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Soft X-ray monochromators for synchrotron radiation sources have been

continuously developed over the years, improving energy resolution and

stability. Great effort has been made in improving the surface quality of the

optics involved, reaching values permitting diffraction-limited images. Still, one

problem has not been solved, nor fully understood, yet: groove placing errors.

Nowadays, these are one of the major factors responsible for resolving the

power reduction of diffraction-gratings-based X-ray monochromators. Despite

decades of use of gratings, there is not yet a universally established method for

predicting and simulating the effect of groove placing errors on monochromator

performance. This is especially important in the new scenario of high-coherent

X-ray sources, i.e. diffraction-limited storage rings and free-electron lasers. To

address this problem, in this article an approach based on WISER (Wavefront

propagatIon Simulation codE libRary) is presented. WISER is a physical optics

simulation package, also available in the user-friendly Orange Synchrotron

Radiation Suite – OASYS. Even though it was originally conceived to assess the

focusing performance of X-ray mirrors in the presence of height defects, it

perfectly simulates the performance of a periodic (or quasi-periodic) structure

like a diffraction grating. In this article, the way to use WISER and its

application to a specific case, e.g. the design of a monochromator for the upgrade

of a beamline at the Advanced Light Source, are shown. A simple rule for

estimating how well the grooves are placed on a grating, based on calculation of

the Strehl ratio, is also presented.

1. Introduction

Diffraction gratings have been used extensively in synchrotron

radiation facilities for several decades and, more recently, in

free-electron lasers. But the history of using gratings can be

tracked back to 1786. This is the year David Crockett was

born, but it was a different David who made gratings a

scientific tool in that year, e.g. the astronomer David Ritten-

house. And the principle of diffraction gratings is even ante-

cedent to this date, some time in the late seventeenth century

(by James Gregory).

Diffraction gratings have been, indeed, valuable instru-

ments in science, especially in astronomy, and, as with most

of the instrumentation used in science, have been subject

to improvement, starting from their ability to separate wave-

lengths. Their applications range from astronomy to nano-

scale microscopy and from the deep infrared to tender X-rays

(or from micrometres to angstroms in wavelength).

The gratings used in the synchrotron radiation scientific

community are almost always unique pieces custom-made for

a specific application. They can be commercially available,

either produced holographically or through mechanical ruling

machines. In an attempt to overcome some of the limitations

of the commercially available gratings, some laboratories have

ISSN 1600-5775

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577522009134&domain=pdf&date_stamp=2022-10-18


developed, or are developing, in-house facilities to produce

gratings targeted to specific applications (e.g. Siewert et al.,

2018; Voronov et al., 2015, 2019). Improvement in the quality

of the gratings has enabled the achievement of higher and

higher energy resolution thanks to the ability to place every

single line of the grating closer and closer to its ideal location.

Metrology techniques have been developed to characterize

the groove-placing precision (Irick & McKinney, 1997; Cocco

et al., 2003; Gleason et al., 2017), and help to predict the

performance of beamlines.

To simulate the effect and behavior of the diffraction

gratings, the most common method has been (and still is) the

use of ray-tracing programs. The most widely used (by the

synchrotron radiation community) was developed in the 1980s

at University of Wisconsin, Madison, USA, by a team led by

Franco Cerrina (Lai & Cerrina, 1986). Several subsequent

improvements and advanced visual user interfaces have been

made along the years to address the need of the opticians. The

most recent, and most complete, is its implementation in

OASYS (OrAnge SYnchrotron Suite). OASYS is a graphical

environment gathering most of the simulation tools that have

been developed, and used, within the X-ray optical community

(Rebuffi & Sanchez del Rio, 2017; Shi et al., 2014).

In ray-tracing simulations, each photon is propagated as an

independent ray, whose trajectory modification depends on

the local characteristics of the particular optical element it

impinges on. In the case of a diffraction grating (see Fig. 1 for

conventions) the relation between the incoming and diffracted

beam directions of a photon of wavelength �, interacting with

the grating at the location (x, y), is calculated from the

following relation,

n�Dx;y ¼ sin �x;y � sin �x;y ð1Þ

where Dx,y is the groove density of the grating at the location

x, y, and n is the diffraction order (� and � are the local

incident and diffraction angle as represented in Fig. 1).

Since, in a standard diffraction grating, the groove density is

important only in the tangential (or meridional) direction, for

the sake of the discussion in this article we will consider only

the dependence of D from the coordinate x, along the grating

meridional plane. The groove density Dx can be chosen to be

constant, along the grating, or variable according to a defined

polynomial law in the form

Dx ¼ D0 þD1xþD2x2 þD3x3 þ . . . ð2Þ

where x = 0 coincides with the center of the grating. In a ray-

tracing program, equation (2) is used to calculate the local

groove density at a given location and then equation (1)

is used to define the new direction of propagation of that

particular ray or photon.

As much as ray tracing is able to predict reasonably well

the resolving power of an X-ray monochromator, with the

photons treated purely geometrically, it fails in properly

assessing the effect of groove placing errors and on the

diffractive effects due to the coherent length of the beam over

the grating surface. Moreover, to the best of our knowledge,

no ray-tracing program, freely available to the public, is

designed to introduce an arbitrary groove density distribution,

either the measured one or an artificial one different from a

polynomial distribution with a limited number of terms. This

is, indeed, something easily solvable, but, still, something to be

taken into account.

A second limitation, related to the first one and usually not

important in standard synchrotron beamlines, is the insensi-

tivity to the number of illuminated lines, N. Practically, it does

not matter how many grooves are illuminated by the radiation,

or how long the coherence length of the beam over the grating

is. A ray-tracing program can estimate a resolving power

E /�E (or � /��) in excess of, for instance, 20000 even if only

5000 lines are coherently illuminated. This is, of course, not

physically possible since the maximum resolution achievable

cannot overcome

E=�E � N: ð3Þ

Of course, even if ray-tracing has all the above-mentioned

limitations and cannot provide directly the wavefront or

calculate the coherent effect, it is still a very powerful method.

In particular, its ability to easily handle multi-wavelength (or

continuous energy) sources permits simulating the bandwidth
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Figure 1
Left: convention used for the angles of incidence and diffraction. Right: pictorial description of the laminar and blazed gratings with relative
nomenclature. d(x) is the period. � and � are the angles of incidence and diffraction, respectively, considered positive with respect to the normal. h is the
groove depth for laminar gratings and W is the groove width. � is the blaze angle and � the apex angle. r is the source-to-grating distance and r 0 is the
grating-to-focus distance.



selected by a monochromator, or any of

the chromatic aberrations introduced by

the optics of a beamline.

To overcome the limitations of ray-

tracing, wavefront propagation tools

have been developed, aimed at address-

ing applications related to the diffrac-

tion-limited storage rings (Shi et al.,

2014; Chubar & Elleaume, 1998;

Raimondi et al.. 2013), to astrophysics

(Raimondi & Spiga, 2015), and to highly

monochromatic and coherent sources

such as free-electron lasers [see, for

instance, WISER (Wavefront propaga-

tIon Simulation codE libRary)

(Manfredda et al., 2020)].

WISER is an evolution of WISE,

originally aimed at stimulating the point

spread function of X-ray telescopes

(Raimondi & Spiga, 2015), and it will

be the protagonist of this paper. Except

where explicitly stated, all the simulations shown in this paper

have been performed using WISER.

2. WISER

2.1. Scope and design

WISER is a physical optics simulation software designed

to propagate a wavefront along a train of optics. Its method

is based on the application of the Huygens–Fresnel principle

on the grazing-incidence reflection. This allows working in

Kirchhoff’s scalar approximation, assuming spatially coherent

and monochromatic radiation. The aim is the assessment of

the focusing performance in the presence of surface error

defects and of other geometrical deviations from the nominal

configuration (such as misalignments, etc.). The surface error is

modeled following the traditional distinction between figure

error and roughness. The first one is provided as a residual

height profile with respect to the ideal surface and the second

one is provided as the power spectral density of the surface

height profile. WISER is specialized in the spectral range from

the extreme ultraviolet to hard X-rays, thus typically operating

at grazing angles of incidence, where the reflectivity is higher.

At grazing angles of reflection/diffraction the effect in the

incidence plane is much larger than in the transverse one by a

factor equal to one over the cosines of the angle of incidence.

The sagittal error of the optical surfaces is therefore neglected,

and only the longitudinal profile is considered. For this reason,

an optical element, in WISER, is represented by its (median)

tangential profile, which is a 1D curve (�), parametrized as

� ! {x(s), y(s)} in a 2D Cartesian reference frame (X, Y)

(Fig. 2). For instance, ellipsoidal mirrors are represented

by elliptic arc sections, paraboloid mirrors by parabolic arc

sections, plane mirrors and detectors by line segments, and so

on. The complete mathematical description of the method can

be found in Raimondi & Spiga (2015).

The ideal mirror profile �(s) can be modified by adding a

custom height profile h(s), where s is a spatial variable in the

tangential direction of the surface [Fig. 2(a)]. Such a feature

is primarily used to input the surface error profiles, but it also

enables the modeling of a complete new optical profile; or,

as described later, to add the grating’s groove profile to the

existing WISER optical surface, as if it were a ‘surface error’.

In doing so, the orientation of the wavevector kout leaving

the (modified) optical element is still computed based on the

original shape. A manual correction is necessary in case the

‘new’ emerging direction varies considerably. This is exactly

what happens when the height profile is modeled to mimic the

behavior of a grating. This approach will be discussed in the

following sections.

WISER is written in Python (version 3.5 or higher) and

consists of two distinct packages: LibWiser 1, which imple-

ments the computation library, and OasysWiser 2, which

provides the graphical interface for OASYS (OASYS add-on).

LibWiser contains all the code necessary for the simulations,

such as the element collection, the positioning engine, the

propagation manager, and the low-level propagation algo-

rithms. It embraces all the WISER functionalities, and it can be

used as a self-standing Python package by users with advanced

programming experience. Conversely, OasysWiser – also

referred to as the WISER graphic user interface (GUI) – is

designed to cover the most common cases of use, and it is

accessible to most users: it does not require any programming

experience, and the system’s parameters (such as source

wavelength, optical element length, propagation distances,

gracing angles) are entered via GUI. This paper considers the

latter case only, as described in Section 2.4. WISER runs on

any machine equipped with Python 3.5. The Numba package
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Figure 2
(a) Top: an ideal surface profile � representing an optical element. Middle: height profile as a
function of s. Bottom: the summation of the two. (b) The propagation from �1 to �2. The output
wavevector k is defined by the reflection on the ideal profile, without considering any height profile
superimposed on it.

1 Available at https://pypi.org/project/LibWiser/.
2 Available at https://pypi.org/project/OASYS1-oasyswiser/ with installation
notes for OASYS.



provides just-in-time compilation to improve the speed in the

computation of Huygens–Fresnel integrals (see Section 2.2),

automatically parallelizing the computation across the avail-

able CPU-logical processors. In its present version, WISER

does not take advantage of graphic processor unit (GPU)

computing. The computation time grows approximately

quadratically as a function of the number of samples. As an

example, on an Intel Core i7-7700HQ CPU at 2.8 GHz (four

cores, eight logical processors), typical computation times are:

tc’ 3 s for 104 samples, tc’ 55 s for 5 � 104 samples, tc’ 200 s

for 105 samples.

2.2. Numerical field propagation in WISER

The field E propagates from the source element �1 to the

target element �2 [Fig. 2(b)]. The Huygens–Fresnel integral

can be written as

Eðs2Þ ¼
Aðk; �2Þ

N
ffiffiffi
�
p

Z
�1

Eðs1Þ
exp �ikRðs2; s1Þ

� �
R21

ds1; ð4Þ

where � is the wavelength, k = 2�=� is the wavenumber, E is

the complex-valued field and R21 is the scalar-value distance

running from s1 to s2,

R21 ¼
�
xðs2Þ � xðs1Þ

�2
þ
�
yðs2Þ � yðs1Þ

�2
n o1=2

: ð5Þ

Aðk; �2Þ is an effective aperture factor weighting the total

amount of light collected by the optics. According to

Raimondi & Spiga (2015), A approximates the cross section of

�2 seen from k whenever the local divergence of the beam, on

the arrival optics, is much smaller than the grazing angle #G.

If L=r � #G , where r is the average curvature radius of the

wavefront and L is the size of the optical element, then A ’

L sinð#GÞ . Numerically, the integral of equation (5) is eval-

uated by means of an explicit recursive summation of the

complex exponentials in the form

Em ¼ Q
XN2

l¼ 1

El

1

Rml

exp �ikRmlð Þ ð6Þ

and

Rml ¼
�
xm � xl

�2
þ
�
ym � yl

�2
n o1=2

;

ð7Þ

where l runs over the source sample grid

and m runs over the destination sample

grid.

When the first element of the chain

(i.e. the ‘light source’) can be modeled

analytically, the propagation on the

following element is computed with the

respective analytical expression rather

than through equations (4)–(6). This

happens, for instance, when point-like

emitters and Gaussian sources are used.

As a second remark, we observe that

the fast Fourier transform (FFT) algo-

rithm is not used contrary to other common methods for wave

propagation. The FFT is effective for propagation between

parallel planes. Still, it introduces approximations on the

phase when highly tilted planes are involved, which is

precisely the case of grazing-incidence X-ray optics. Generally

speaking, the numerical propagation between tilted planes is

of particular interest, as shown by Stock et al. (2017) and

references therein. To the authors’ knowledge, a quantitative

comparison between the two approaches for grazing-incidence

optics affected by surface error has not been done yet and

would be an exciting topic for future investigations.

2.3. Sampling

In order to ensure an accurate simulation, the choice of the

proper grid spacing (	0) is critical. A limit on the maximum

spacing is imposed by means of the Nyquist criterion, whose

most common formulation states that the spacing 	0 must be

chosen such that 2	0 � fmax, where fmax is the maximum spatial

frequency of interest. In the case of interest here, the

maximum frequency is better found by reformulating the

problem in terms of angular bandwidth. Fig. 3(a) shows the

simplified case where the source and detector planes are

parallel and the radiation propagates normally with wave-

vector k0. The elementary 2	0-wide extension on the source

(corresponding to three point-wise emitters) produces a

diffraction pattern that can be likened to that of a 2	0-wide slit,

which diffracts most of the total energy within the half-angle

#D = �/2	0 . To properly illuminate the arrival plane, the

diffraction angle #D must be greater than the angle subtended

by the arrival plane itself, which represents the maximum

angle of interest of the system #max . By approximating #max ’

L2=2z (with z being the distance between the planes) and by

having #D
>
� #max one obtains 2	0

<
� 2�z=L2, where the right-

hand term denotes the maximum frequency fmax. In the case of

a grating [Fig. 3(b)] the former reasoning still holds, provided

that #D and #max are properly re-defined. The characteristic

diffraction angle is now #D = �= ~		0, where ~		0 = 	0 cos � is the
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Figure 3
Diffraction-based models for finding the grid spacing 	0. (a) The angle in transmission geometry,
and (b) diffraction from a (reflection) grating of radiation impinging along kin and exiting along km.
2 ~		0 is the slit width seen by the incident radiation.



reduced size of 	0 as seen by a plane wave impinging on the

grating with incidence angle � [Fig. 3(b)]. Similarly, the

maximum angle is now computed as #max = � � � + 	�, where

� � � is the deviation angle of the mth order with respect to

the zero order and 	� ’ L2 /2z accounts for the angular size of

the detector. Ultimately, by constraining #S
>
� #max, one has

	0
<
�

�

#max cos �
ð8Þ

where

#max ’
L2

2z
þ arcsin sin ��

m�

d

� �
� �

����
����: ð9Þ

2.4. Simulating a diffraction grating with WISER

At the time of the simulations reported in this paper,

WISER did not yet offer an optical element implementing the

behavior of a grating. For this reason, a workaround was used

instead of the best practice solution. Since the workaround is

as creative and useful as the best practice, here we will briefly

sum up both of them. In addition, whereas best practice

requires specific programming skills to modify the libraries,

the workaround is also accessible to the average user, via

graphic interfaces.

2.4.1. The best practice. The best practice for introducing

a new optical element requires implementing two functions in

the code: (1) the function yi = f�ðxiÞ that returns the optical

profile � = {xi, yi} for a set of samples xi ; and (2) the function

returning the direction of the output wavevector kout . The

former enables computing the field in the whole space as

explained in Section 2.2, making the algorithm properly place

the subsequent optical element along the propagation direc-

tion. In the case of elements that can possibly deliver radiation

in many directions (as for a grating), a unique propagation

direction must be specified (e.g. by selecting the desired

diffraction order). Notice that, since WISER propagates the

field in all the possible directions, any element arbitrarily

placed in the space will collect some kind of light. But only

those elements that are placed along the propagation direction

will return meaningful (i.e. non-noise-like) intensity distribu-

tions.

2.4.2. The workaround. Within the OASYS interface, the

same task described above can be achieved by providing a

convenient height profile h(s) that includes, together with the

surface defects (if needed), any departure from the available

mirror profiles including the desired optical surface of a

grating (e.g. of each groove along the grating). However, in

doing so, the direction of the exit wavevector kout still remains

the same as of the primitive surface (e.g. a mirror), even if the

new height profile changes the propagation direction by an

angle that we will call �’. This effect can be compensated by

means of the ‘Rotation’ parameter, available in WISER, which

applies an arbitrary rotation to the optical geometry without

altering the output wavevector direction. Let us consider a

grating for which the angle of incidence is �G and the angle of

diffraction is �G + �’ = �G, so that the total angle of deviation

from the incidence beam to the diffracted beam is �G + �G. To

center the detector in the correct direction, we need to tell

WISER that the grating is at an angle half way between the

incident and the diffracted direction, e.g. (�G + �G)/2, that is

equal to �G + �’/2. But we want to have the beam impinging

on the grating with the correct angle, so we need to use the

‘Rotation’ parameter to tilt the mirror back by �’/2 so that

the actual angle of incidence is �G. Fig. 4 shows the panel in

WISER on OASYS where the ‘Rotation’ can be inserted, and

also helps in understanding the logic behind those rotations.

Ultimately, a convenient recipe to emulate a diffraction

grating is: (a) start from a plane mirror; (b) set the mirror

height profile h(s) equal to the required groove profile hG(s)

(plus any profile deviation from a flat surface); (c) set the

incidence angle equal to (� + �)/2; (d) apply a rotation

of (� � �)/2.
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Figure 4
The ‘workaround’ process starts by defining the proper position/direction of the beam and the detector by ‘telling’ WISER that the element is a mirror
(top left image), and setting the angle of incidence (black rectangles in the right image). Then a rotation is applied to the optical element (red rectangles
in the right image) to have the required angle of incidence on the grating to diffract the beam in the detector direction (lower left image).



2.4.3. Generation of the profile and effect on the reflected
beam. To generate the grating profile, it is necessary to

calculate the location of each groove on the grating surface.

The sequential number of a given line located at a distance L

from the grating center can be obtained by integrating equa-

tion (2) asZ L

0

Dx ¼ D0 þD1xþD2x2 þD3x3 þ . . . dx

¼ D0 Lþ
D1

2
L2
þ

D2

3
L3
þ

D3

4
L4
þ . . . : ð10Þ

By using equation (10), one can generate either a laminar or

a blazed profile for the grating by simply adding the proper

geometrical profile of the grating’s groove to each line.

An example is shown in Fig. 5, where the profile of a

600 lines mm�1 (l/mm) grating is shown for a laminar grating

with 10 nm depth (black profile) and a blazed grating with 1�

blaze angle (red profile).

Before using the distribution of the lines to diffract and

monochromatize the light, let us consider one more thing that

WISER can provide that ray-tracing

cannot, e.g. the effect of the profile of

the grooves on the reflected beam (e.g.

with the grating used in zero-order).

When the beam is simply reflected by

the grating, the profile of the grooves is

seen, by the beam, as a shape error. In

most cases, what happens to the zero

order is not important. The gratings

are usually optimized to deliver the

maximum efficiency in the first order

and all efforts are made to optimize

the monochromatic beam efficiency and

dimension. But, for instance in a free-

electron laser, where the radiation is

already relatively monochromatic, the

zero order can be used to deliver an

intense beam to the experimental

station. A more sophisticated use of the

zero order is described by Svetina et al.

(2016), where the first order is diffracted

and focused to an on-line ‘non-invasive’

energy spectrometer and the zero order

to the experimental station.

In the presence of a coherent source, the quality of the

focused spot can be predicted by calculating the Strehl ratio S

(Strehl, 1895). The Strehl ratio S is the ratio of the actual peak

image intensity compared with the maximum intensity if using

a perfect optical system. It can be calculated as

S ’ exp
�
� ð2�’Þ2

�
’ 1� ð2�’Þ2; ð11Þ

where ’ is the phase error (with respect to the ideal case)

depending on the angle of incidence � and induced by the

r.m.s. shape errors 	h through the following equation,

’ ¼
2	h sinð�Þ

�
: ð12Þ

Let us consider an example using the 600 l/mm grating whose

profile was shown in Fig. 5. This is a variable-line-space grating

with D0 = 600 l/mm, D1 = 0.4 l/mm2 and D2 = 4 � 10�5 l/mm3.

The grating profile is laminar and the groove depth, in the

simulation, is varied from 1 to 10 nm. The source-to-grating

distance is 20 m and the focal distance of the first order is

5.1 m. The result of the simulation is shown in Fig. 6. The

profile of the first order is not affected by the depth of the

groove (lower right image in Fig. 6). This is due to the fact that

each groove introduces a designed phase shift equal to one

wavelength, but not a ‘random’ phase error. The reflected zero

order, instead, is affected by the groove depth. Increasing the

depth of the grooves, the out-of-focus intensity of the beam

departs more and more from the ideal Gaussian profile. The

grooves are seen by the reflected beam as a very high

frequency shape error, inducing intensity oscillation at high

frequency rather than a smooth deviation from a Gaussian

profile. The departure from the ideal Gaussian profile is shown

in the top right part of Fig. 6.
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Figure 5
Groove profiles in the center of the grating with D0 = 600 l/mm, D1 =
0.4 l/mm2 and D2 = 4 � 10�5 l/mm3. The black curve is for a laminar
grating with 10 nm depth. The red curve is for a blazed grating with a
1� blaze angle.

Figure 6
Cross section of the unfocused zero order (left) and focused first order (right) at 920 eV. The groove
depths are 1 nm (red curves), 2.5 nm (green), 5 nm (black) and 10 nm (blue). Because there
is no appreciable effect on the focused first-order beam, only the profiles for the extreme cases
are shown.



The Strehl ratio has a physical meaning only if the beam is

focused. This is not the case of the image shown in Fig. 6. But,

as already adopted in the case of the mirrors, one can use the

phase error to estimate the departure from an ideal Gaussian

profile of a beam out of focus. For the example shown here,

where the angle of incidence is 1.7� and the photon energy

920 eV, S varies from 0.967 with 1 nm groove depth to �0.1

with the depth as high as 10 nm. A Strehl ratio around, or

better than, 0.8 (coincident here to a 2.5 nm depth, or the

black curve in Fig. 6) is likely desired to minimize the devia-

tion from a Gaussian profile.

3. Effect of the groove placing error

The groove positions calculated with equation (10) are for a

perfectly produced grating. However, it is always possible to

add an error to the local position of each groove. This permits

the generation of a more realistic grating. This is, in practice,

equivalent to adding a slope (or shape) error to a perfect

mirror. To the groove location calculated with equation (10),

one can add an arbitrary function, simulating either a statis-

tical error or a periodic (or the sum of some characteristic

periodic) misplacement. The local difference between where

a given line should be and where it actually is, is called the

groove placing error. Together with the non-corrected aber-

ration of the optical system, the groove placing error deter-

mines the quality of the spot focused by the grating.

The question we want to answer now, with the help of

WISER, is: what groove placing error can we tolerate before

it affects either the resolution or the flux? An initial answer to

this question has been proposed by Cocco & Spiga (2019) and

Gleason et al. (2017).

In Cocco & Spiga (2019), the equation for the Strehl ratio of

an arbitrary diffraction order from a grating has been derived

starting from the r.m.s. groove placing error 	 as

S ¼ exp �
2�	

�
sin �� sin �ð Þ

� 	2
( )

ð13Þ

(with the convention for � and � as defined in Fig. 1). This

equation affects only the diffracted beam, not the reflected

one for which � = �, so S is equal to 1. From equation (1), we

know that sin �� sin � is equal to n�D or n�/d (d is 1/D

corresponding to the groove width or d-spacing). Conse-

quently, equation (13) can be rewritten as

S ¼ exp �
2�	

�

n�

�

� �� 	2
( )

¼ exp �
2�n	

�

� 	2
( )

: ð14Þ

Surprisingly enough, the Strehl ratio depends only on the

groove density (or d-spacing) and not on the photon energy

or angle of incidence. As simple as it is, this equation is still a

valid guideline to estimate the effect of the groove placing

error on the spot profile.

However, for diffraction-limited sources, or, in general,

to properly assess the effect of the groove misplacing, it is

mandatory to simulate the effect of the groove density errors

on the system performance. And here is where WISER comes

in handy, as will be shown, in detail, in the next section.

4. An example: the high-energy-resolution MERLIN
beamline at ALS

The MERLIN beamline at the Advanced Light Source (ALS),

described by Reininger et al. (2007), is an ultra-high-resolution

beamline for the study of low-energy excitations in strongly

correlated systems with the use of high-resolution inelastic

scattering and angle-resolved photoemission. It covers the

energy range 9–150 eV with the target of reaching meV energy

resolution [from which MERLIN (‘meV resolution line’) took

its name].

A recent project aims to replace the existing mono-

chromator with a Reininger-type monochromator (Reininger

& de Castro, 2005), e.g. a variable-included-angle variable-

line-space (VLS) grating monochromator, focusing the

undulator source directly into the exit slit.

Two plane VLS gratings, named LEG (low-energy grating)

and HEG (high-energy grating), are used to cover the energy

range in high-resolution mode. A third grating, spherical (R =

120 m), with lower groove density, named LRG (low-resolu-

tion grating), is used to cover the entire energy range with

lower resolution, but higher flux. The source-to-grating

distance is 16.58 m and the grating-to-exit-slit distance is 5 m.

The gratings parameters are reported in Table 1.

The effect of the groove placing error for these three

gratings has been calculated and simulated considering a fully

coherent source. ALS is not a diffraction-limited source and,

even when ALS-U is operative, the radiation will be not fully

coherent. However, what is important for calculating the

effect of the groove misplacing on the grating is the coherent

part of the beam. Considering the source to be fully coherent

will provide a conservative result, e.g. this can be considered

the worst-case scenario.

To perform the simulation, various groove placing errors

have been added to the groove distribution. One example of

such a placing error, for the HEG, is shown in Fig. 7. This error

distribution, as well as all the other groove placing errors used,

has been generated as Gaussian white noise (with a random

seed). The range of used r.m.s. placing errors, for the various

gratings, is estimated starting from equation (14). To have

enough detail to permit an accurate simulation, the surface

describing the gratings contains at least ten points per groove.

Various profiles, corresponding to various groove placing

errors, have been created and used for the three gratings

described in Table 1. The results are shown in Figs. 8, 9 and 10.

The FWHM bandwidth �E shown in each plot of Figs. 8, 9 and
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Table 1
Main parameters of the three gratings of the MERLIN monochromator.

Parameter LEG HEG LRG

D0 600 2400 400
D1 0.26 1.02 0.2
D2 7.2 � 10�5 0.000282 6.4 � 10�5



10 is calculated from the FWHM spot dimension (s) from the

relation
��

�
¼

�E

E
¼

s cos�

�nD0r 0
ð15Þ

where r 0 is the distance from the grating to the exit slit. In

this particular monochromator, with the target of providing

a bandwidth no larger than 1 meV, maximum errors below

200 nm r.m.s. for the LEG and below 40 nm r.m.s. for the HEG

are desired. For the LRG, one can relax the requirements to

300 nm r.m.s. (or even more).

If the resolving power is, usually, the most important

parameters for a monochromator, the second most important

is the flux. The relative flux as a function of the groove placing

error should (and can) be calculated using the Strehl ratio

as defined in equation (14). For each of the generated groove

placing error curves, S has been calculated using the r.m.s.

groove placing error, calculated over 2 FWHM. The calcu-

lated values have been compared with that simulated using

WISER and are presented in Fig. 11.

The agreement is satisfactory for medium to high values of

S (depending on the wavelength), with a discrepancy on the

order of few percent when S > 0.9. The deviations at small

values of S (large groove placing errors) are due to the loss

of precision of equation (14) when S departs too much from

unity. In such a case, indeed, the effects of aberrations are not

properly considered by this simplified

expression. This being cleared up, it is

evident that, despite the fact that

equation (14) is energy and angle inde-

pendent, it still represents, reasonably

well, the effect of the groove placing

errors in terms of intensity reduction.

The reduction of energy resolution,

directly related to the increase of spot

size, is not directly calculable from the

Strehl ratio. This is mostly due to the

fact that the spot size is affected by

several factors. One should deconvolve

the effect of all the other causes

(including source size, aberrations and

so on) to estimate, through a single

formula, the effect of the groove

misplacement. Moreover, as soon as the

spot is no longer Gaussian (as in the

case of the HEG in Fig. 10), the effect

on the resolution is more complicated to

assess than by simply calculating the

‘width’ of the spot. But there is an

interesting coincidence from the three

examples shown in this article. In all

cases, when S < 0.8, the bandwidth

increases by more than 10%. This is

the usual limit optical designers use to

calculate the tolerances of a mono-

chromator. Keeping the Strehl ratio

above 0.8 coincides with the Marechal

criterion (Marechal, 1947), for what

shall be considered a ‘good’ optical

system. As much as we strongly advise

performing wavefront propagation

simulations to properly assess the effect

of the grating’s groove misplacing in a

soft X-ray monochromator, the Mare-
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Figure 7
Line error distribution over the central 80 mm of the HEG. The curve
represents the distribution for the 62 nm r.m.s. placing error used to
simulate the blue curve in Fig. 9.

Figure 8
Results of wavefront propagation for the LEG at 30 eV for various r.m.s. groove-placing errors.
Each curve is reported with its FWHM in meV and with the associated r.m.s. groove placing error.
Line colors match text colors.

Figure 9
Results of wavefront propagation for the HEG at 100 eV for various r.m.s. groove-placing errors.
Each curve is reported with its FWHM in meV and with the associated r.m.s. groove placing error.
Line colors match text colors.



chal criterion may be either a good starting point for the

simulations or an easy shortcut for avoiding them.

5. Conclusions

We have shown how useful, and also how easy, the use of

WISER, a physical optics simulation package, could be to

predict the performance of a grating for coherent sources.

It has been shown that the groove placing error, not often

properly taken into account while designing a mono-

chromator, can be the most detrimental factor preventing the

desired energy resolving power being reached.
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