

data on a test sample consisting of a grade 4 Ti implant that

had been inserted into rat knees. After 4 weeks of healing time

the animals were euthanised, the bone was then cut into thin

slices using a diamond saw (Accutom-5, M1D18 blade, Struers,

Ballerup, Denmark). The samples were then further polished

using increasingly finer abrasive paper (Struers, P320–P4000)

to a final thickness of 327 mm; the samples were then ready to

scan. This was part of a larger ongoing study on the structural

changes around implants that will be reported elsewhere. The

data were used to benchmark the performance of MatFRAIA.

The implant had a spring inserted to give tension near the

screw head, and the bone that had grown around the tension

spring is used as the test subject here.

2.2.1. Scanning XRF/XRD data collection. Data were

collected at beamline P06 at the PETRA III synchrotron

(DESY, Hamburg) (Schroer et al., 2010). An X-ray energy of

17 keV was used. The beam was focused by Kirkpatrick–Baez

mirrors (Kirkpatrick & Baez, 1948) to a beam size of 450 nm

� 370 nm. The sample was scanned using continuous scans in

steps of 1 mm with exposure times of 0.05 s for each step. XRF

was detected by a Vortex-EM silicon drift detector (Hitachi,

USA), the spectra were fitted using a PyMca (Solé et al., 2007)

fitting core along with an in-house multi-threaded

fitting wrapper. The diffraction data were collected using a

DECTRIS EIGER X 4M detector. A total of 38152 points

were measured in a grid measuring 110 mm � 350 mm over a

period of 36 min and 33 s resulting in a data acquisition rate

of 17.4 Hz. Treatment of the XRD data was conducted with

MatFRAIA while the XRF data were used for reference and

were plotted using in-house MATLAB scripts.

2.2.2. Orientation analysis. In the present example, we

analyzed the orientation of hydroxyapatite (HAP) biomineral

nanocrystals projected across the sample. First, the raw

diffractograms, an example of which is shown in Fig. 3(a), were

integrated with the MatFRAIA algorithm as described and

the data kept were azimuthally resolved. Once the detector

frames were integrated, the integration transformation turned

them into (2�, �)-resolved images such as that shown in

Fig. 3(b) that was obtained by applying the integration
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transformation to the diffractogram in Fig. 3(a). From here, a

peak of interest can be selected. In bone, the HAP crystallites

are often preferentially oriented along the crystallographic c

direction, thus the (002) peak, indicated in Fig. 3(b), was

chosen for orientation analysis. The background was then

subtracted from the selected peak before it was integrated

over 2�. Subsequently, the orientation was determined using

custom-written MATLAB code with Gaussian fits to the

azimuthal intensity dependency (Rinnerthaler et al., 1999;

Wagermaier et al., 2007),

Ið�Þ ¼ bþ A1 exp
�d �; �0ð Þ

2

2�2

� �
þ A2 exp

�d �; �0 þ �ð Þ
2

2�2

� �
;

where A1 and A2 are the intensities of the two peaks, which are

not necessarily equal due to the asymmetric intersection of the

Ewald sphere. To place the two azimuthal peaks on a circle

[and thus circumvent potential truncation effects more easily

compared with the more standard distance function (�, �0) =

�� �0 (Bünger et al., 2010; Rinnerthaler et al., 1999)] we write

the position function as

d �; �0ð Þ ¼ cos�1 cos� �i sin�
� � cos�0

i sin�0

� 	� �
:

This approach was used to fit the azimuthal intensity of the

(002) HAP peak. Such a fit is shown in Fig. 3(c). From the fit

the orientation of the crystals is given by �0 and the projected

degree of orientation (DoO) is given by

DoO ¼

R 2�

0 Ið�Þ � b d�R 2�

0 Ið�Þ d�
;

that is, the proportion of the peak intensity in the point

stemming from oriented crystals to the total signal in the

point. Information is also gained about the density of oriented

crystals

Io ¼
R 2�

0 Ið�Þ � b d�;

the density of randomly oriented crystals

Ir ¼
R 2�

0 b d�

and the total density of crystals at the point

Itot ¼
R 2�

0 Ið�Þ d� ¼ Ir þ Ib

(note that crystals with the c axis parallel to the direct beam

are effectively invisible and thus this method is only sensitive

to the manifold of crystals that are observable in the given

projection).

3. Results

The MatFRAIA algorithm affords rapid integration of large

volumes of data to the point that it can be used for online

processing of data during synchrotron beam time, see

Section 3.1. It has been implemented in both MATLAB and

Python. The method requires calculation of an indexing

matrix, which is done once during a data processing step. The

pixel splitting required depends on different factors, e.g. the

number of output azimuthal bins. For full azimuthal integra-

tion into a 1D diffraction pattern, a lower degree of pixel

splitting is sufficient, whereas, for full azimuthal analysis, a

larger degree is needed. In our experience, a pixel splitting of

20 produces data without fail for 360 � bins for a DECTRIS X

4M detector.

3.1. Performance evaluation

The results of the speed test are summarized in Table 1.

During the test the following serial (i.e. the actual physical

time spent on the process) times were measured: the total time

for the algorithm, the indexing (the first step of the algorithm)

and the execution (the second step of the algorithm). As the

integration is carried out in parallel, each worker (or thread)

can also report on time spent on sub-processes during inte-

gration, thus each worker reports how much time is spent on

loading and decompressing the data, on pre-processing the

data for integration, on integrating the data, on saving the

integrated data, on overhead, and how much time is spent in

total. The algorithm is quite fast and most time is in fact spent

loading and decompressing data, except when the data are

stored on a RAM-disk, eliminating most of the loading time.
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Figure 3
Example of test data. (a) Raw detector frame. (b) Azimuthally resolved detector frame after MatFRAIA integration, with the HAP (002) peak marked.
(c) Azimuthally resolved HAP (002) intensity after local background subtraction. Data are shown as black dots, the Gaussian fit is shown as a black line,
and the amount of oriented and non-oriented crystallites are indicated in red and blue areas, respectively.



Comparing results from the laptop (first and second lines in

Table 1) we can see that even a laptop can saturate a 1 GB

ethernet connection, and that the process becomes slightly

faster using a local hard disk. On the workstation, we

compared a 1 GB net connection with having data preloaded

onto a RAM-disk to minimize loading time. Even in the

RAM-disk case, the loading/decompression time mainly

consists of load times, as we read the data at 1.876 GiB s�1.

The results show that the algorithm can integrate anywhere

from 4 to 10 kHz on the workstation [depending on whether

RAM-disk (5.63% of 160.16 s spent integrating 38152 frames

or 4.2 kHz) or ethernet 1 GB s�1 (0.26% of 1438.03 s spent

integrating 38152 frames or 10 kHz) is used, Table 1].

However, the laptop achieves 500–641 Hz in ‘integration time

alone’ (4.30% of 1384 s spent integrating 38152 frames or

641 Hz for 1 GB s�1, or 6.35% of 1197.5 s spent integrating

38152 frames or 502 Hz), which should be sufficient for the

data stream at most beamlines. However, these integration

frequencies are for the integration itself. Real-world data are

compressed and saved prior to integration. Even so, the

algorithm can still keep up on a 1 GB s�1 connection with an

integration rate above 17.4 Hz, the rate at which the data were

measured, on the laptop, while achieving more than 229 Hz

on the workstation. The rate of 17.4 Hz corresponds to

125 MB s�1, which is well above what was reported in

SAXSDOG (Burian et al., 2020). We reiterate that on both the

laptop and the workstation most of the time is spent loading,

decompressing and rearranging the data, as shown in Table 1.

Indeed, it is important to differentiate between the speed of

the actual integration itself and the total time taken by all the

necessary steps of the algorithm on compressed data. It is

evident from Table 1 that the actual integration time becomes

small compared with the overhead of loading and reshaping

data. For all the data storages demonstrated, the integration

is limited by loading the data, even for the RAM-disk on the

workstation, where the transfer speed reached was approxi-

mately 1.875 GB s�1, which is as fast as the RAM-disk with a

file system would allow data to be transferred.

In our experience, many current scanning-type or in situ-

type measurements do not often exceed speeds on the order of

100 Hz. The present algorithm can thus keep up with realistic

data collection speeds for a vast range of experiments.

Aside from the integration time, another important factor

for integration in a concrete experiment is the memory foot-

print. This is shown in Figs. 4(a) and 4(b) for integration

performed on a laptop and a workstation, respectively. The

first part of the curve shows the calculation of the indexing

matrix used to perform the integration as a transformation

with a pixel-splitting factor of 20 (400 subpixels per pixel).

This part of the curve takes up approximately 6 GiB of RAM

for less than 4 min, which might seem like a long time spent on

making the indexing matrix; it is however necessary in order to

get such a high level of pixel splitting. With a lower level of

splitting, say S = 1, 3 and 9, the indexing matrix can be

calculated in 1.14 s, 5.28 s and 38.87 s, respectively. The second

part of the curve is the actual integration. Here the memory

footprint is proportional to the number of workers (threads)

used, and the time is proportional to the data transfer speed.

In these tests, since they were carried out on compressed data,

a significant amount of time was spent on decompression, even

when loading had been mostly eliminated by storing the data

on the RAM-disk. The algorithm will allocate the memory

needed during integration; this is the reason the two curves in

Fig. 4(b) have the same maximum memory footprint.

Though the memory footprint and computation time of the

indexing increase with the pixel-splitting factor, as seen from

Fig. 4(c), it increases much less than linearly with the number

of azimuthal bins, as seen in Fig. 4(d). The main reason for the
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Figure 4
Memory footprint of MatFRAIA. (a) Memory footprint during integra-
tion and indexing on the laptop over ethernet (red) and from an HDD
(blue). (b) Memory footprint during integration and indexing on a
workstation over ethernet (red) and from a RAM-disk (blue). (c) Memory
footprint during indexing with different pixel splittings. (d) Memory
footprint during indexing with a different number of azimuthal bins Nab =
[1, 18, 360] for a pixel-splitting level of S = 20.

Table 1
Benchmarking timings of the algorithm for different real-world scenarios.

Discrepancies between ‘Execution time’ and ‘Time spent in job’ can be
attributed to parallelization overhead.

Measure
Laptop
(1 GB s�1)

Laptop HDD
(1.6 GB s�1)

Workstation
(1 GB s�1)

Workstation
(RAM-disk)

Total time (s) 2124 1648 1772 402
Indexing time (s) 227 201 229 228
Execution time (s) 1897 1446 1510 166
Time spent in job (s) 1384 1197.5 1438.03 160.16
Loading and

decompression
time per worker (%)

77.35 61.36 96.52 49.91

Data processing time
per worker (%)

14.73 30.84 1.69 44.14

Integration time per
worker (%)

4.30 6.35 0.26 5.63

Save time per
worker (%)

0.02 1.09 0.01 0.21

Overhead in job (%) 3.60 0.36 1.52 0.11



slight increase with the number of azimuthal bins is that the

transformation matrix will be larger.

3.2. Online data treatment during measurements

The high speed of MatFRAIA makes it a good candidate for

online data treatment, i.e. during data collection in synchro-

tron experiments. We tested the capabilities of MatFRAIA to

be used as such in scanning XRF/XRD measurements at the

PETRA III beamline P06 (see Experimental). As a result, the

data were already integrated and ready for further analysis

before we left the beamline, reducing what needs to be done

after returning from an experiment. Furthermore, a Python

implementation of MatFRAIA has been used at NanoMax at

MAX IV (Björling et al., 2021).

3.3. Example data: orientation analysis of bone around
an implant

The bone test sample was investigated through position-

resolved XRD/XRF analysis. A total of 38152 raw diffracto-

grams were collected. The final dataset (Fig. 5) was truncated

to 36400 raw diffractograms [such as the one shown in

Fig. 3(a)] to account for scan-edge effects.

The data were assigned to multiple sections corresponding

to different material contributions – bone, implant tension

screw and nothing – as shown in Fig. 5(b), which is a

segmentation based on Ca (red), Ni (green) and Sr (blue)

XRF signals. The red segment corresponds to bone near the

surface of the sample oriented towards the XRF detector and

is based on the Ca signal in Fig. 5(e). The blue signal in

Fig. 5(b) corresponds to bone deeper in the sample and is

based on the Sr signal in Fig. 5( f). The difference between the

Ca- and Sr-based bone assignment originates from the rather

high thickness of the sample, meaning that the Ca signal only

reports on the part of the sample close to the surface whereas

the Sr signal reports on the full thickness since Sr K� is higher

in energy and thus can escape from the full depth of the

sample. Lastly the green signal in Fig. 5(b) corresponds to the

tension spring in the sample around which the bone has grown

and is based on the Ni XRF signal. As seen in Fig. 5( f) enough

Ni signal can pile up and give rise to what seems to be Sr

signal. As the diffraction signal has the highest energy, it

carries all the way through the sample, thus the HAP multiplet

[HAP (211), (112), (300) and (202) peaks located around 2� =

15� at this experiment energy, see Fig. 3(b)], as shown in

Fig. 5(d), shows the full outline of the bone. The integrated

HAP (002) peak, as shown in Fig. 5(c), is not visible in all areas

due to orientation effects. Based on the HAP (002) peak, the

orientation of bone in all points can be found, as described in

the section Methods.
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Figure 5
Analysis of the test sample consisting of a tensile load screw and surrounding bone. (a) Orientational distribution H(ue) S(aturation) V(alue) map of the
full sample, for every pixel the process like that described in Section 2.2.2 has been carried out if sufficient HAP (002) signal was present. The hue of a
point reveals the crystallite orientation, the saturation reveals the projected degree of orientation and the value reveals the total projected (002) intensity
in the point. (b)–( f ) XRF and XRD analysis. (b) Segmentation sketch based on XRF signals. The Ca signal in red shows areas where bone is close to the
sample surface, the Ni signal in green shows the location of the implant tension spring, and the Sr signal in blue shows areas where there is bone further
from the sample surface. (c) HAP (002) integrated intensity. (d) HAP multiplet integrated intensity. (e) XRF Ca signal. ( f ) XRF Sr signal. Scale bars are
50 mm. The outermost 3 mm in (a)–( f ) have been removed on both the left and the right, due to edge effects; thus (a), (c) and (d) contain 104 � 350
diffractograms.



The results of the orientation analysis are summarized in

Fig. 5(a), which reports the orientation as the color (hue) in

each pixel while the degree of orientation is given as the

saturation (white to colored) and the total (002) diffraction

intensity is reported as the value (black to white). From here it

can be seen that the bone has grown such that its crystals curl

around the spring wire from the bottom of the region of

interest all the way to the top. Farther from the spring, the

mineral is randomly oriented in projection resulting in a low

projected degree of orientation.

4. Discussion

The present implementation shares some similarities with the

methods used in PyFAI that also uses pixel splitting and

indexing. In PyFAI the indices are implemented through a

sparse matrix and/or a lookup table (Kieffer & Ashiotis, 2014)

akin to the current index matrix. The present version of a

linearized index allows very efficient use of sparse matrix

multiplication in MATLAB, which is at the core of the

performance obtained herein. Similar performance was found

in a Python implementation.

The MatFRAIA pixel-splitting scheme allows for certain

effects to be applied to a sub-pixel level, which might be

desirable; it is also, to the best of our knowledge, the first pixel-

splitting scheme that allows for an arbitrary accuracy while

conforming to the integration bin shape.

The present MatFRAIA implementation utilizes paralleli-

zation on a per-file basis. Though this might not be important

for smaller datasets, it allows the data to be not only integrated

but also loaded in parallel, which increases the chance of the

data integration process fully utilizing the bandwidth to the

data location.

5. Conclusions

We have presented the new MatFRAIA integration algorithm

utilizing both a novel pixel splitting scheme and a novel

parallelization scheme while incorporating techniques akin to

those used in PyFAI, namely using a sparse indexing matrix

for the integration itself. Using MatFRAIA we have shown

integration speeds of multiple kilohertz to be possible using

modern hardware, and that a common laptop can saturate its

own ethernet connection, while being able to keep up with the

pace at which data are gathered at experiments on current

synchrotrons. Furthermore, we have shown that the actual

integration is now quite fast, suggesting that further

improvements could arise from gaining efficiency in other

parts of the process, such as compression and structuring the

data for integration, or by implementing on-board integration

in parallel to compression of detector frames.
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