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The microscopy research at the Bionanoprobe (currently at beamline 9-ID and

later 2-ID after APS-U) of Argonne National Laboratory focuses on applying

synchrotron X-ray fluorescence (XRF) techniques to obtain trace elemental

mappings of cryogenic biological samples to gain insights about their role in

critical biological activities. The elemental mappings and the morphological

aspects of the biological samples, in this instance, the bacterium Escherichia coli

(E. Coli), also serve as label-free biological fingerprints to identify E. coli

cells that have been treated differently. The key limitations of achieving good

identification performance are the extraction of cells from raw XRF

measurements via binary conversion, definition of features, noise floor and

proportion of cells treated differently in the measurement. Automating cell

extraction from raw XRF measurements across different types of chemical

treatment and the implementation of machine-learning models to distinguish

cells from the background and their differing treatments are described. Principal

components are calculated from domain knowledge specific features and

clustered to distinguish healthy and poisoned cells from the background without

manual annotation. The cells are ranked via fuzzy clustering to recommend

regions of interest for automated experimentation. The effects of dwell time and

the amount of data required on the usability of the software are also discussed.

1. Introduction

The Bionanoprobe (BNP) at beamline 9-ID of the Advanced

Photon Source (APS) at Argonne National Laboratory

focuses on advancing synchrotron-based X-ray fluorescence

(XRF) imaging and elemental mapping techniques for a broad

range of biological studies including the imaging of mouse

fibroblast cells (Chen et al., 2015), the effect of nanomedicine

on rabbit liver tissues via sulfur maps (Deng et al., 2022), a

simultaneous qualitative investigation of structural features

and quantitative elemental maps of ex vivo tissues (Genoud et

al., 2020), and specifying discrete zinc-enriched vesicles in

oocyte growth and egg fertilization via single-cell level zinc

mapping (Que et al., 2015). Facilitation of further scientific

discovery at the 9-ID beamline as well as other beamlines at

the APS and their consequent scientific impact is expected

to accelerate with the upcoming APS upgrade (APS-U)

providing higher-energy X-rays for faster measurement and

higher resolution (Fornek, 2019). The orders-of-magnitude

increase in acquired XRF images necessitates integration of

machine-learning methods for data analysis, smart experi-
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mentation, and autonomous decision-making for interpreta-

tion and exploration of high-dimensional parameter spaces.

The elemental maps that form the XRF images are typically

scanned with coarse and fine resolution by raster-scanning

a point probe at the BNP. From the coarse-resolution XRF

images, several regions of interest (ROIs) are identified. The

extracted ROIs could contain specific morphological and

elemental information (e.g. the detection of individual biolo-

gical cells) providing image-based features to fit clustering

models. Use of multi-dimensional elemental maps to identify

and locate ROIs from XRF images for cells of similar shape

and morphology have been reported (Wang et al., 2014).

However, in practice, individual cells within a population can

exhibit differing morphologies and elemental variations. The

variations in morphology and elemental content can be

utilized by machine-learning models to further isolate and

precisely identify and locate cells. The prohibitively long

acquisition time for fine-resolution scans and the lack of

automation in locating ROIs in elemental maps produced

in more rapid coarse scans constitute a major bottleneck

in developing a quantitative understanding of the inorganic

variations within a population of cells. Automation to cluster

and detect ROIs has been attempted previously. A conven-

tional hard k-means clustering algorithm alone may not be

sufficient (Ward et al., 2013). Mean shift clustering (Comaniciu

& Meer, 2002) provides less control over the number of

clusters and may provide abrupt changes to the number of

clusters in high-dimensional data. Affinity propagation (Frey

& Dueck, 2007) is quite memory intensive and thus does not

scale well to large datasets. Density-based spectral clustering

application with noise (DBSCAN; Ester et al., 1996) is

dependent on the ordering of data points and is highly

sensitive to its hyperparameters, particularly the epsilon

hyperparameter. While the challenge with ordering of points

is addressed by the OPTICS (ordering points to identify the

clustering structure) algorithm (Ankerst et al., 1999), it still

requires the number of minimum data points to be specified

for clustering. The advantages of using k-means over the other

algorithms are its simplicity and the choice of the number of

clusters the user prefers in order to find the desired number

of bacterial cell type treatments. To fully automate experi-

mentation, soft or fuzzy clustering is required to rank and

group cells (Li et al., 2017). Furthermore, the user should also

be provided with an interface to view clustered data based

on the chosen features. Faster annotation could then be

performed using, for example, a lasso-selector tool.

Open-source software provides the ability to rapidly switch

between different algorithms and prototype new ones and is

required for targeted experimentation. Therefore, stand-alone

open source software packages for beamline scientists and

users are needed to assist with fast installation, rapid learning

curves, superior usability and integration of domain knowl-

edge for specific machine-learning applications. In this paper,

we report the development of the open-source software ROI-

Finder and demonstrate its use for automating beam time

experiments involving the imaging of Escherichia coli (E. coli)

cells frozen on a grid after treatment with different poisoning

reagents in order to understand if the inorganic content of

individual cells can serve as a reporter of the physiological

stress. XRF is a non-intrusive method for analyzing individual

E. coli cells (Victor et al., 2020). During the experiments

reported here, a combination of coarse and fine measurements

resulted in XRF maps of trace elements as well as morpho-

logical variations within numerous detected cells. During

the beam time experiment, an unsupervised fuzzy clustering

model was trained on the coarse scans to group and rank

detected ROIs based on their similarity, and selected ROIs

were recommended for subsequent high-resolution scanning.

ROI-Finder was demonstrated to selectively image fine-reso-

lution scans of healthy and poisoned E. coli cells imaged under

cryogenic conditions in collaboration with the APS team

who operated the instrument and the participating user who

planned and prepared the samples for these experiments.

Through further discussions, we show that the code can be

used in multiple scenarios, including recommending similar

cells, identifying live and dead cells, and similarity-based

sorting by a fuzzy clustering algorithm to rapidly identify

experimental anomalies.

Fig. 1 provides an overview of the implementation of

ROI-Finder. The XRF microscopy images acquired via coarse

scans contain E. coli cells. From each elemental channel

individual E. coli cells are extracted. From the cell images, cell

morphology parameters are calculated and features for the

principal component analysis (PCA) are extracted. The prin-

cipal components (PCs) are used to train a fuzzy k-means

clustering algorithm. Two possible scenarios for ROI identi-

fication are to distinguish between E. coli cells that have been

treated differently or to recommend fine scan locations similar

to those previously selected. From the fuzzy clustered space

and domain heuristics, the model can predict type A (healthy)

and type B (poisoned) E. coli cells to sort and rank them based

on a confidence metric. The model recommends cells of

similar morphology and elemental mappings from clustered

feature space. The co-ordinates of the recommended ROIs are

provided to the data acquisition and control system of the

BNP to conduct fine-resolution scans on similar cells to gain

detailed local elemental mappings on cells of interest.

2. Experimental

2.1. Sample preparation

Inorganic substances including transition metals play a

pivotal role in living organisms and control challenging

chemical processes required for the sustainability of life

(O’Halloran, 1993; Pushie et al., 2014). Microbes can respond

to a limitation and excess of metal ions by activating the

expression of metalloregulatory proteins and/or metal-specific

receptors (Finney & O’Halloran, 2003; Chandrangsu et al.,

2017). Microbes also utilize inorganic substances as an

essential regulator for life; therefore, identifying a biodis-

tribution of inorganic trace elements in a single bacterial cell is

of high interest (Williams, 2006). In these experiments, three

different types of E. coli cells were prepared. A single colony
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of E. coli K-12 wild-type strain MG1655 was inoculated in 3 ml

of sterilized LB broth (Miller’s modification, Sigma Aldrich)

and incubated overnight (16 h) at 37�C with 250 rpm shaking.

The overnight culture was diluted to 1:100 in the 5 ml of fresh

LB media and grown to reach the early log phase (OD600 =

0.3–0.4). E. coli cells were then exposed to treatment, incu-

bated for another 20 min and transferred to metal-free conical

tubes followed by three spin-down washes with 240 mM

sucrose (Sigma Aldrich) solution. Three different treatments

were performed: healthy untreated (type A), 70% ethanol

poisoned (type B) and 1 mM sodium azide (NaN3, Sigma

Aldrich) plus 0.1 mM copper sulfate (CuSO4, Sigma Aldrich)

treated (type C). The culture prepared without any treatment

are the type A cells. For type B cells, the LB medium was

substituted with 5 ml of 70% (v/v) ethanol solution and

incubated for 20 min to poison the early log phase culture. For

type C cells, the treatment was performed using 1 mM NaN3

and 0.1 mM CuSO4 in early log phase culture. All washed

samples were loaded on a 1.50 mm � 1.50 mm sized silicon

nitride (SiN) window (Norcada, NX5150D) using a plunge

freeze setup. Each sample (2 ml) was loaded in the middle of

the SiN window and blotted by blot paper to evenly disperse

on the surface. After, the SiN window was immediately

dipped into liquefied ethane for 5 s. The frozen SiN window

was transferred into the liquid nitrogen while avoiding expo-

sure to air.

To evaluate if the poisoning intervention shows a biological

impact on the viability of E. coli cells, optical fluorescence

microscopy was performed using the LIVE/DEAD BacLight

Bacterial Viability Kit (Invitrogen, L7012; see Fig. S1 of the

supporting information). Counting live (green fluorescence)

and dead (red fluorescence) cells resulted in yielding a

percentage of live E. coli cells, demonstrating that ethanol or

sodium azide poisoning can deteriorate E. coli viability

(Table S1 of the supporting information, Fig. S2). Given that

poisoning may alter the biodistribution of elements in a single

E. coli cell, the clustering of type A, B and C samples observed

with XRF microscopy images proceeded regardless.

2.2. Data acquisition

The XRF elemental maps were acquired at the 9-ID

beamline of the APS using the Bionanoprobe. The BNP is

an X-ray microscope with nanometre-level probe size and a

cryogenic sample environment. The BNP is located at an

undulator of the APS synchrotron storage ring. The operating

pressure and temperature are below 10�7 torr and 135 K.

Analysis of trace elements in biological samples at very low

temperatures and at high spatial resolution is the key use of

the BNP. To maintain cryogenic temperatures, samples are

frozen using liquid-nitrogen conductive cooling. The low

pressure mitigates frosting and air absorption and also

prevents the sample from breaking. The vacuum ensures

minimal X-ray absorption in air. Samples are mounted using a

precision cryo-robot stage system. The BNP performs raster

scans with a 0.25 mm step size and 0.15 mm beam spot size. The

scanning speed along the horizontal axis is between 10�4 and

10�2 mm s�1. From the synchrotron storage ring, the gener-

ated X-ray beam is monochromated using a double-crystal

monochromator and focused using a Fresnel zone plate onto

the cryogenic sample. The source X-ray energy for this data

was 10 keV. As the sample is raster-scanned, its XRF spectrum

is recorded for every pixel using a seven-element Vortex-ME7

energy-dispersive silicon drift detectors (Hitachi High Tech-

nologies Science America, USA). The detector is orientated

perpendicular with respect to the incident X-ray beam to

generate elemental maps of the sample in 2D (Nietzold et

al., 2018).

Dwell time is the amount of time each pixel is exposed to

the X-ray beam for the collection of the elemental map. Long
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Figure 1
Schematic of the ROI-Finder workflow for similar cell recommendations and prediction of cell states. The acquired coarse scan microscopy elemental
maps are segmented and individual cell images are extracted. ROI-Finder uses PCA to extract features from individual cell images. The features are fed
to a fuzzy k-means unsupervised clustering algorithm to train the model. The trained model is used to predict cell treatment types and recommended
scan locations for automated steering of experiments.



dwell times constitute a significant bottleneck for faster

experimentation and thus reduction of dwell time is of

interest. Five of the coarse scans reported in this paper had

a dwell time per pixel of 100 ms. Three coarse scans were

conducted at 50 ms, 25 ms and 12.5 ms to understand how

much reduction in dwell time is achievable for automated

ROI finding.

The elemental maps are formed from the fluorescence

counts at different X-ray energies measured from the detector

on a raster grid of scan points. In total, eight coarse scans were

collected at the BNP in this paper. Five scans consisted of only

type A and B cells. Three additional scans of type C cells were

collected to analyze the effects of dwell time. The effect of

dwell time is discussed later. The elemental maps of these

scans are given in the supporting information.

In Table 1, the sample types, scan size, extracted regions,

extracted cells and chemical reagent for sample preparation

are given.

3. Software

3.1. Raw-data format and user inputs

XRF microscopy map images in the .h5 file format

containing chemical composition and elemental distribution in

a biological sample are loaded after processing from the

MAPS data-fitting software (Nietzold et al., 2018). Measured

elemental distribution maps are selected by the user

depending on the problem. For the current problem, in order

to distinguish between type A and B cells, the amount of

potassium is crucial since it is expected to be very high in cells

that were frozen in a live state with an intact inner membrane.

Since K levels are low outside the cell, any physiological

disruption of the inner membrane will lead to leakage and

lower levels of intracellular K. We anticipate that the cellular

content of K in particular will vary depending on the sample

preparation steps and treatment which lead to physiological

stress for the E. coli cells (Matsuyama et al., 2010; Perrin et al.,

2015). Hence, the choice of K is a crucial factor in distin-

guishing cell treatment types. Maps of Fe, Zn, Ca and P

contrasted well from the background and thus were also

selected. Maps of Cu, Ni and Cl were noisy and were difficult

to distinguish from the background and thus not selected.

For any other scenarios, users may choose any subset of

the elemental maps of their interest using the ROI-Finder

programming interface.

3.2. Segmentation and detection of individual cells

The segmentation masks of the five coarse scans containing

type A and B cells are illustrated in Fig. 2. In the mask, all

pixels inside the detected cell boundary were labeled 1 and the

background was labeled 0. In the segmentation mask we

observed the cell boundaries and some small image-processing

artifacts during binary conversion via Otsu thresholding.

A connected components filter is applied to the binary

image to extract all pixel-wise connected ROIs using the

Scikit-image package (Van der Walt et al., 2014). Afterwards,

we loop over each ROI performing morphological measure-

ments and fluorescence counts. Some detected ROIs are not

E. coli cells but image-processing artifacts. To remove them,

we apply a selection criteria to accept an extracted ROI as

a cell based on the total number of pixels in the region/

component. We found that rejecting any region/component

containing less than or equal to 8 pixels removes image-

processing artifacts. Finally, the features extracted from the

ROIs selected are used for the PCA in the next step. For

this case, we calculated two morphological features, namely

the area and the eccentricity. The elemental features defined

from K, P, Ca, Zn and Fe channels are calculated from their

maximum amounts calculated over all pixels within an indi-

vidual ROI.

In order to segment the ROIs (i.e. E. coli cells) from the

elemental maps, the sum of K, P, S and Ca channels is used to

construct a single coarse image. A median filter with a 3 � 3

kernel is applied and then the image is thresholded via Otsu

thresholding to create a binary segmentation mask (Otsu,

1979). We used 1.25� the Otsu threshold value for segmen-

tation. In order to quickly preview and adjust parameters for

generating the segmentation masks, Jupyter Notebooks are

provided.

3.3. Principal component analysis

In Fig. 3, all single-cell data extracted from the eight coarse

scans are shown in a single scatter plot along with the asso-

ciated loadings. The PCA method is described in the next

section. We plotted two PCs for ease of visualization, but the
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Table 1
Characteristics of the coarse scans collected at the 9-ID bionanoprobe of the APS.

All coarse scans were collected under cryogenic conditions and have a resolution of 0.25 mm.

Scan index Sample type Scan size Dwell time (ms) Extracted regions† Extracted cells Chemical reagent

1 A 321 � 321 100 41 36 Untreated
2 A 321 � 321 100 36 31 Untreated
3 A 149 � 321 100 17 14 Untreated
4 B 321 � 321 100 19 17 70% ethanol
5 B 118 � 321 100 11 8 70% ethanol
6 C 163 � 163 50 18 18 1 mM NaN3 + 0.1 mM CuSO4

7 C 163 � 163 25 16 16 1 mM NaN3 + 0.1 mM CuSO4

8 C 163 � 163 12.5 17 16 1 mM NaN3 + 0.1 mM CuSO4

† These extracted regions are based on the scheme described later.



scree plot indicates that at least six PCs are required to fully

explain the variance in the data. For complex tasks, attempting

to cluster or classify more than three types of cell, more

descriptive features may be needed and thus users may need

to plan and carefully gather data consisting of higher-dimen-

sional space consisting of more than seven features and/or

consider more than two PCs.

It is apparent from the scatter plot of the first two PCs that

there are distinct clusters for E. coli cells that were treated

differently, originating from three different sets of sample

preparation techniques. Since more PCs are required to fully

capture the variance in the entire dataset, and we are already

seeing clusters appearing in 2D, we expect to form stronger

clusters in a higher-dimensional space if we include more PCs

in our analysis.

In this work, the PCs were constructed from seven features.

The equations for the first two PCs are given below where a

represents the area; e represents the eccentricity of the E. coli

cells; and K, P, Ca, Zn and Fe represent the maximum fluor-

escence count for these elements present in the E. coli cells.

computer programs
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Figure 3
(a) PCs and (b) associated loading scores on the extracted cells from the eight coarse scans shown in Figs. 2 and 5. (c) Scree plot. Type A, B and C cells
are clustered in the PC space due to their morphological and maximum elemental mapping variation. Each extracted feature and their direction of
variation are depicted by the loading scores plot. The scree plot illustrates how much variation in the data is explained by each PC.

Figure 2
Segmentation masks of the coarse scans containing type A and B cells. Red indicates the boundary between the cell and background regions as detected
by the segmentation scheme. Pixels inside the cells are labeled 1 and the background is labeled 0.



Extracting cell-averaged fluorescence counts from elemental

maps did not demonstrate improved clustering compared with

the extraction of maximum fluorescence counts from the

elemental maps for elemental feature construction. This may

be problem specific, and for other clustering applications for

scientific discovery, cell-averaged fluorescence counts from

elemental maps may yield improved clustering. ROI-Finder

allows the user to extract fluorescence counts in both ways and

provides functionalities so the user may define their own type

of extraction of fluorescence counts from the elemental maps.

The fluorescence counts can also be converted to a concen-

tration value. While this may affect the magnitude of calcu-

lated PCs, their direction should remain unchanged and thus

the relative position of the cluster points in the PC space

should be preserved since each PC consists of a scaling

component (eigenvalues) and a direction component (eigen-

vectors),

PC1 ¼ 0:21aþ 0:35e� 0:39Kþ 0:45Pþ 0:52Ca

þ 0:46Zn� 0:051Fe; ð1Þ

PC2 ¼ 0:64aþ 0:39eþ 0:48K� 0:16Pþ 0:039Ca

� 0:023Znþ 0:42Fe: ð2Þ

The loading scores of each of these features indicate their

direction of variation. This analysis distinguishes between cells

based on the treatment groups. We find that type C cells are

distinguished by higher amounts of K compared with the other

two types. Similarly, type B cells contain more Ca, Zn and P

relative to type A and C cells. The variation of morphology

between the cells can mostly be attributed to the variation of

the elemental features. We note that very large E. coli cells are

predominantly outliers and are located far away from cluster

centers in the first quadrant. These are likely to be dividing

cells (two cells very close together) or scanning artifacts (parts

of the scan were corrupted). From the morphological features,

it is apparent that the cells of each type have good morpho-

logical variation and a wide range of sizes.

PCA produces a set of successive orthogonal variables from

correlated high-dimensional data to explain the maximum

variance in the data (Abdi & Williams, 2010). In this instance,

the multi-variate data consist of seven features extracted from

the regions/components in the previous step, namely area (a);

eccentricity (e); and maximum fluorescence count (calculated

for all pixels within an ROI) of K, P, Ca, Zn and Fe elements.

The input to the PCA method is thus a high-dimensional data

table consisting of these features. PCA was performed using

the Scikit-learn Python package. The data input for PCA is

represented as a matrix X of n � f dimensions where n is the

number of rows/cells/ROIs and f is the number of columns/

features. The data were standardized by subtracting the mean

and normalized by the standard deviation. The covariance

matrix (C) is given by

C ¼
1

n� 1
� XTX: ð3Þ

Since C is symmetric it can be written as

C ¼ V�VT; ð4Þ

where V is the eigenvector matrix and � is a diagonal matrix

with progressively decreasing eigenvalues. The eigenvectors

are the principal axes/directions of the data. Projections of the

data on the principal directions are PCs and are given by the

columns of XV or US, where U is a unitary matrix and S is the

singular matrix when PCA is performed with singular value

decomposition (SVD) and X = USVT. The ‘loadings’ of the

PCs are given by [1/(n � 1)] � VS.

3.4. Clustering and similarity-based recommendation

We further perform cluster analysis on the loadings derived

from the PCA step. Here, we use PCA as a dimensionality

reduction step to select the first two PCs for cluster analysis.

Manual selection of clusters. As a first step, one may want to

manually tag the cells represented as scatter points in the PC

plot space. If annotations are available, the scatter points will

clearly demonstrate the differences between the ROIs/cells. In

the absence of annotations, users can apply various filters on

the data based on heuristics to better understand the trends

present in the ROIs/cells. Experiment-to-experiment variation

can also be better understood by progressively adding ROIs/

cells from each experiment as they are measured in the PC

space plot. The user can view the clustering assignments to

gain further understanding. When the user chooses an ROI/

cell using a lasso-selector tool, the nearest ROI/cell to that

cluster is recommended for fine scanning.

Similarity-based sorting with fuzzy k-means. Selection of

clusters does not need to be carried out manually. An auto-

mated clustering algorithm could assign the ROIs/cells to

different integer class labels without manual classification.

Given n cells with PCs as features xi, we want to group n cells

into k number of clusters C where no cell is placed in more

than one cluster. The k-means clustering algorithm minimizes

the within-cluster sum of squares criterion for each cell xi

(Barbakh et al., 2009). Once the class labels are available from

k-means for two clusters to distinguish between type A and B

cells, ROI-Finder can recommend cells of each type from the

assigned cluster of cells detected in a coarse scan for a follow-

up fine scan,

min
Xn

i¼ 0; j2C

ðxi � �jÞ
2: ð5Þ

In the k-means clusters, each ROI or cell is strictly assigned

to one cluster. Ideally, all type A cells should closely cluster

around a cluster center. Similarly, all type B cells should also

form a cluster around its own cluster center. There could be

borderline cases when an ROI or cell is placed at an

approximately equal distance from multiple cluster centers. In

this instance it is difficult to identify the ideal cluster center for

that particular ROI or cell. However, the hard clustering k-

means algorithm would assign these ROIs to a single cluster

since there will always be a difference in the measured

distances from the clusters, regardless of how small they are.

Even for human experts, assigning these borderline cases to
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the correct cluster centers or identifying the treatment type

would be difficult. Such cases are also likely to arise due to

experimental anomalies, poor contrast of ROIs from the

background and low signal-to noise ratio (SNR). Thus a metric

is required to assign ROIs/cells to more than one cluster or

provide an indication of how likely they are to belong in one

cluster compared with the others. Fuzzy k-means clustering

accomplishes this by providing this weight-based metric to

assess the clustering and rank/sort the cells for each individual

cluster (Li et al., 2017). In fuzzy k-means clustering, the

following function is minimized with the associated weights

wij 2 [0, 1],

min
Xn

i¼ 0

XC

j¼ 0

wijðxi � �jÞ
2: ð6Þ

The weights are given by

wij ¼
1

Pc
k¼ 1

jjxi ��jjj

jjxi ��kjj

� � 2
m� 1

: ð7Þ

Here, m is a softness/fuzziness parameter and is set to 2; m = 1

indicates hard clustering. The confidence metric refers to the

largest weight belonging to a cluster.

The learning of the weights from the training data xi is a key

step in the implementation of machine learning for guiding

XRF fine scans.

4. Use cases

4.1. Clustering type A and B cells

We clustered the 106 cells extracted from coarse scans 1–5

in Fig. 4 using their PCs. Histograms showing the distribution

of values for each feature are provided in the supporting

information. ROI-Finder uses two PCs for the regular and

fuzzy clustering. In Fig. 4, the ground-truth labels are shown

on the left, the regular k-means clusters are shown in the

middle, and the soft, the result of fuzzy k-means clustering, is

shown on the right. When the labels associated with each cell

are available, we have an annotated dataset, and this can be

used to perform conventional supervised classification and

any supervised machine-learning model will suffice. For the

purpose of testing ROI-Finder, scans 1–5 were conducted

carefully with samples containing only type A cells for scans

1–3 and only type B cells with scans 4–5 and thus the anno-

tations are available to us.

From the regular k-means clustering in Fig. 4, we observe

that the algorithm has correctly assigned two clusters and

found reasonable cluster centers, although two of the outlying

relatively large cells, located between the space of PC1 = 2 to

PC1 = 4 and PC2 = 0.5 to PC2 = 2.5, are incorrectly clustered.

The outlier between the space PC1 = �1 to PC1 = �2 and

PC2 = 5 to PC2 = 6 is also incorrectly clustered by regular k-

means. The fuzzy k-means plot was prepared by tagging all the

cells evaluated to a confidence metric below 0.99. The confi-

dence metric is the maximum weight calculated for each

cluster. If the k-means algorithm associated a higher weight

to a cell to cluster it, then this indicates that the algorithm is

confident in the cluster assignment. Thus, we can remove all

the cells that have very low confidence metrics and leave only

the cells that the algorithm is highly confident about clus-

tering. We can further observe that most of the outliers have

low weights and are thus poorly clustered; hence, as we move

further from the cluster centers, the clustering is likely to be

less correct. The advantage of filtering the cells with low

confidence values is that it gives the user the opportunity to

quickly examine borderline cells/ROIs to better interpret their

experimental data. Scanning artifacts or any other artifacts

due to experimental design are also likely to have lower

confidence values and thus can be easily identified during

beam time and users may choose to correct the experimental

conditions to address the anomalies.

4.1.1. Codeblock. An example Python code is given in the

supporting information to demonstrate how ROI-Finder can

be integrated with the BNP/EPICS control codes.

4.2. Recommending similar cells

ROI-Finder can recommend cells similar to those selected

by the user via a lasso-selector tool from the regular k-means

clusters shown in Fig. 4. To recommend a similar cell, the

computer programs
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Figure 4
Comparing (a) ideal, (b) regular and (c) soft or fuzzy k-means clustering. Blue points are type A cells and red points are type B cells. Each scatter point
represents a cell. In plot (c), the scatter point color intensity is scaled with the confidence metric for fuzzy clustering. The detected cells with low
confidence metrics are barely visible. These cells are probably experimental anomalies. The cluster center is depicted by the ‘X’ marker.



nearest-neighbor cell measured by the Euclidean distance in

the 2D PC space is returned.

4.3. Effect of dwell time

In Fig. 5, segmentation masks of the coarse scans containing

type C cells are shown. The same area of the sample was used

for all these three scans. In XRF experiments, reducing the

dwell time for faster experimentation introduces other chal-

lenges. While longer dwell times in scans 6 (50 ms) and 7

(25 ms) provide good SNRs, we found that, by using K, P, S

and Ca channels together as intensity maps to detect indivi-

dual cells, we can use a shorter dwell time of 12.5 ms to

identify cells from noisy scans. The SNRs of scans 6, 7 and 8

with respect to the binary mask of scan 6 are 1.64, 0.97 and

0.80. While the SNR values decrease significantly as dwell

times are decreased, it is evident from the binary masks that

most of the cells can still be identified. With dwell times of

25 ms and 12.5 ms compared with 50 ms, we lose one cell in the

top portion of the binary masks.

4.4. Effect of proportion of type A and B cells to the total
data on clustering

In Table 2, calculated dice scores for subsets of the data are

given. The dice score corresponds to the accuracy with which

the ROIs are classified into their respective treatment groups

when compared with the ground-truth labels. Each row of the

table represents 1000 random samplings of a specific propor-

tion of cells of each type for clustering. The results are then

clustered and the corresponding dice score is calculated for all

1000 samplings. The average dice score improves when the

number of cells clustered from each type increased. Increasing

the training images allows the clustering algorithm to learn

diverse patterns present in the data through the variability

present in the larger data and thus the accuracy of the clus-

tering increases.

The dice scores (DS) for each of these clusters are calcu-

lated as follows,

DS ¼
2TP

2TP þ FP þ FN

; ð8Þ

where, TP, FP and FN refer to true positives, false positives and

false negatives, respectively.

5. Conclusions and future work

The generalizability of the ROI-Finder to more than two

classes depends on the efficiency of the chosen clustering

algorithm. With increasing number of classes or types of ROIs/

cells/experiments, more data would be needed to efficiently

minimize the loss function of the clustering algorithm. The use

of the mean-shift clustering algorithm is also recommended in

such cases to obtain a preliminary guess to unveil the expected

number of clusters in the data before using k-means or any

other clustering algorithm. The current ROI-Finder is devel-

oped specifically for use in the BNP (currently located at the

APS beamline 9-ID), but the ideas presented in this paper

can be extrapolated to use this as a template and adjust it

according to the experimental needs of other users. To make

the ROI-Finder more generalizable so it can be used for other

types of cells such as HeLa cells or mouse cells, the segmen-

tation of cells from the microscopy images is very important.

computer programs
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Table 2
Average dice scores from 1000 randomly sampled cases.

For each case a certain percentage of cells was selected from each type of cells
and clustered.

Percentage Dice score Type A cells Type B cells Total cells

35 0.64 29 9 38
45 0.66 37 12 49
55 0.69 45 14 59
65 0.75 53 17 70
75 0.79 61 19 80
85 0.86 69 22 91

Figure 5
Segmentation masks of the coarse scans containing type C cells. Red indicates the boundary between the cell and background regions as detected by the
segmentation scheme. Pixels inside the cells are labeled 1 and the background is labeled 0.



If the cells/ROIs can be segmented and extracted, relevant

features for PCA can be defined and subsequently ROI-Finder

can identify the relevant ROIs.

With more variation in the data or if the size of the data is

large, more PCs may be needed to represent the variation in

the data. If the number of features or the number of cells is

very high, use of trained unsupervised deep neural networks

may be required to extract relevant features and used for

clustering.

If the ROIs/cells contain significant variation, a smaller

number of cells can be clustered via PCA and the k-means

algorithm. As shown in Table 2, we observe that, even with a

smaller number of cells, k-means performs useable clustering

of two types of cells. So, ROI-Finder is useable with smaller

amounts of data and without manual annotations.

We describe machine-learning guided ROI-Finder and

demonstrate its utility in single-cell analysis of XRF micro-

scopy data. The ROI-Finder automatically segments images

based on relevant elemental maps. Based on limited domain

knowledge, morphological and elemental content features are

extracted from the elemental maps. Fuzzy k-means clustering

is then used on calculated PCs to cluster the data and reveal

how the elemental content of cells change as a function of cell

treatment. The nearest cells in the clustering space to a target

region are recommended for a finer scan. The software

provides real-time feedback of statistical information that

guide subsequent XRF scans. These efforts are expected to

address the challenges of the upcoming upgrade to the APS-U

and meet subsequent user needs.

Data will be provided upon request (Github repository:

https://github.com/aisteer/ROI-Finder).

6. Related literature

The following references, not cited in the main body of the

paper, have been cited in the supporting information: Boulos

et al. (1999); Robertson et al. (2019); Stiefel et al. (2015).
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