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FOCUS (Fast Monte CarlO approach to Coherence of Undulator Sources) is

a new GPU-based simulation code to compute the transverse coherence of

undulator radiation from ultra-relativistic electrons. The core structure of the

code, which is written in the language C++ accelerated with CUDA, combines

an analytical description of the emitted electric fields and massively parallel

computations on GPUs. The combination is rigorously justified by a statistical

description of synchrotron radiation based on a Fourier optics approach.

FOCUS is validated by direct comparison with multi-electron Synchrotron

Radiation Workshop (SRW) simulations, evidencing a reduction in computation

times by up to five orders of magnitude on a consumer laptop. FOCUS is then

applied to systematically study the transverse coherence in typical third- and

fourth-generation facilities, highlighting peculiar features of undulator sources

close to the diffraction limit. FOCUS is aimed at fast evaluation of the transverse

coherence of undulator radiation as a function of the electron beam parameters,

to support and help prepare more advanced and detailed numerical simulations

with traditional codes like SRW.

1. Introduction

The smaller and smaller electron beam emittances recently

achieved in third- and fourth-generation synchrotron light

sources have naturally drawn attention to the necessity of

describing the generation and propagation of partially

coherent light pulses (Liu & Westfahl, 2017; Shin, 2021).

In fact, electron beams with emittances much smaller than

the radiation wavelength generate diffraction-limited light

that can be effectively described in terms of wave optics. The

opposite limit of fully transversely incoherent light is realized

when the beam emittance is much larger than the radiation

wavelength, and is satisfactorily modeled by geometrical

optics. Situations between these two limits are referred to as

partially coherent. In this case, a statistical description based

on wave optics is required since the pulse wavefront under-

goes random changes from pulse to pulse, ultimately due

to the shot-noise in the electron beam (Born & Wolf, 1970;

Mandel & Wolf, 1995; Goodman, 2000).

Within the realm of statistical optics, partially coherent light

is naturally described by field correlation functions (Born

& Wolf, 1970; Mandel & Wolf, 1995; Goodman, 2000). In the

space–frequency domain, and assuming that the radiation

wavelength is much shorter than the electron bunch length

(longitudinally incoherent emission), this amounts to the

specification of the so-called cross-spectral density (CSD)

correlating the slowly varying amplitude of the Fourier
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transform of the electric field (in short, the field) at two

different spatial positions (Born & Wolf, 1970; Mandel & Wolf,

1995; Goodman, 2000).

Similarly to the electric field, the CSD can, in principle, be

propagated through an X-ray beamline, to characterize the

transverse coherence properties of the emitted light at any

longitudinal position from the radiation source (Born & Wolf,

1970; Mandel & Wolf, 1995; Goodman, 2000). This has become

of utmost importance in modern synchrotron facilities

exploiting coherence-based techniques such as X-ray photon

correlation spectroscopy, coherent diffraction imaging,

propagation-based phase-contrast imaging and ptychography

(Nugent, 2010). For example, transverse coherence directly

impacts the ability to efficiently focus the X-ray beam to the

nanometre range (Singer & Vartanyants, 2014), as well as to

reach sub-nanometre resolutions in X-ray imaging techniques

(Schroer & Falkenberg, 2014).

In order to describe modern X-ray beamlines, different

approaches with increasing level of complexity can be

adopted, from simple analytical estimations to detailed

numerical simulations based either on ray-tracing or on

wave optics (Sanchez del Rio et al., 2019). To this aim, there

exist a number of well known and established codes such

as Synchrotron Radiation Workshop (SRW) (Chubar &

Elleaume, 1998; Chubar, 2014), SPECTRA (Tanaka & Kita-

mura, 2001; Tanaka, 2021), X-Ray Tracer (XRT) (Klementiev

& Chernikov, 2014), SHADOW3 (del Rio et al., 2011) and

COherent Modes for SYnchrotron Light (COMSYL) (Glass &

Sanchez del Rio, 2017), to name a few. Perhaps the most

advanced and widespread wave optics code is SRW, a high-

accuracy general computer code for synchrotron radiation

sources. It has been extensively benchmarked in different

synchrotron radiation facilities and has become widely

accepted within the accelerator and the X-ray optics

communities. Codes like SRW are based upon the paraxial

approximation, motivated by the fact that one deals with ultra-

relativistic electrons, but they are otherwise very general.

Notwithstanding the availability of accurate wave optics

codes, calculation and propagation of the CSD is very

cumbersome, from a computational point of view. The partial

coherence of the emitted radiation demands multi-electron

simulations for accurate analysis. This is required even for the

upcoming ultralow-emittance storage rings, since the emitted

radiation cannot be fully described by a single, perfectly

coherent wavefront in a large spectral range (Walker, 2019;

Khubbutdinov et al., 2019). In such cases, parallelization is

usually adopted to speed up wavefront propagation calcula-

tions. For example, SRW allows parallelization on the CPU

based on the message passing interface (MPI) or on the open

multi-processing (OpenMP). The SRW MPI parallelization

exhibits a good scaling with the number of parallel processes

but tends to over-consume memory, whereas the OpenMP

parallelization is more memory-efficient but requires multi-

core servers for proper scaling (He et al., 2020). Alternatively,

several libraries offer GPU-oriented optimized algorithms to

perform operations like fast Fourier transforms (FFTs) and

matrix multiplications, which are at the basis of numerical

wavefront propagation through arbitrary optical elements.

This enables relatively fast wavefront propagation computa-

tions by exploiting the large number of processing cores

of modern graphics cards. However, depending on the

complexity of the beamline, multi-electron simulations are

usually long-running and computationally expensive, and it is

not possible to know a priori how many electrons must be

sampled to obtain a given level of accuracy.

One of the most effective solutions to these problems used

in modern codes is based on the expansion of the original CSD

in coherent modes, which goes under the name of coherent

mode decomposition (Mandel & Wolf, 1995; Glass & Sanchez

del Rio, 2017; Singer et al., 2008; Vartanyants & Singer, 2010).

Once the modes themselves are found, they can be propagated

separately, and their subsequent random addition generates a

field realization. This approach is particularly advantageous

for highly coherent radiation described by a few modes only,

whereas it becomes computationally inefficient as the number

of required modes increases. Furthermore, coherent mode

decomposition is costly both in terms of computer resources

(GB to TB of memory) and computation times (many hours

on multi-core computer clusters), though recent progress

based on an analytic treatment of common quadratic phase

factors (Chubar & Celestre, 2019; Li & Chubar, 2022) and

factorization of the CSD (Sanchez del Rio et al., 2022) are

promising.

The coherent mode representation of the CSD, being very

general, provides an excellent theoretical insight into the

problem. Nonetheless, the coherent modes are not easy to

determine in practice (Flewett et al., 2009), and most experi-

ments directly assess the profiles (Leitenberger et al., 2004;

Vartanyants et al., 2011; Singer et al., 2012; Skopintsev et al.,

2014; Pfeiffer et al., 2005; Snigireva et al., 2001; Lyubomirskiy

et al., 2016) or the 2D map (Alaimo et al., 2009, 2014; Kashyap

et al., 2015; Siano et al., 2015, 2017, 2021, 2022) of the

normalized CSD, known in statistical optics as the spectral

degree of coherence (SDC) (Born & Wolf, 1970; Mandel &

Wolf, 1995; Goodman, 2000).

In this paper we describe a simulation code natively running

on GPUs for fast and accurate evaluation of the SDC of

undulator radiation propagating in free space. The code is

named FOCUS (Fast Monte CarlO approach to Coherence of

Undulator Sources). We advantageously combine an analytical

description of the emitted electric fields and a rigorous

statistical treatment of synchrotron radiation to expose

parallelism and harness the compute capabilities of modern

GPUs. The analytical expressions for the emitted electric fields

are derived under specific assumptions within a Fourier optics

treatment of synchrotron radiation from ultra-relativistic

electrons (Geloni et al., 2007). This unavoidably poses some

limitations to the applicability range of the code, which trades

generality for calculation speed. Within its applicability

domain, FOCUS achieves a considerable reduction in

computation times by several orders of magnitude with

respect to standard multi-electron SRW simulations. This

enables fast and thorough simulations with millions of parti-

cles in a few seconds on a consumer laptop. Unlike other codes
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capable of simulating entire beamlines, FOCUS is dedicated to

the accurate characterization and modeling of the transverse

coherence properties of synchrotron radiation from undulator

sources as a function of the electron beam parameters. Besides

being certainly of interest on a general theoretical basis

(Walker, 2019; Khubbutdinov et al., 2019; Geloni et al., 2008),

this is also of practical relevance, e.g. for electron beam

diagnostics based on interferometric techniques (Siano et al.,

2021, 2022), or to assess the impact of partial coherence on the

performances of focusing X-ray optics (Singer & Vartanyants,

2014; Schroer & Falkenberg, 2014; Sanchez del Rio et al., 2019;

Thomas et al., 2016). In addition, it is worth mentioning that

the proposed approach can be adapted to imaging geometries

as well, by studying conjugate planes with the proper magni-

fication factor (Alaimo et al., 2009; Thomas et al., 2016;

Goodman, 2007). The code then is complementary to the

existing ones. It is aimed at fast evaluating the transverse

coherence properties of undulator radiation, in such a way

that the main source parameters and their range of variability

can be easily identified. In this view, FOCUS can support and

help prepare more advanced and detailed numerical simula-

tions with traditional codes like SRW, and time-consuming

simulations can be run only when truly necessary.

The paper is organized as follows. In Section 2 we review

the theory underlying FOCUS. In Section 3 we describe the

general structure of the code, while in Section 4 we benchmark

FOCUS with SRW. In Sections 5 and 6 we apply FOCUS

to the accurate characterization of the transverse coherence

properties of typical third- and fourth-generation facilities,

respectively, highlighting peculiar features especially for

undulator sources close to the diffraction limit. Finally, we

collect our conclusions in Section 7.

2. Theory

2.1. Fourier optics approach to undulator radiation

Let Eðx; z; tÞ ¼ ~EEðx; zÞ expði!tÞ be the analytic representa-

tion in the space–time domain of a monochromatic electric

field emitted by an electron moving through a planar undu-

lator. The radiation has angular frequency ! and wavelength

� = 2�c/!. Here x = (x, y) denotes transverse positions across

the observation plane, z is the distance from the undulator

center, and t is the time. The complex amplitude ~EEðx; zÞ

describes the electric field in the space–frequency domain

(rigorously, apart from a Dirac delta function to ensure correct

physical dimensions). It can always be written as ~EEðx; zÞ =

Eðx; zÞ expði2�z=�Þ, where E(x, z) is the envelope of the field

in the space–frequency domain. In the following, we will refer

to E(x, z) simply as the field for notation simplicity.

We will derive analytical expressions for E(x, z) valid for

ultra-relativistic electrons moving through an ideal undulator

and under the so-called resonant approximation 4�Nw � 1,

Nw being the number of undulator periods. We notice that,

in principle, our approach can be adapted to account for

magnetic field errors as well, for example by computing the

Fourier spectrum of the magnetic field inside the undulator

device and by generalizing our equations to each Fourier

component of the magnetic field (possibly by also relaxing the

resonant approximation). However, in practice, this might be

cumbersome from a numerical implementation viewpoint and

result in a highly inefficient code. Finally, we would like to

remark that this is outside the scope of FOCUS, whose specific

aim is to provide an easy simulation tool, complementary to

existing ones, for fast computation of the coherence properties

of undulator radiation as a function of the electron beam

parameters. Therefore, in the following, we will restrict to

the case of an undulator source in the absence of magnetic

field errors.

In the ultra-relativistic regime � � 1, � being the Lorentz

factor, E(x, z) varies slowly with respect to the wavelength.

Thus, E(x, z) can be obtained by solving paraxial Maxwell

equations in the space–frequency domain by means of a

parabolic Green’s function (Weinberger, 1965). Under the

resonant approximation, we can neglect terms proportional

to the gradient of the charge density in the solution to the

paraxial wave equation, as well as the entire vertical polar-

ization component (Geloni et al., 2007). Therefore, for

frequencies near the undulator harmonics, the field at the

observation plane is a complex scalar quantity described by

the general expression (Geloni et al., 2007, 2018)

ÊE ðĥh; ẑzÞ ¼ exp i�sð Þ

Zþ1=2

�1=2

dẑz0

ẑz� ẑz0

� exp i ðĈCh � �̂�Þ ẑz
0
þ

ẑzẑz0

2ðẑz� ẑz0Þ
�2

� �� �
; ð1Þ

where we have defined reduced quantities and dimensionless

parameters as

ÊE ¼ �
2c2�

K!eAJJ;h

E;

x̂x ¼ x
!

Lwc

� �1=2

; ẑz ¼
z

Lw

; ĥh ¼
x̂x

ẑz
;

l̂l ¼ l
!

Lwc

� �1=2

; ĝg ¼ g
!Lw

c

� �1=2

;

ĈCh ¼ 2�Nw

!� h!1

!1

; �̂� ¼ 4�Nw h
��

�
;

� ¼ ĥh �
l̂l

ẑz
� ĝg

�����
�����; �s ¼

ẑz

2
ĥh �

l̂l

ẑz

�����
�����

2

:

ð2Þ

In equations (2), c is the speed of light, K is the undulator

strength parameter, �e is the electron charge, h is the

harmonic number of the radiation emitted from the undulator,

AJJ, h = (�1)(h�1)/2[J(h�1)/2(u)� J(h+1)/2(u)], u = hK2/[2(2 + K2)],

Jn is the Bessel function of the first kind of order n, Lw = Nw�w

is the undulator length, �w is undulator period, !1 = 4��2c/

[�w(1 + K2/2)] is the first harmonic of the undulator, l and g are

the electron offset and deflection, respectively, and ��/� is the

relative energy deviation due to the finite energy spread of the

electron beam.
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Introduction of dimensionless quantities according to

equations (2) reduces the parameters involved in the

description of real systems to a few universal quantities with

physical relevance. This enables scalability among different

cases of practical interest. In particular, equations (2) amount

to normalize spatial and angular quantities to the diffraction

size (Lwc/!)1/2 and diffraction angle (c/!Lw)1/2 of single-elec-

tron radiation, distances to the undulator length, and detuning

and energy spread to the undulator resonant bandwidth.

Equation (1) is a general expression in paraxial approx-

imation valid in the far-field as well as in the near-field. For

ẑz� 1 (Fraunhofer zone or far-field zone), we neglect terms of

order higher than ẑz0 in the expansion of ðẑz� ẑz0Þ
�1 in the phase

of equation (1), which can therefore be integrated analytically

leading to (Geloni et al., 2007)

ÊE ðĥh; zÞ ¼
expði�sÞ

ẑz
sinc

ĈCh � �̂�

2
þ
�2

4

 !
: ð3Þ

The field in the Fraunhofer zone is a diverging spherical wave

originating from the center of the undulator and modulated in

amplitude by the sinc(�) term describing the resonant char-

acter of the undulator device. Notice that the particle offset l̂l

and deflection ĝg are effective in shifting and tilting the far-field

pattern.

Thanks to the ultra-relativistic regime, paraxial approx-

imation can always be applied and we can describe the far-field

radiation given in equation (3) in terms of Fourier optics

(Goodman, 2007). In particular, undulator radiation from an

ultra-relativistic electron is interpreted as a laser-like beam

originating from a virtual source located at the center of the

undulator and exhibiting a plane wavefront, similarly to the

waist of a laser beam (Geloni et al., 2007). The electric field

distribution of such a virtual source is related to the inverse

Fourier transform of the far-field pattern in equation (3), and

has a characteristic transverse extent (Lwc/!)1/2 corresponding

to a natural diffraction angle (c/Lw!)1/2 (Geloni et al., 2007).

This ultimately lays the foundations of the transverse and

angular scalings in equations (2).

The field at the virtual source is then propagated at any ẑz by

means of the paraxial Fresnel propagation formula. At perfect

resonance ĈCh = 0 and in the absence of energy spread this

leads to (Geloni et al., 2007)

ÊE ðĥh; zÞ ¼ exp i�sð Þ exp �i ðẑz=2Þ �2
	 


� Ei
iẑz2�2

2ẑz� 1

� �
� Ei

iẑz2�2

2ẑzþ 1

� �� �
; ð4Þ

where Ei is the exponential integral function (Abramowitz

& Stegun, 1964). Equation (4) is valid at any longitudinal

position ẑz downstream of the undulator, and reduces to

equation (3) for ẑz � 1.

2.2. Statistical description of synchrotron radiation

The field generated by an electron beam with finite emit-

tance composed by Ne electrons is given by

ÊEbðĥh; ẑzÞ ¼
XNe

k¼ 1

ÊE ðĥh; ẑz; l̂lk; ĝgk; �̂�kÞ expði ̂ kÞ; ð5Þ

where l̂lk , ĝgk and �̂�k are the offset, deflection and relative

energy deviation of the kth electron, and  ̂ k = ! tk is the phase

retardation associated with the random arrival time tk of the

kth electron.

The transverse coherence properties of undulator radiation

are described in the space–frequency domain by the so-called

CSD (Born & Wolf, 1970; Mandel & Wolf, 1995; Goodman,

2000),

Wðĥh1; ĥh2; ẑzÞ ¼ ÊEbðĥh1; ẑzÞ ÊE �b ðĥh2; ẑzÞ
D E

; ð6Þ

where angular brackets denote the ensemble average.

The CSD is related to the spectral density (SD) by (Born &

Wolf, 1970; Mandel & Wolf, 1995; Goodman, 2000)

Sðĥh; ẑzÞ ¼ Wðĥh; ĥh; ẑzÞ ð7Þ

and to the SDC by (Born & Wolf, 1970; Mandel & Wolf, 1995;

Goodman, 2000)

	ðĥh1; ĥh2; ẑzÞ ¼
Wðĥh1; ĥh2; ẑzÞ

Sðĥh1; ẑzÞ
h i1=2

Sðĥh2; ẑzÞ
h i1=2

: ð8Þ

Substitution of equation (5) into equation (6) leads to

Wðĥh1; ĥh2; ẑzÞ ¼
XNe

k¼ 1

ÊE ðĥh1; ẑz; l̂lk; ĝgk; �̂�kÞ ÊE
�
ðĥh2; ẑz; l̂lk; ĝgk; �̂�kÞ

* +

þ

*XNe

k 6¼m

hÊE ðĥh1; ẑz; l̂lk; ĝgk; �̂�kÞ ÊE
�ðĥh2; ẑz; l̂lm; ĝgm; �̂�mÞ

� exp i ð ̂ k �  ̂ mÞ

h i+
: ð9Þ

In the case of an electron beam much longer than the radiation

wavelength, the electron arrival times are not correlated with

each other, hence the second summation vanishes upon the

ensemble average. As a result, the CSD, SD and SDC are

expressed as a function of single-electron terms only (Geloni

et al., 2008),

Wðĥh1; ĥh2; ẑzÞ ¼ hÊE ðĥh1; ẑzÞ ÊE �ðĥh2; ẑzÞi;

Sðĥh; ẑzÞ ¼ hjÊE ðĥh; ẑzÞj2i;

	ðĥh1; ĥh2; ẑzÞ ¼
hÊE ðĥh1; ẑzÞ ÊE �ðĥh2; ẑzÞi

hjÊE ðĥh1; ẑzÞj2i1=2
hjÊE ðĥh2; ẑzÞj2i1=2

;

ð10Þ

where the ensemble averages are performed over the phase

space density Pðl̂l; ĝg; �̂�) = Pðl̂lxÞPðl̂lyÞPð
̂
xÞPð
̂
yÞPð�̂�Þ of the

electron beam at the undulator center. We assume Gaussian

probability density functions with variances given in normal-

ized units by (Geloni et al., 2008)
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N̂Nx;y ¼ �
2
x;y

!

Lwc

D̂Dx;y ¼ �
0 2

x;y

!Lw

c

�̂�E ¼ ð4�Nw h�EÞ
2;

ð11Þ

where �x, y and � 0 2x;y are the horizontal and vertical r.m.s.

electron beam size and divergence, respectively, and �E is the

r.m.s. energy spread of the electron beam. Definition of the

reduced parameters in equation (11) follows directly from

equations (2).

Finally, a useful figure of merit to quantify the coherence

properties of synchrotron radiation by a single number is the

degree of coherence (Born & Wolf, 1970; Mandel & Wolf,

1995; Goodman, 2000),

� ¼

R
jWðĥh1; ĥh2; ẑzÞj2 dĥh1dĥh2	 R

Sðĥh; ẑzÞ dĥh

2

: ð12Þ

Values � = 1 and � = 0 correspond to fully coherent and fully

incoherent radiation, respectively.

3. Structure of the code

FOCUS calculates the ensemble averages in equations (10),

namely 5D integrals over the electron beam phase space

density, by means of a Monte Carlo approach (Press et al.,

1992),

h f ðĥh; ẑzÞi ¼

Z Z Z Z Z
dl̂l dĝg d�̂� f ðĥh; ẑz; l̂l; ĝg; �̂�ÞPðl̂l; ĝg; �̂�Þ

¼
1

Ne

XNe

k¼ 1

f ĥh; ẑz; l̂lk; ĝgk; �̂�k

� �
; ð13Þ

where f ðĥh; ẑzÞ denotes quantities between brackets on the

right-hand side of equations (10) and Ne is the number of

electrons in the beam.

As we have previously mentioned, each term in the

summations is due to the kth electron only, and it does not

depend on the other contributions. This makes the adopted

approach particularly suitable for massively parallel imple-

mentations, and allows harnessing the computation capabil-

ities of modern GPUs to perform fast and thorough

simulations. In addition, the calculation speed is further

increased by adopting the analytical framework based on

equations (3) and (4). The unique combination of these two

approaches stands at the core of FOCUS.

FOCUS is written in C++ language accelerated with CUDA

to harness the compute capabilities of modern NVIDIA

graphics cards, and performs double-precision calculations

for high-accuracy results. The general workflow is sketched

in Fig. 1, where we highlight operations running either on the

CPU or on the GPU.

First, the main parameters required to run the simulation

(mesh size and resolution, longitudinal position of the obser-

vation plane, undulator and electron beam parameters) are

imported from external files, which makes data input quite

easy and flexible. Parameters are then converted into dimen-

sionless quantities according to equations (2). The 5D phase

space density of the electron beam is sampled either by an

internal method relying on random number generators (Press

et al., 1992) or by reading values from a user-supplied file. This

latter option is useful for benchmark purposes, as well as to

assess the influence of non-Gaussian beams on the transverse

coherence properties.

Computation is then moved from the CPU onto the GPU

by copying data on the graphics card memory with synchro-

nous memory transfers. The GPU computes each term of the

summations in equation (13) in parallel, through the concur-

rent execution of many threads on the CUDA processors

residing on the graphics card. To optimize the GPU resources,

the number of threads and their organization are determined

at a runtime based on Ne. This also ensures maximization of

the overall throughput of the graphics card, since a new thread

is executed as soon as one CUDA processor ends its task. The

final sum in equation (13) is also implemented in a parallel

algorithm running on the GPU. A synchronization barrier is

required to prevent the GPU from accessing memory blocks

that are still being processed. Notice that the massively

parallel computations are performed on data that reside on

the graphics card memory to avoid communication bottle-

necks caused by the continuous (slow) data transfers between

CPU and GPU.

Finally, results are copied back to the CPU for final post-

processing and storage. Stored results are formatted as text

files complying with most data visualization tools.

4. Benchmark with SRW

As a first benchmark, we run FOCUS and SRW for a single

electron and for an electron beam with zero emittance and

zero energy spread (a filament beam), which, by definition,

emit radiation endowed with full coherence. In addition, this

benchmark is essential to prove that the massively parallel

computations of FOCUS running on the GPU are correctly

processing data, since the CSD must equal Ne times the single-

electron intensity distribution for ĥh1 = ĥh2. The wavefronts

simulated with both FOCUS and SRW are fully coherent with

	ðĥh1; ĥh2; ẑzÞ = 1 regardless of ĥh1, ĥh2 and ẑz. Random numerical
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fluctuations in the order of 10�7–10�8 are present in the SRW

results due to the rounding of single-precision numbers. In

contrast, FOCUS simulations have higher accuracy thanks to

the double-precision floating-point operations.

We then perform a direct comparison between FOCUS and

SRW for the case of an electron beam with finite emittance

and energy spread. To this aim, we consider the NCD-SWEET

undulator source at the ALBA Synchrotron Light Source as

our case study representative of third-generation synchrotron

light sources (Siano et al., 2022). The main parameters of

the NCD-SWEET beamline are summarized in Table 1. Other

facilities can be described as well, by

properly scaling and tailoring physical

quantities according to equations (2).

We perform simulations with Ne

varying from 10 to 105. The same elec-

tron offsets, deflections and relative

energy deviations are used in both

FOCUS and SRW for a one-to-one

comparison. Examples of the simulated

horizontal and vertical profiles of the

SDC are reported in Fig. 2. FOCUS

results match SRW simulations, accu-

rately reproducing even the spurious

fluctuations of the SDC at large �x and

�y due to the relatively low number of

simulated electrons. Results also show

that a large number of electrons of

the order of 105 or larger is required to

suppress such spurious contributions.

We report a comparison of simulation

times in Table 2. FOCUS performances

refer to a consumer laptop mounting a

NVIDIA GeForce 940MX graphics card with 512 CUDA

cores (2 GB dedicated graphics memory), while SRW simu-

lations are run with multi-threading parallelization on the

dual-core CPU (Intel Core i7, 2.5 GHz, 8 GB DDR4 RAM).

The comparison shows that FOCUS is faster by four to five

orders of magnitude. Furthermore, the execution time of

FOCUS is a non-linear function of the number of electrons in

the beam, opposite to the SRW case. Thanks to the parallel

computation of the different terms in equation (13), it is

practically constant for Ne � 104, and scales linearly with the

number of electrons, as in the SRW case, only when all GPU
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Table 1
Main parameters of the NCD-SWEET beamline at ALBA; reduced quantities based on equations
(2) and (11) are also reported.

Quantity Parameter Value Reduced parameter Value

Electron beam energy E 3 GeV
Undulator strength parameter K 1.56
Undulator number of periods Nw 92
Undulator period length �w 21.6 mm
Harmonic number h 7
Observation distance z 33 m ẑz 16.6
Horizontal beam size (r.m.s.) �x 130 mm N̂Nx 532
Horizontal beam divergence (r.m.s.) � 0x 48 mrad D̂Dx 286
Vertical beam size (r.m.s.) �y 6 mm N̂Ny 1.1
Vertical beam divergence (r.m.s.) � 0y 5 mrad D̂Dy 3.1
Energy spread (r.m.s.) �E 1.05 � 10�3 �̂�E 8.5

Figure 2
Direct comparison between FOCUS and SRW simulations for the horizontal (a, b, c) and vertical (d, e, f ) profiles of the SDC of a typical third-generation
undulator source. Results with Ne = 103 (a, d), Ne = 104 (b,e) and Ne = 105 (c, f ) are shown.

Table 2
Comparison between FOCUS and SRW simulation time as a function of the number of electrons
in the beam Ne .

Code Ne = 10 Ne = 102 Ne = 103 Ne = 104 Ne = 105 Ne = 106

FOCUS 0.06 s 0.06 s 0.07 s 0.1 s 0.3–0.4 s 3–4 s
SRW 3 s 30 s 5 min 1 h 10 h –



resources are fully utilized, as for

example when Ne is increased to 106 or

larger. In this case, the FOCUS

computation time is 3–4 s, while SRW

simulations would take 4–5 days. More

modern, high-end GPUs with more

CUDA cores and dedicated memory

can in principle achieve even better

performances.

FOCUS performances are due to the

peculiar adopted approach combining

massively parallel computations on

GPUs with an analytical description of

the electric fields. In particular, for the

specific GPU with 512 CUDA cores

used during these tests, the overall

speedup by five orders of magnitude equally results from the

GPU-based computations and the analytical framework.

Finally, one last comment is worth making concerning the

applicability of the code to the case of undulator radiation

off resonance, when the intensity distribution exhibits a ring

shape. In principle, FOCUS allows computation of the trans-

verse coherence properties of detuned undulator radiation

thanks to the detuning term ĈCh in the expression of equation

(3) for the electric field generated by individual electrons.

In practice, however, one must recall the conditions under

which such an expression was derived, namely the resonant

approximation (requiring a large number of undulator periods

Nw), which limits the rigorous applicability of the adopted

analytical framework to frequencies near resonance. In

particular, jĈChj should be compared, parametrically, with Nw

and be much smaller than it. For jĈChj ’ Nw or larger, one

might observe deviations from more accurate simulation tools

like SRW, depending on the actual values of the parameters.

For the NCD-SWEET undulator source considered here,

discrepancies are limited to below the 10% level for a relative

detuning of roughly 1% (comparable with the natural band-

width of the undulator radiation) from the h = 7 harmonic,

corresponding to jĈChj = 40. Such deviations from SRW results

progressively decrease, and eventually vanish, for smaller

and smaller jĈChj .

5. Systematic study of transverse coherence of a typical
third-generation synchrotron light source

In third-generation facilities, undulator sources are usually

described as quasi-homogeneous fully incoherent thermal

sources, and estimations of the transverse coherence proper-

ties rely on the application of the well known van Cittert and

Zernike theorem, which relates the SDC to the Fourier

transform of the source intensity distribution (Born & Wolf,

1970; Mandel & Wolf, 1995; Goodman, 2000). However, the

applicability of the van Cittert and Zernike theorem is highly

debated, especially along the vertical direction when the

electron beam emittance y = �y�
0
y becomes comparable with

the natural photon beam emittance ph = �/2� (Geloni et al.,

2008; Alaimo et al., 2009; Thomas et al., 2016). The topic is of

high theoretical and practical interest, as shown by a number

of recent publications (Walker, 2019; Khubbutdinov et al.,

2019; Geloni et al., 2008; Alaimo et al., 2009; Siano et al., 2022;

Thomas et al., 2016).

Here we systematically study the transverse coherence

properties of a typical third-generation synchrotron light

source by considering the same undulator setup as in the

previous section. We perform accurate FOCUS simulations

with Ne = 106–107 to limit relative fluctuations in the results

to 0.1% or less.

We report in Fig. 3 results for the simulated horizontal and

vertical profiles of the SDC for the undulator source with

nominal parameters as in Table 1, while in Fig. 4 we show a

systematic investigation of the vertical coherence obtained

by varying the radiation wavelength and the vertical beam

emittance. Predictions based on the van Cittert and Zernike

theorem are also reported alongside for direct comparison.

Results show that the quasi-homogeneous assumption is

valid along the horizontal direction, where simulated data and

the analytical model based on the van Cittert and Zernike

theorem perfectly agree. The same is valid along the vertical

direction for relatively large beam sizes of the order of tens

of micrometres, corresponding to N̂Ny; D̂Dy� 1 in dimensionless

units. Contrarily, the van Cittert and Zernike theorem does

not accurately describe the transverse coherence of the

undulator source along the vertical direction for beam sizes

as small as a few micrometres, and discrepancies with the more

rigorous statistical optics approach arise. This stems from the

fact that the electron beam emittance becomes comparable

with, or smaller than, the photon beam emittance. In dimen-

sionless units, this corresponds to ðN̂NyD̂DyÞ
1=2 <
� 1. Therefore,

undulator sources along the vertical direction cannot in

general be regarded as quasi-homogeneous fully incoherent

thermal sources.

As shown in Fig. 4, deviations are more evident as N̂Ny and

D̂Dy decrease. Notice that the vertical coherence also exhibits a

markedly non-Gaussian behavior for extremely small N̂Ny; D̂Dy,

which is related to the oscillatory behavior of the sinc(�)

function in the single-electron radiation field, as we will detail

in the next section. Therefore, while the observed discre-

pancies are small in current third-generation machines, they

research papers

J. Synchrotron Rad. (2023). 30, 217–226 M. Siano et al. � FOCUS 223

Figure 3
Horizontal (a) and vertical (b) profiles of the SDC for a typical third-generation synchrotron light
source. Predictions based on the van Cittert and Zernike theorem (VCZ) are also reported for
direct comparison.



are however indicative of deviations which will become more

evident in future fourth-generation light sources, especially

close to the diffraction limit. In such situations, numerical

codes like FOCUS represent an indispensable tool for proper

radiation diagnostics.

6. Applications to fourth-generation synchrotron light
sources

To showcase the peculiar coherence properties of fourth-

generation synchrotron light sources close to the diffraction

limit, we consider radiation with � =

2.5 nm emitted by an undulator source

with 10 pm emittance in both horizontal

and vertical directions. The main para-

meters are summarized in Table 3, and

are compatible with the PETRA IV

case (Schroer et al., 2018). We notice

that the same radiation source has been

the object of similar numerical investi-

gations in a recent publication (Khub-

butdinov et al., 2019), which we refer

to as an additional benchmark of the

FOCUS code in case of ultralow emit-

tances.

We report in Fig. 5 a detailed analysis

of the horizontal coherence properties as a function of x1 and

x2. The vertical position of the two observation points is fixed

on-axis at y1 = y2 = 0. For comparison, we also show the results

of similar simulations for the third-generation undulator

source described in the previous sections. In both cases, we

report results for the SDC and the SD, from which the degree

of coherence is inferred based on equations (12). In Fig. 6 we

characterize the full 2D coherence properties on-axis, at

(x1 + x2)/2 = (0, 0), as a function of �x = x1 � x2 = (�x, �y).

For the ALBA case, the horizontal and vertical degree of

coherence are �x = 1.250 � 10�3 and �y = 0.118, respectively.
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Figure 4
Systematic study of the vertical coherence for a typical third-generation synchrotron light source for radiation tuned at the harmonic h = 7 with � =
0.1 nm (a, e, i), h = 5 with � = 0.14 nm (b, f, j), h = 3 with � = 0.23 nm (c,g, k), and h = 1 with � = 0.7 nm (d,h, l), and for decreasing vertical beam size �y =
40 mm (a, b, c, d), �y = 10 mm (e, f, g,h), and �y = 2 mm (i, j, k, l). Predictions based on the van Cittert and Zernike theorem (VCZ) are also reported for
direct comparison. The electron beam divergence is varied according to � 0y = �y/�y where �y = 1.2 m is the vertical beta function at the undulator center.
In each plot we also report the corresponding normalized parameters N̂Ny and D̂Dy according to equation (11).

Table 3
Main parameters of the fourth-generation undulator source near the diffraction limit; reduced
quantities based on equations (2) and (11) are also reported.

Quantity Parameter Value Reduced parameter Value

Electron beam energy E 6 GeV
Undulator strength parameter K 4.31
Undulator number of periods Nw 72
Undulator period length �w 69.4 mm
Harmonic number h 1
Observation distance z 30 m ẑz 6
Horizontal beam size (r.m.s.) �x 4.47 mm N̂Nx 0.01
Horizontal beam divergence (r.m.s.) � 0x 2.24 mrad D̂Dx 0.06
Vertical beam size (r.m.s.) �y 4.47 mm N̂Ny 0.01
Vertical beam divergence (r.m.s.) � 0y 2.24 mrad D̂Dy 0.06
Energy spread (r.m.s.) �E 1 	 10�3 �̂�E 0.9



Results are in good agreement with independent SPECTRA

simulations yielding �x = 1.252 � 10�3 and �y = 0.115. For the

PETRA IV case, �x = �y = 0.917 in the absence of energy

spread. Results are compatible with values reported in the

literature (Khubbutdinov et al., 2019). By adding a finite

energy spread of 10�3, we find a reduction of the degree of

coherence to �x = �y = 0.884, as also reported in recent

publications (Geloni et al., 2018; Khubbutdinov et al., 2019).

As shown by Fig. 5, the coherence properties of a fourth-

generation synchrotron light source close to the diffraction

limit are highly dependent on the absolute position across the

observation plane. This is reflected in Fig. 5 by the squared

shape of the horizontal SDC. Contrarily, in third-generation

synchrotron light sources far from the diffraction limit,

coherence properties depend only on the relative distance

between the two observation points (�x = x1� x2 in this case).

We also notice the presence of deep oscillations in the 2D

coherence maps in Figs. 5 and 6. They can be ascribed to the

oscillatory behavior of the sinc(�) modulation of the single-

particle electric field, which affects the transverse coherence in

the presence of a finite, albeit small, emittance, according to a

mechanism recently described (Geloni et al., 2018). In fact,

due to the finite emittance, different electrons generate

different wavefronts at the observation plane. In particular,

the field from different electrons changes sign at different

positions, according to equations (3) and (4). This results in an

effective change in the wavefronts, which by definition impacts

on the coherence properties (Geloni et al., 2018). In particular,

the sign reversals induce anti-correlations in the complex

fields, which in turn results in deep modulations of the SDC.

The oscillations in the 2D coherence maps in Figs. 5 and 6

are therefore a clear indication that the coherence properties

of undulator sources close to the diffraction limit are simul-

taneously affected by the beam emittance and the peculiar

features of the single-electron radiation.

7. Conclusions

We have described FOCUS (Fast Monte CarlO approach to

Coherence of Undulator Sources), a new simulation code

natively running on NVIDIA GPUs to compute the transverse

coherence of synchrotron radiation from ultra-relativistic

electrons in an undulator source.

The code relies on analytic expressions for the emitted

electric fields derived with a Fourier optics formulation of

synchrotron radiation, combined with massively parallel

computations on GPUs. A consistent use of suitable dimen-

sionless parameters reduces the variables involved in the

description of physical systems, and allows proper scaling

among different cases of practical interest.

We have extensively validated FOCUS with the SRW code.

In particular, compared with standard multi-electron SRW

simulations, FOCUS achieves a reduction in computation

times by up to five orders of magnitude on a consumer laptop.

We have applied FOCUS to systematically characterize

the transverse coherence properties of undulator radiation in

typical third- and fourth-generation facilities. Results showed

deviations from the well known van Cittert and Zernike

theorem along the vertical direction when the electron beam

emittance becomes comparable with, or smaller than, the

natural photon beam emittance. While the observed discre-

pancies are small in current third-generation machines, they

are however indicative of deviations that will become more

evident in future fourth-generation light sources, especially

close to the diffraction limit. In this case, the transverse

coherence properties of the emitted radiation also largely

vary across the radiation wavefront, and are affected by

the peculiar features of the single-electron emission, in the

presence of a finite, albeit small, emittance.

Finally, we remark that FOCUS is complementary to

existing codes. It is aimed at fast evaluating the transverse

coherence properties of synchrotron radiation from undulator

sources as a function of the electron beam parameters,

to support and help prepare more advanced and detailed

numerical simulations with traditional codes like SRW.
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Figure 5
2D map of the horizontal SDC as a function of x1 and x2 for a typical
third-generation synchrotron light source (a) and for a fourth-generation
synchrotron light source close to the diffraction limit (b). The vertical
position of the two observation points is y1 = y2 = 0. The corresponding
SDs are reported in (c) and (d), respectively.

Figure 6
2D map of the on-axis SDC as a function of �x and �y (a), and
corresponding horizontal profile at �y = 0 (b), for a typical fourth-
generation synchrotron light source close to the diffraction limit.



FOCUS is publicly available from the website of

the Instrumental Optics Laboratory of the Physics

Department of Università degli Studi di Milano (https://

instrumentaloptics.fisica.unimi.it/focus/). The source code is

also freely available on the GitHub page of the corresponding

author (https://github.com/MirkoSiano/FOCUS).

The code, specifically running on CUDA-capable NVIDIA

graphics cards, has been tested on both Windows and Linux

operating systems, but can be easily ported onto MacOS

as well. In addition, pre-compiled executables are available

on the FOCUS website, which makes manual compilation

unnecessary. The executables allow the most common calcu-

lations to be performed, e.g. calculations of 1D profiles of the

SDC. They will be continuously updated with new function-

alities and cross-platform compatibility.
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