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Machine learning has recently been applied and deployed at several light source

facilities in the domain of accelerator physics. Here, an approach based on

machine learning to produce a fast-executing model is introduced that predicts

the polarization and energy of the radiated light produced at an insertion device.

This paper demonstrates how a machine learning model can be trained on

simulated data and later calibrated to a smaller, limited measured data set, a

technique referred to as transfer learning. This result will enable users to

efficiently determine the insertion device settings for achieving arbitrary beam

characteristics.

1. Introduction

For decades, synchrotron light source facilities have produced

highly brilliant and tunable photon beams for experiments

across many scientific disciplines, in particular through the use

of insertion devices (IDs). At the Canadian Light Source, the

Quantum Materials Spectroscopy Center (QMSC) beamline

uses an elliptically polarizing undulator (EPU) type ID with a

magnetic period of 180 mm to produce soft X-rays with vari-

able polarization in the energy range 15–200 eV.

In materials science, having the ability to probe the orbital

structure of electronic states with linear and circular dichroism

measurements is critical to understanding the underlying

physics in the system under study. Angle-resolved photo-

emission is one technique that can extract additional infor-

mation from a sample by utilizing arbitrary polarization at low

photon energies (Day et al., 2019). However, 100% circular

polarization is difficult to achieve due to the beamline optics

altering the polarization of low-energy photons as they

propagate from the ID to the experiment endstation (Wurtz

et al., 2014; Marcouille et al., 2007). This introduces the

requirement for arbitrary polarization of the light at the EPU,

along with the corresponding requirement of knowing the

EPU operating parameters that will deliver photons of a

certain energy and polarization on demand.

A planar ID has its gap as one degree of freedom. In this

case it is straightforward to build a one-dimensional look-up

table relating the energy of the radiated photon beam to the

device gap, where the look-up table is typically generated from

magnetic or beam-based measurements. Operating an EPU

in arbitrary polarization requires a multi-dimensional look-up

table to relate its parameters to the energy and polarization

state of the photon beam. Moreover, the overall system may

drift over months or years, for example due to changes in

characteristics of the undulator or the beamline optics. Look-
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up tables built from measured data are limited to replacing

their data one point in the ID’s configuration space at a time,

and hence the total time necessary to (re-)measure data for

multi-dimensional look-up tables from either beam-based or

magnetic data becomes prohibitively large. The measurement

time can be sidestepped by instead computing the undulator

output polarization at any arbitrary point in configuration

space from a model, for example using RADIA (Elleaume

et al., 1997; Chubar et al., 1998). However, such calculations

remain time-consuming and the result is then limited by the

accuracy of the model. The most attractive outcome is a fast-

executing model that can be calibrated from a measured data

set that is small compared with the size of a multi-dimensional

look-up table. In this article we propose that neural networks

can be just such a model, providing rapid accurate predictions

of the beam characteristics from a complex undulator.

2. Background

2.1. Elliptically polarizing undulators and polarization

The QMSC undulator is a quasiperiodic APPLE-II type

EPU. A section of its modelled magnet arrays is shown in

Fig. 1. Certain magnet blocks are offset vertically to incor-

porate a quasiperiodic magnetic structure, which reduces

contamination of the harmonics present in the undulator

spectrum (Chavanne et al., 1998). Gap adjustments symme-

trically change the vertical distance between the upper and

lower magnet arrays. Independent longitudinal motion of the

four girders are described with two independent parameters

for operating the device, called the elliptical phase ’E and

composite linear phase ’L (Sigrist et al., 2019). By adjusting

these three operating parameters (gap, ’E, ’L), the strength

and orientation of the undulator’s magnetic field can be

controlled, which in turn controls the energy and polarization

of the radiated photons.

The polarization of the light radiated from the EPU can be

described using the Stokes parameters S1, S2 and S3. For

this application, the Stokes parameters are normalized and

dimensionless, satisfying equation (1), where each parameter

ranges from �1 to 1,

S12 þ S22 þ S32 ¼ S02 � 1: ð1Þ

2.2. Machine learning

Machine learning (ML) techniques have been studied for

various particle accelerator applications. Recently, ML-based

surrogate models have obtained accurate and fast-executing

representations of the relevant beam dynamics from a sparse

sampling of the physics simulation (Edelen et al., 2020).

Neural networks (NN), a sub-type of ML, have been trained to

automatically tune and control large complex systems such as

particle accelerators and insertion devices (Leemann et al.,

2019; Scheinker et al., 2019). Their ability to be trained off-line

using simulation data from computationally expensive codes

and updated with measurement data has been demonstrated

for multiple applications (Edelen et al., 2010, 2020). This type

of ML algorithm is referred to as supervised learning because

the model is trained on labelled data sets. In this sense, ground

truth outputs exist for each input (Arpaia et al., 2021). In

contrast to the simulation software from which ML models are

trained, ML models can execute in fractions of a second with

comparable accuracy in predicting the resulting beam para-

meters (Edelen et al., 2020). Additionally, the ability of ML

models to be updated with new measurement data ensures

that they remain accurate as the characteristics of the

modelled device changes (Edelen et al., 2020).

With these advantages in mind, accomplishing the objective

of this work entails acquiring a large training data set from

simulations. ML models are able to learn complex nonlinear

relationships using large amounts of training data; however,

producing a large training data set is computationally expen-

sive (Leemann et al., 2019). In practice, the training data size

depends on the complexity of the problem and complexity

of the ML algorithm. Similar ML scenarios determined the

amount of training data required by empirically evaluating the

performance of their models with respect to the number of

data points (Edelen et al., 2020). This technique was used to

determine the size of the required training data set. By varying

the resolution of the ID settings in the training data, the size of

the data set would change without affecting the equal repre-

sentation of the operating modes of the ID within the data.

The difficulty for ML models to interpolate between training

points increases for complex, many-parameter systems

(Scheinker et al., 2019); therefore the data size was chosen

such that the ID settings have sub-millimetre resolutions.

3. Methods

3.1. Modelling the undulator as a periodic device

As an initial proof of concept for this work, training data

were generated from a RADIA model of the undulator built

as a periodic device. In this simplified case, the photon beam

characteristics are derived from the undulator’s effective and

nominal fields (Sigrist et al., 2019) using equations (2), (5), (6)

and (7) (Sigrist, 2018).

The effective field is an approximation of the undulator’s

peak field, B̂B, and is obtained via Fourier series decomposition

of the modelled field profiles, Bx(y) and Bz(y). An example

of one of these magnetic field profiles is shown in Fig. 2.

Equation (3) shows the Fourier series decomposition over

harmonic i. The effective field is specific to an EPU’s
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Figure 1
Section of the QMSC insertion device (EPU 180 mm) to illustrate the
magnet array.



(gap, ’E, ’L) settings. Nominal fields are gap-dependent

phase-independent terms, as per equation (4). Bz0 is given by

Bzeff at a horizontal polarization and similarly Bx0 by Bxeff at

a vertical polarization, such as ’E =��/2 (see Table 1 for a list

of the variables),

E� ½eV� ¼ 9:50
E 2 ½GeV�

� ½mm�
�

1þ ðK 2=2Þ
� ;

K ¼ 0:0934 � ½mm� B̂B ½T�;

B̂B2
’ B 2

xeff þ B 2
zeff;

ð2Þ

Bx;zeff ¼
X1
x;zi

b 2
i = i 2

 !1=2

; ð3Þ

Bx;z0 ¼ M exp c1

gap1

�1
þ c2

gap2

�2
þ . . .

� �
; ð4Þ

S1 ¼
B2

xeff � B2
zeff

B2
xeff þ B2

zeff

; ð5Þ

S2 ¼

1
2

Bx0Bz0 sin2 k�L

B2
xeff
þB2

zeff

; if �L � 0;

� 1
2

Bx0Bz0 sin2 k�L

B2
xeff
þB2

zeff

; if �L < 0;

8<
: ð6Þ

S3 ¼

16B2
xeff

B2
zeff
�B2

x0
B2

z0
sin4 k�Lð Þ

1=2

2ðB2
xeff
þB2

zeff
Þ
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16B2
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B2
zeff
�B2

x0
B2

z0
sin4 k�Lð Þ

1=2

2ðB2
xeff
þB2

zeff
Þ

; if �E < 0:

8><
>: ð7Þ

However, describing the field profile in terms of effective

fields introduces an approximation that holds poorly for

quasiperiodic undulators. This point is illustrated in Fig. 3,

which shows modelled undulator fields and their Fourier-

determined effective equivalents for two cases. The upper plot

shows a periodic undulator with a 55 mm period, where the

effective field closely matches the undulator field; the lower

plot shows the 180 mm quasiperiodic device under consid-

eration, where the effective and undulator fields do not match.

Calculating photon energy for the n = 1 harmonic from the

effective field for this configuration yields 10.7 eV, whereas a

more direct calculation (see next section) yields 9.4 eV. These

results differ by 12%, which highlights the inapplicability of

Fourier decomposition for studying quasiperiodic fields.

3.2. Modelling the undulator as a quasiperiodic device

The photon beam characteristics can be determined without

the approximation inherent to the effective field. This is

achieved by modelling the undulator in its quasiperiodic

configuration and exporting magnetic field data for analysis in

the Synchrotron Radiation Workshop (SRW) code (Chubar

& Elleaume, 1998). Undulator radiation spectra are calculated

at an observation window 8 mm by 8 mm in size and 18 m

downstream of the undulator. The calculation uses a non-

filament electron beam defined for a straight section in the

Canadian Light Source (CLS) storage ring; see Table 2 for the

beam characteristics. The spectra are calculated separately

for the total (S0), horizontal (0�), vertical (90�), inclined linear

(45�, 135�) and left- and right-circular polarizations. Stokes

parameters are then obtained by comparing the flux at the n =

1 harmonic for the different polarizations.

Scripting was developed in IGOR Pro to generate the large

data set for training ML models (Wavemetrics, 2018). The

script can import and process magnetic field data for any

number of EPU configurations. For each configuration,

undulator radiation spectra are computed across an energy

range near the undulator’s n = 1 harmonic; the expected

energy is calculated using Fourier-determined effective fields.

The precise photon energy of the n = 1 undulator harmonic

is determined by fitting a curve to the total photon flux. The

photon beam characteristics and their corresponding ID

settings describe a single case for the ML model.
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Table 1
Magnetic field terms and parameters (Sigrist, 2018).

Symbol Term Unit

E� Photon energy eV
E Electron energy GeV
� Undulator period mm
k Wave number = 2���1 mm�1

�E Elliptical phase mm
�L Linear phase mm
K Deflection parameter
Bx,zeff Effective horizontal, vertical field T
Bx,z0 Nominal horizontal, vertical field T

Figure 3
Magnetic field profile (solid) and effective field (dashed) calculated from
a Fourier expansion thereof. Top: 55 mm periodic EPU. Bottom: 180 mm
quasiperiodic EPU.

Figure 2
Magnetic field profile in EPU 180 mm, modelled as a periodic device,
calculated at gap = 15 mm, �E = 0 mm and �L = �60 mm.



Two example sets of undulator spectra are shown in Fig. 4.

The script’s ‘information pipeline’ and overall procedure for

training an ML model is illustrated in Fig. 5 (Edelen et al.,

2020).

Lastly, it is important to note that this methodology

amounts to training an ML model based on the output of a

RADIA model. Prior to this work, the RADIA model was

refined with bench-based magnetic measurements of the

actual undulator using a Hall probe and flipping coil setup.

The RADIA model’s tuning process considered 45 EPU

configurations, with priority given to planar and vertical

polarization modes across various gap settings. Across the

considered configurations, the typical relative difference

between modelled magnetic fields compared with bench-

based measurements on- and off-axis is 1%.

4. Developing a neural network model

A neural network model was created to predict four outputs,

namely the photon beam energy and Stokes parameters S1,

S2, S3. A neural network is composed of individual neurons

that accept multiple inputs and produce a single output. These

neurons are arranged in layers to form a connected network

(Smith, 1997). The developed neural network is a feed-

forward network in that the data propagate from input to

output without looping between intermediate layers. The

created model is hereafter referred to as NN4, as its final layer

has four output neurons corresponding to the beam para-

meters. The neural network was implemented using Keras

with Tensorflow 2.0 backend and open-source scikit-learn

packages (Abadi et al., 2016; Pedregosa et al., 2011).

The architecture of the neural network is a four hidden

layer (128–64–32–16), fully connected neural network with a

rectified linear unit activation function for each layer. The

model was trained using backpropagation with the Adam

optimizer (LeCun et al., 1989). The mean squared error (MSE)

was used both as a loss function and metric to monitor the

performance of the model; the MSE compares the model

output, namely scaled photon energy and Stokes parameters,

to the training data. The neural network model used scaled

inputs in the range (0, 1) and scaled outputs in the range

(�1, +1). The data set not used for training is divided equally,

resulting in a 60–20–20 split of the training, validation and

testing data, respectively.

Although a deep (many hidden layers) and wide (many

nodes per layer) NN generally provides better fitting on

training data, it is prone to overfitting (Leemann et al., 2019).

This issue was minimized by shuffling the data, implementing a

learning schedule, adjusting the number of epochs (number of

times the model is trained on a subset of data), and adjusting

the batch size (the subset data size shown during training).

The simulated training data for the NN model contained

4175 cases that sampled the EPU’s operating modes: planar,

vertical (�E and �L), circular (helicity 1 and 2), elliptical,

linear, inclined (helicity 1 and 2), and a selection of universal

modes near circular at photon energies of interest to the

beamline. To cover the total configuration space of the device,

an additional 1000 cases were randomly generated for each

quadrant formed by �E and �L, for a total of 8175 cases. The

4175 and 8175 case data sets are shown in Figs. 6 and 7,

respectively. A single operating mode, E45:L45 (�E = 45 mm,

�L = 45 mm, gap = 15 mm), was not included in the smaller

data set for reasons explained in Section 5.

The train/test splitting technique for sorting the simulated

data was employed with the ML models. This method entails

dividing the data so that one group is used to train the model

and a separate group is used to test the model. This compu-
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Figure 4
Radiation spectra calculated for various polarization modes in SRW
for two configurations of the quasiperiodic RADIA model. The
configurations are at different gaps and are both in planar polarization
(�E = �L = 0 mm).

Figure 5
The procedure for training an ML model using the physics simulation as
the ground truth (Edelen et al., 2020). The ML model parameters are
dynamically updated during training. The hyperparameters of the model
are manually adjusted until the model reaches a target performance.

Table 2
Electron beam characteristics defined 2.125 m upstream of the centre of
the ID straight section in the CLS storage ring.

Parameter Value Unit

Energy 2.9 GeV
Current 220 mA
Horizontal emittance 22.7 nm
Horizontal beta function 9.664 m
Horizontal alpha 0.2315 m
Vertical emittance 0.1017 nm
Vertical beta function 4.331 m
Vertical alpha 0.8285 m
Relative energy spread 0.001
Horizontal dispersion 0.15 m
Vertical dispersion 0 m
Dispersion derivatives 0



tationally efficient approach was suitable because the data

were shuffled prior to sorting, thereby guaranteeing the

configuration space of the device was equally represented in

the training and testing data sets. An appropriate distribution

of the training and testing data is critical for effectively eval-

uating model performance. Note that this approach is

equivalent to performing a k-fold cross-validation procedure

with k = 2 (Stone, 1974). The unscaled inputs occupy the

following ranges: gap = 15 mm to 200 mm; �E and �L =

�90 mm to 90 mm. The unscaled outputs occupy the following

ranges: E� = 6 eV to 400 eV, Stokes parameters = �1 to 1.

5. Predicting modelled EPU beam characteristics

The following results are drawn from the model’s performance

on the simulated data sets for the EPU. The model used batch

sizes of 16, a customized decaying learning rate schedule, and

trained for 1500 epochs.

5.1. Configuration space

The first iteration of the NN model was trained on the

simulated operating-modes data set, totalling 4175 unique

cases. After testing the model on cases from the measured

data set, it was apparent that the model did not generalize well

to domains in configuration space not covered in the training

data. In particular, a single operating mode (E45:L45)

contained in the measured data set was not encompassed by

the domain of the simulated operating-modes data set (Fig. 6)

used to train the model. This E45:L45 case was intentionally

set aside from the simulated operating-mode data set to

observe the model’s ability to extrapolate for new domains.

The predictions made by the NN model on the measured data

set are shown in Fig. 8 to demonstrate how the single E45:L45

case stands apart from other predicted cases. Although strict

agreement between the predicted and test cases is not

expected because the simulated and measured data sets are

inherently unique, general agreement is expected.

To test the prediction that the model requires training on

each domain for which it will be tested, the model was trained

on the operating-modes data set (4175 cases) with one addi-

tional quadrant of randomly generated data. The model

accurately predicted the E45:L45 case when the extra quad-

rant data encompassed the E45:L45 case and poorly other-

wise.

Since we desire a ML model that may be used to predict the

EPU beam characteristics for any operating mode, current

or future, the second iteration of training the model was

performed on the complete data set shown in Fig. 7, which will

be referred to as the simulated data set from now on.

5.2. Results

The ML model was evaluated based on its MSE, mean norm

of the Stokes error vector (MSEV) shown in equation (8),

the variance of their relative error in predictions, the mean

absolute percentage error (MAPE) for the predicted photon
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Figure 6
Distribution of 4175 simulated cases covering the operating modes of the
EPU. A zoomed-in portion of the figure is provided for clarifying that the
apparent ‘lines’ on the figure are composed of individual cases.

Figure 7
Total distribution of simulated data. The randomly generated cases are
represented as black points to distinguish them from the initial 4175 cases.

Figure 8
Comparison between predicted and test output Stokes parameters for
measured data from the NN. Excellent agreement is shown for the
majority of test cases except for the E45 : L45 case (predicted S1 value of
	0.26 versus a test value of 	�0.21; predicted S2 value of 	0.8 versus
a test value of 	0.97; predicted S3 value of 	0.31 versus a test value
of 	0).



energies and whether it satisfied the QMSC beamline’s error

threshold shown in equation (9),

MSEV ¼
1

n

Xn

i

jj Spred i
� Strue i

jj: ð9Þ

Equation (8) uses the Stokes parameters in vector notation

where Spred and Strue are the predicted and target Stokes

vectors, respectively. The MSEV then represents the norm of

the Stokes error vector averaged over n test cases,

if jS3j ¼ 1;
residual : S12 þ S22 � 0:03:

�
ð9Þ

Equation (9) states that, for operation in circular mode,

|S3| = 1, the residual components of the Stokes vector must be

less than a threshold of 0.03.

To evaluate how well the model generalized to the input

configuration space, the predictions made by the model were

compared with the target values. This step is performed using

the testing data, which is ‘unseen’ by the model during its

training. The NN model was compiled 30 times to establish its

average performance. A summary of the model’s performance

at predicting EPU beam characteristics from simulated data

is given in Table 3.

The QMSC beamline’s error threshold was satisfied by the

model; see Fig. 9. The predicted residuals follow the same

trend (magnitude and frequency) as the residuals from the test

values. Cases were selected for inclusion in Fig. 9 using the

tolerance |S3| = 1 � 0.01. In the majority of such cases, the

undulator linear phase is zero and gap and elliptical phase are

coordinated; these are the typical usage cases and form the

first peak near zero residual. The selected cases also include

randomly generated undulator configurations where a small

linear phase setting may inflate the residual; these cases form

the second peak near 0.08.

The accuracy of the 1633 predictions made by the NN4

model on the test data is shown in Table 4. A regression score,

R2, is calculated for each output beam characteristic to indi-

cate the correlation between predicted and test values. The

variances of the relative errors from the predicted test cases

of the NN4 model are included to represent the distribution

of errors. The averaged MAPE indicates that the NN4 model

predicted the photon energy within 2.80%. The near-unity R2

values for each output indicate that the NN4 model accurately

predicts the EPU beam characteristics. The small variances of

the relative errors in predictions indicate that the predictions

made by the NN4 model are tightly distributed around the

mean (zero).

6. Updating the neural network model using transfer
learning

The ability of an ML model to be updated with new data,

as mentioned in Section 1, was investigated to determine

whether the model could predict the Stokes parameters

derived from the magnet measurement data. The limited

measured data mentioned in Section 3 were used to update

the ML model.

Since the beam characteristics are only slightly different

between the simulated and measured data sets, and the

measured data set is small, the calibrated neural network

model (Calibrated NN) used the entire NN4 model as the base

model. This methodology involving the bottleneck layer of

a trained model in transfer learning applications has been

demonstrated by several computer vision works (Wang et al.,

2020). Since the bench-based magnetic measurements capture

a small subset of the EPU configuration space, the updated

model fits the measured data better with fewer trainable

parameters. The measured data set contains 169 cases that

proportionally represent the operating modes of the device;

the 45 cases used to tune the RADIA model are a subset of

this data set. The Calibrated NN model was trained on 60% of

these data (101 cases) and tested on the remaining 40% (68

cases). The model used batch sizes of 4, a customized decaying

learning rate schedule, and trained for 300 epochs.
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Table 3
The model’s performance in predicting EPU beam characteristics.

The metrics in this table are computed on the scaled predicted values which lie
in the range (�1 to 1). The metrics of the best performing model from the
compilation are included to illustrate the model’s performance potential.

Model MSE MSEV

NN4 Average: 2.86 
 10�4 Average: 2.01 
 10�2

Best: 2.26 
 10�4 Best: 1.76 
 10�2

Figure 9
Histogram comparing the residuals for predictions on |S3| = 1 cases by the
NN4 model with the residuals from the test data set. These cases
correspond to cases where the test value of |S3| = 1 within a tolerance
of �0.01.

Table 4
Properties of the model’s predicted beam characteristics.

The regression scores are based on the scaled predicted values and the
variance scores are computed from the unscaled predicted values.

Target R2 Variance �2

E� 0.9998 4.87 eV2

S1 0.9992 3.49 
 10�4

S2 0.9982 2.68 
 10�4

S3 0.9986 3.88 
 10�4



This updated neural network (Calibrated NN) adds one

additional layer, identical in structure to the base model

output layer (size 4, fully connected, using the linear activation

function). A diagram is provided in Fig. 10 to show the

architecture of the Calibrated NN model. Similar techniques

to those described in Section 4 were employed to optimize the

Calibrated NN model.

6.1. Transfer learning results

The Calibrated NN model was evaluated with the same

metrics as described in Section 5, although it is now evaluated

on the measured data set. The Calibrated NN model was

compiled 60 times to establish an average performance. It is

important to note that the performance of the Calibrated NN

model may only be compared with the NN4 model when they

are evaluated on similar data sets. To that end, the perfor-

mance of the NN4 model was averaged over 60 trials and

evaluated on the measured data set, rather than the simulated

data on which it was trained. For comparison, a separate

neural network model was also created and trained solely on

the measured data. This Limited NN model was optimized to

fit the measured data set and its performance was averaged

over 60 trials. Results for these three models are listed in

Table 5.

Like the NN4 model’s performance on the simulated data,

the Calibrated NN model also satisfied the QMSC beamline’s

error threshold on the measured data. The largest residual for

the six |S3| = 1 test cases was 0.005. The Calibrated NN model’s

prediction accuracy on the measured data set is included

in Table 6.

6.2. Discussion

The results in Table 5 indicate how the Calibrated NN

model outperforms the Limited NN model by roughly two

orders of magnitude. This comparison demonstrates the

advantage of applying transfer learning to a base model that

was first thoroughly trained on simulated data when the

measurement-based data set is small. The improvement of the

Calibrated NN model upon the NN4 model is identified by

the smaller errors in predictions. However, the MAPE for the

Calibrated NN is larger than that for the NN4 model when

evaluated against the measured data. This indicates that

the transfer learning somewhat reduced the Calibrated NN

model’s accuracy in predicting the photon energy of the

beam, despite improving the accuracy of the predicted Stokes

parameters.

The similar performance characteristics between Tables 4

and 6 indicate that the Calibrated NN model has a comparable

prediction accuracy on the measured data to the NN4 model

on the simulated data. The near-unity regression scores in

Table 6 indicate that the model is accurately predicting the

beam characteristics and the small variances imply that the

relative errors are small and closely distributed around zero.

7. Conclusion

The results of this work demonstrate the feasibility of gener-

ating a ML model to accurately predict the photon beam

characteristics of a quasiperiodic EPU. More specifically,

this work demonstrates the ability of a neural network to

accurately model the complex, multi-parameter functions of

an ID. This outcome was achieved by optimizing the neural

network model to fit a large simulated data set. The impor-

tance of properly sampling the configuration space in the

development of a neural network was also demonstrated

by the E45:L45 case.

Secondly, the successful application of transfer learning

demonstrates how the neural network model was easily

adapted to a measured data set. This stage was accomplished

by building a separate neural network model, referred to as

the Calibrated NN model, based on the NN4 model. This

model was then trained on the limited magnetic measured
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Figure 10
Architecture of the Calibrated NN model. The NN4 model acts as the
base model with four outputs and the additional layer is added on top of
NN4 (shown in green).

Table 5
Summarized performance of the neural networks on the measured
data set.

The metrics in this table are computed on the scaled predicted values which lie
in the range �1 to 1. The Limited NN model was trained using bench-based
magnetic measurement data. The NN4 model was trained using simulated
data. The Calibrated NN used NN4 as a base model and was then updated
using the measured data via transfer learning.

Model MSE MSEV MAPE

Limited NN Average: 1.07 
 10�2 Average: 1.16 
 10�1 32.7%
Best: 2.34 
 10�3 Best: 7.15 
 10�2

Calibrated NN Average: 1.31 
 10�4 Average: 1.86 
 10�2 4.57%
Best: 9.72 
 10�5 Best: 1.57 
 10�2

NN4 Average: 5.32 
 10�4 Average: 3.57 
 10�2 3.56%
Best: 4.20 
 10�4 Best: 3.21 
 10�2

Table 6
Properties of the Calibrated model’s predicted beam characteristics from
the 68 test cases.

The regression scores are based on the scaled predicted values and the
variance scores are computed from the unscaled predicted values.

Target R2 Variance �2

E� 0.9995 2.76 eV2

S1 0.9997 1.56 
 10�4

S2 0.9987 1.96 
 10�4

S3 0.9997 8.02 
 10�5



data set to provide more accurate predictions of the radiated

light at the ID. The predictions produced by the Calibrated

NN model satisfy the QMSC beamline’s error threshold and

the relative errors in predictions were shown to be within an

acceptable threshold. The photon energy was predicted more

accurately by the NN4 than the Calibrated NN model, as

indicated by the slightly smaller averaged MAPE. However,

this accuracy difference is small. The Calibrated NN model

showed promising improvement in predicting the Stokes

vector. The MSEV was determined to be 1.86 
 10�2, indi-

cating the predicted Stokes vectors closely agree with the test

Stokes parameters.

Thirdly, the deployment of this updated neural network

model provides a synchrotron beamline with a fast-executing

model for producing look-up tables and/or predicting single

ID cases.

Future work for this project includes the development of an

ML model that will predict the beam characteristics at the

endstation by following a similar training and calibration

approach. Polarization measurements will be acquired using

a polarimeter located at the endstation and used to calibrate

a neural network from this work. The completion of this

work will provide users with an efficient tool for predicting

the endstation beam characteristics for arbitrary ID config-

urations.
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