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Fast 3D data analysis and steering of a tomographic experiment by changing

environmental conditions or acquisition parameters require fast, close to real-

time, 3D reconstruction of large data volumes. Here a performance-optimized

TomocuPy package is presented as a GPU alternative to the commonly used

central processing unit (CPU) based TomoPy package for tomographic

reconstruction. TomocuPy utilizes modern hardware capabilities to organize a

3D asynchronous reconstruction involving parallel read/write operations with

storage drives, CPU–GPU data transfers, and GPU computations. In the

asynchronous reconstruction, all the operations are timely overlapped to almost

fully hide all data management time. Since most cameras work with less than 16-

bit digital output, the memory usage and processing speed are furthermore

optimized by using 16-bit floating-point arithmetic. As a result, 3D reconstruc-

tion with TomocuPy became 20–30 times faster than its multi-threaded CPU

equivalent. Full reconstruction (including read/write operations and methods

initialization) of a 20483 tomographic volume takes less than 7 s on a single

Nvidia Tesla A100 and PCIe 4.0 NVMe SSD, and scales almost linearly

increasing the data size. To simplify operation at synchrotron beamlines,

TomocuPy provides an easy-to-use command-line interface. Efficacy of the

package was demonstrated during a tomographic experiment on gas-hydrate

formation in porous samples, where a steering option was implemented as a

lens-changing mechanism for zooming to regions of interest.

1. Introduction

Fast in situ tomographic experiments at synchrotron facilities

are of great interest to various user communities including

geology (Butler et al., 2020; Nikitin et al., 2020), material

science (Maire et al., 2016; Zhai et al., 2019) and energy

research (Finegan et al., 2015; Liu et al., 2019). This is because

modern synchrotron light sources of the third and fourth

generation provide the necessary photon flux to accommodate

very fast scanning of large samples with micrometre and

nanometre spatial resolution (Willmott, 2019; De Andrade

et al., 2021; Nikitin et al., 2022). At the same time, modern

detectors allow for continuous tomographic data acquisition at

more than 7.7 GB s�1 rate (Mokso et al., 2017; Garcı́a-Moreno

et al., 2021), generating a series of tomographic datasets

representing dynamic sample states at unprecedented high

temporal resolution.

One of the most challenging tasks nowadays is the efficient

steering of such dynamic experiments. Both manual and AI-

based experiment steering can be performed more efficiently

utilizing full 3D reconstructed volumes rather than projection

images. Reconstructed volumes are more informative and

contain all information about the current sample state

compared with the projection raw data or a subset of recon-

structed slices. Therefore, the performance of 3D tomographic
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reconstruction is critical when processing large amounts of

data captured in a short period of time. Fast, close to real-time

3D reconstruction will allow for AI data analysis and steering

experiments, e.g. by automatic changing of environmental

conditions (pressure, temperature, etc.) or by triggering data

capturing processes for other measuring devices (higher

resolution or ultrafast detectors).

Besides fast reconstruction of dynamic tomography data,

there is still a need to accelerate the processing of large

datasets, in particular those obtained from detectors with large

sensors or from mosaic scans. In mosaic scans, large samples

are scanned at different vertical and horizontal positions to

obtain a set of datasets that are then stitched together to

generate one large dataset. 3D reconstructions of such large

datasets can have more than 10k voxels in each dimension,

yielding several Tb of data to process (Vescovi et al., 2017;

Borisova et al., 2021). To obtain reconstruction of such data-

sets in a reasonable time, tomography software packages are

typically adapted for high-performance computing (HPC)

clusters [see, for instance, Hidayetoğlu et al. (2020) and

references therein]. It is common that data analysis by regular

beamline users is delayed due to the lack of immediate access

to such HPC clusters.

Nowadays there exist many packages for tomography data

reconstruction. TomoPy (Gürsoy et al., 2014) provides a

Python interface for pre-processing tomography data and

for applying filtered backprojection to recover 3D sample

volumes with parallel-beam geometry. It provides imple-

mentations of different reconstruction methods, including

Gridrec (Dowd et al., 1999; Rivers, 2012) amongst others

(Gürsoy, 2014), additionally accelerated with central proces-

sing unit (CPU) multiprocessing, Intel compiler directives,

and Intel Math Kernel Library (MKL). The computational

complexity for reconstructing a 3D volume is OðN 3 log NÞ,

assuming that the number of projection angles and volume

size in each dimension are of the order of N. The Gridrec

implementation on computer clusters is also available

(Marone et al., 2017) and has demonstrated first steps towards

on-the-fly tomography data processing. TomoPy supports

Python wrappers to run reconstruction functions from other

packages. One example of such a wrapper is ASTRA Tomo-

graphy Toolbox (van Aarle et al., 2015, 2016), which is also

commonly used as an independent package. The ASTRA

Toolbox implements high-performance graphics processing

unit (GPU) primitives not only for parallel-beam tomography

but also for cone-beam tomography. Besides the regular

filtered backprojection method based on the summation over

lines [OðN4Þ computational complexity], the package is opti-

mized to work with iterative reconstruction methods such as

SART (Andersen & Kak, 1984), SIRT (Gregor & Benson,

2008) and CGLS (Scales, 1987). For an iterative method, it is

possible to keep all the necessary data in the GPU memory,

and thereby reduce the data copy between the storage drive,

CPU and GPU memory. In such cases, the performance of

reconstruction is mostly limited by GPU computation speed.

Another package, called UFO (Vogelgesang et al., 2016),

provides a multi-threaded, GPU-enabled and distributed

data processing framework. Tomographic and laminographic

reconstructions are also implemented using the regular

filtered backprojection method of complexity OðN 4Þ .

Computational complexity plays an important role when

reconstructing data from large detectors, or from data

obtained by stitching several projection datasets (Vescovi et

al., 2018; Tile, 2022). For example, for N = 2048 the complexity

OðN 3 log NÞ becomes approximately 186 times lower than

OðN 4Þ. With increasing data sizes, the potential acceleration

becomes higher (341 complexity lowering factor for N = 4096,

630 for N = 8192, and so on). Therefore it is always beneficial

to operate with algorithms of lower computational complexity

with the introduction of new detectors having large sensors

(e.g. 13392 � 9528 sensor shr661 camera from SVS-VISTEK);

they indeed become critical for any future tomography

applications. Examples of methods with OðN 3 log NÞ

complexity include the Fourier-based gridding method

(Beylkin, 1998) and the log-polar-based method (Andersson et

al., 2016). In contrast, methods implemented in the ASTRA

and UFO packages have OðN 4Þ computational complexity

and therefore become less efficient when processing data from

huge detectors.

In this work, we present a new package called TomocuPy

where we combined efficient reconstruction methods and

modern hardware capabilities to accelerate the whole tomo-

graphic reconstruction process, including data read/write

operations with storage drives, CPU–GPU data transfers, and

computations on GPU. The main features of the packages

include:

(1) Optimized GPU implementation of reconstruction with

low [OðN 3log NÞ] computational complexity (Fourier-based

gridding method and log-polar-based method). The methods

were developed previously; however, they have not been

commonly used as a regular tool inside a tomographic package

such as TomocuPy. The performance table of Andersson et al.

(2016) reports 0.045 s log-polar-based reconstruction of one

slice, 2048 � 2048, on Nvidia GeForce GTX 770 (release date:

30 May 2013), which corresponds to 92 s for reconstructing the

full volume. The reported time does not include initialization

and data transfer costs. Modern GPUs are several tens of

times faster than GTX 770 and reduce reconstruction times to

a few seconds.

(2) Asynchronous chunk data processing where read/write

operations with storage drives, CPU-GPU data transfers, and

GPU computations for each chunk are timely overlapped. It

is known that one of the main bottlenecks slowing down

reconstruction when using GPUs is data management.

Computations on GPUs may take less time than data read/

write from storage drives and CPU–GPU data transfers.

TomocuPy provides the functionality to almost fully hide time

for all data management. In this work, we optimize operation

with modern storage based on Non-Volatile Memory Express

(NVMe) solid state disks (SSDs). They deliver unprecedented

performance provided by parallelization of the read/write

operations, which results in 8� acceleration compared with

regular SATA SSDs (Xu et al., 2015). Besides computer

clusters, current NVMe SSDs connected via PCIe v3 or PCIe
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v4 are also used in common workstations and demonstrate

3.5–7 GB s�1 speed for parallel operations with the disk. In

this case, writing one tomographic volume of size 20483 in 32-

bit precision may potentially take less than 5 s.

(3) 16-bit (half-precision) arithmetic. Most detectors used

for tomography have less than 16-bit digital output. It is

therefore potentially possible to decrease processing data sizes

and accelerate computations even more. TomocuPy imple-

ments all processing methods in both 16- and 32-bit precision.

16-bit computations decrease reconstruction sizes, accelerate

computations and demonstrate acceptable accuracy for

processing experimental datasets.

(4) Command-line interface for reconstruction. TomocuPy

provides a command-line interface for processing tomo-

graphic datasets stored in the HDF5 format. The interface

includes necessary commands and parameters for tomo-

graphic data pre-processing and reconstruction. It is also easy

to extend the interface by adding new functionality with a

description of parameters.

The rest of the paper is organized as follows. In Section 2

we describe the implementation details and an easy-to-use

command-line interface for processing experimental data.

Section 3 provides performance analysis on synthetic data

and accuracy analysis on experimental data from a micro-CT

synchrotron beamline and a comparison between different

methods. An example of a dynamic tomography experiment at

a synchrotron where automatic steering was possible due to

fast reconstruction provided by TomocuPy is presented in

Section 4. Conclusions and outlook are given in Section 5.

2. Fast GPU-based reconstruction with TomocuPy

TomocuPy (Nikitin, 2022) is a Python package that provides

support for fast and efficient asynchronous data management

and tomographic reconstruction on Nvidia GPUs with 16-bit

or 32-bit computational precision. It implements GPU-based

pre-processing steps and filtered backprojection operators,

as well as optimized data transfer mechanisms among storage

drives, CPU RAM memory and GPU memory. In the

following we will describe the main package features leading

to fast, close to real-time, tomographic reconstruction.

2.1. 16-bit precision arithmetic

Area detectors used for tomographic imaging incorporate

an analog-to-digital converter (ADC) to digitize the images

with 8-, 10-, 12- or 16-bit output. The conventional tomo-

graphy reconstruction is typically performed with 32-bit

floating-point operation which might be inefficient in terms

of computational speed. In this work we considered 16-bit

floating-point (FP16) arithmetic as an alternative to the

conventional 32-bit floating-point (FP32) arithmetic. FP16 is

used in many computer graphics environments to store pixels,

including Nvidia CUDA, OpenGL and Direct3D. Currently, it

is also gaining popularity in deep learning applications with

Nvidia GPUs. Nvidia’s recent Pascal architecture was the first

GPU that offered FP16 support. FP16 arithmetic was signifi-

cantly optimized for following Nvidia architectures including

Volta and Ampere, and became beneficial for code optimi-

zation in terms of performance and memory usage.

To adapt tomographic reconstruction in TomocuPy for

FP16 computations we followed the guidance from Ho &

Wong (2017) that shows different issues and opportunities

with code migration to FP16. We also reviewed all mathe-

matical operations in the code and made sure that the accu-

racy and correctness of computations are not lost. The

accuracy can be lost when a mathematical operation is

performed between large and small numbers, e.g. 1000 � 0.1 =

1000 (FP16). Incorrect results are obtained when multiplying

two large numbers: 1000 � 1000 = inf (FP16) since the

maximum representable value in FP16 precision is 65504. To

address these issues, we reorganized arithmetic operations

where possible. In places where reorganization was not

possible, we performed the operation with arguments

converted to FP32 and cut the precision of the result back to

FP16. As a result, we were able to decrease the total amount

of memory (CPU RAM, GPU and storage disk space) by two

times and accelerate computations on GPU.

2.2. Pre-processing steps and backprojection

Pre-processing steps in tomographic reconstruction include

dark/flat-field correction, taking a negative logarithm of the

data, and one-dimensional filtering with the Shepp–Logan,

Parzen or other filter. Additionally, pre-processing may

include ring-removal filtering using wavelets (Münch et al.,

2009) or by analytical formula (Titarenko et al., 2010; Titar-

enko, 2016), zinger artifacts reduction (Rivers, 1998) and

the propagation-based phase-retrieval procedure using the

Paganin filter (Paganin et al., 2002). To accelerate computation

of all these steps we used the CuPy Python library (Okuta et

al., 2017), which is a GPU-accelerated analog of the NumPy

Python library. All regular linear algebra operations, such

as multiplication, summation, logarithm, exponent, are easily

ported to CuPy library calls in 16-bit and 32-bit floating-point

precision. At the time of writing, CuPy does not support

computing fast Fourier transforms (FFTs) in 16-bit precision;

moreover, 16-bit FFTs are supported in CUDA C only for

sizes that are powers of two. Therefore, we prepared CUDA C

codes for allocating 16-bit and 32-bit CUDA FFT plans at the

beginning of reconstruction and executing the plans on a set

of tomography slices during data reconstruction by chunks.

16-bit data are additionally padded/unpadded to the power of

two sizes, 32-bit data are padded to the sizes represented as

2a
� 3b
� 5c
� 7d (a, b, c, d are positive integers) for optimal

evaluation of Bluestein’s algorithm (Bluestein, 1970) in the

CUDA cuFFT library.

The backprojection operator is the most computationally

intensive step of the reconstruction procedure. Its direct

evaluation by discretizing line integrals has a computational

complexity of OðN 3N�Þ assuming that the sample size in each

dimension and the total number of projection angles are of

orders N and N � , respectively. There exist methods for fast

evaluation of the backprojection operator. The most common
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one is based on using the Fourier-slice theorem and using

Fourier transforms on unequally spaced grids (Beylkin, 1998;

Dowd et al., 1999). It has complexity OðN 3 log NÞ for recon-

structing 3D volumes. The log-polar-based method demon-

strates the same complexity (Andersson et al., 2016).

However, in comparison with the Fourier-based method,

where interpolation-like procedures are conducted in the

frequency domain, the log-polar-based method assumes

interpolation in the image domain where data are substan-

tially less oscillatory. Therefore, the log-polar-based method

demonstrates accurate reconstruction results using interpola-

tion schemes of moderate order (linear or cubic splines),

whereas the Fourier-based method has to operate with expo-

nential or other complex-type functions that can be approxi-

mated with only high-order polynomials. The log-polar-based

method outperforms the Fourier-based method (Andersson et

al., 2016) due to the interpolation type; however, its current

implementation assumes that projection data are given for

equally spaced angles. In very rare cases, e.g. during an

interlaced scanning (Mohan et al., 2015), tomographic data are

collected for non-equally spaced angles and the log-polar-

based method is not applicable.

TomocuPy provides three implementations of the back-

projection operator: (1) direct discretization of the back-

projection line integral, (2) the Fourier-based method with

exponential functions for interpolation in the frequency

domain, and (3) the log-polar-based method with cubic spline

interpolation in the image domain. Although the direct line

discretization method is not optimal, we keep it as an option

since the method can be used for computing the back-

projection in a laminographic geometry (Helfen et al., 2007)

where the rotary stage is tilted with respect to the beam

direction, yielding more efficient scanning of flat samples.

Since the backprojection is the most computationally

demanding part of the reconstruction, we fully implemented

it with CUDA C by writing optimized codes for FFTs,

CUDA raw kernels, and data handling. Users can easily switch

between different backprojection methods depending on

application.

2.3. Asynchronous data processing

Besides data processing on a GPU, tomographic recon-

struction requires data transfer operations between a storage

drive, CPU RAM memory and GPU memory. Non-optimal

organization of data transfers among these components,

especially in GPU computing, can significantly slow down

the whole reconstruction pipeline, causing the GPU to be idle

while waiting for new data chunk transfers to complete. Due

to non-optimal organization of data transfers, significant

GPU acceleration is typically visible for iterative tomography

reconstructions, where data are loaded to GPU memory and

tens or hundreds of iterations are performed while keeping

the whole dataset in GPU memory. One-step filtered back-

projection implemented on a GPU with sequential data

transfers does not yield such performance gain compared with

the CPU version due to relatively slow memory transfer

operations. Here we organize and optimize an asynchronous

processing pipeline where all data transfers are overlapped

with GPU computations. In this way, the time for data trans-

fers is effectively hidden from the total computational time

required by the reconstruction step.

Figure 1 presents a scheme of the proposed asynchronous

processing pipeline for data chunks. An example of execution

is as follows. When data Chunk N is loaded from a storage

drive, three operations are executed simultaneously: CPU–

GPU memory transfer for Chunk N; GPU computations for

Chunk N�1; and GPU–CPU memory transfer for Chunk

N�2. After Chunk N�2 with reconstruction is copied to

CPU, a write operation is executed to dump the chunk to

the storage drive.

TomocuPy implements this optimal asynchronous pipeline

in two levels. First, independent Python threads are started for

(1) reading data chunks from the storage drive into a Python

data queue object and (2) writing reconstructed chunks from

another Python queue object to the storage drive disk. Both

queue objects are stored in CPU RAM memory. The size and

the number of threads for each queue are defined based on

the system characteristics. To maximize the performance of

parallel read/write operations we work with Intel SSD D7-

P5510 Series PCIe 4.0 NVMe drives. These drives work on

high-end parallel data paths for faster operations than regular

SAS/SATA HDDs or SSDs, protocols of which are based on

CPU cycles and are not designed to handle severe data loads.

Second, independent of read/write operations with storage

drives, we overlap CPU–GPU data transfers with GPU

computations by using CUDA Streams. The CuPy interface

allows the concurrent execution of streams to be organized

directly within the Python code, without writing CUDA C

code. It also allows for direct allocation of pinned GPU

memory, which is necessary to run data transfers and GPU

computations concurrently. To implement the overlap, the

pinned memory on CPU and device memory on GPU should

both be allocated two data chunks and two reconstruction

chunks. Three CUDA streams run simultaneously by

switching between chunks; the first stream performs a data
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copy to the first chunk of the pinned memory, followed by

transfer to the first chunk of GPU memory. The second stream

performs GPU computations on the second data chunk in

GPU memory (whenever it is available) and places the result

in the second reconstruction chunk in GPU memory. The third

stream executes a data transfer from the first reconstruction

chunk in GPU memory to the first pinned memory chunk for

reconstruction. The chunk is then copied to the queue for

further writing to the storage drive. After processing each

chunk, all streams synchronize and switch the chunk ID

(0 or 1) they operate with.

Fig. 2 shows the timeline view report from the Nvidia Nsight

System performance analysis tool that demonstrates a

comparison between the asynchronous and sequential

execution types. The test was performed for reconstructing a

2048 � 2048 � 2048 dataset with the log-polar-based method

and FP32 arithmetic. The timeline view for the asynchronous

execution is shown for 40 ms. During this time, we observe

continuous data read/write operations with NVMe SSD,

i.e. continuous CUDA kernel execution and GPU–GPU

memory transfers. We also observe two GPU–CPU and two

GPU–CPU memory transfers for data chunks. Since all

operations are overlapped in time by using Python CPU

threads and CUDA Streams, the total reconstruction time

in this case can be approximately estimated only by GPU

computations. In turn, the timeline view for the sequential

execution with one CPU thread and one CUDA Stream shows

160 ms running time without any overlap. During this period,

about 60% of the time is spent on read/write operations with

an NVMe SSD in one thread; the remaining 40% is used for

GPU computations and memory transfers between CPU and

GPU. The left-hand panels of both reports also show that the

total GPU utilization consists of about 70% CUDA kernel

execution and 30% memory transfers. The total time for

reconstructing a 2048 � 2048 � 2048 dataset with the asyn-

chronous execution, as measured by the Nvidia Nsight System

performance analysis tool, is approximately 2.5 times lower

than for the sequential execution (8 s versus 21 s).

2.4. Command-line interface

To simplify the execution of tomographic reconstructions

with TomocuPy, we have developed a command-line interface

wrapping Python classes with processing functions. The

command can be executed in a Unix terminal and accepts a list

of parameters to customize the reconstruction procedure. The

executable file is installed as part of the whole TomocuPy

package by using pip or conda install. An example of a

command line for running in an Anaconda environment and

reconstructing one full tomographic dataset stored as an

HDF5 file is as follows:

where the reconstruction parameters are submitted with

the syntax ��<parameter><value>. A list of all

available parameters can be obtained by running
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Timeline view report from the Nvidia Nsight System tool for asynchronous and sequential execution of reconstruction with TomocuPy. Reconstruction
was performed for a 2048 � 2048 � 2048 dataset with the log-polar-based method and FP32 arithmetic.



tomocupy recon � h. The description of some parameters

(�20% of the full list) looks as follows:

A general reconstruction procedure consists of two

steps: (1) reconstruction of one slice for different

rotation centers and saving reconstructed tiff files with

names corresponding to these centers (parameter

�� reconstruction� type try), and (2) full

reconstruction with a selected rotation center

(�� reconstruction� type full). To select the rota-

tion center (parameter �� rotation� axis), users

open all files generated in step (1) and select the

center by scrolling through different tiff files. TomocuPy

also provides an automatic center search option

(�� rotation � axis� auto auto) by using the SIFT

algorithm (Lowe, 1999) to find shifts between 0 and (flipped)

180� projections.

A command-line interface for TomocuPy was developed

to assure compatibility with the command-line interface

TomoPy-cli (https://tomopycli.readthedocs.io) for CPU-based

reconstruction. TomoPy-cli uses the TomoPy package

(Gürsoy et al., 2014) as a backend and implements an

efficient workflow for processing tomographic data files (tiff,

HDF5) from storage drives. Both packages, TomocuPy and

TomoPy-cli, have the same syntax for passing parameters.

They also provide the same names for most of the

parameters, except method-specific parameters such as

�� dtype; �� max� read� threads, etc. Likewise, the

input/output format file names are identical. It is therefore not

complicated to switch between two packages and compare

performance and quality of reconstruction results.

It is important to note that a multi-GPU version of tomo-

graphic reconstruction is straightforward to implement

because in the parallel beam geometry reconstruction is

done independently for different slices through the volume.

TomocuPy provides parameters �� start � row and

�� end� row for specifying the range of slices

for reconstruction, therefore multi-GPU reconstruction can be

performed, for instance, by setting the environment variable

CUDA VISIBLE DEVICES associated with the GPU number

and running daemon processes in bash for each subset

of slices,

Sincetheprocessesareindependent,thetotalperformancewillbe limitedonlybythestorageandsystembusspeedfordatatransfers.

3. Performance and accuracy analysis

To check the reconstruction quality that the TomocuPy

package demonstrates when processing experimental datasets,

we collected tomographic projections for a sample consisting

of 20–40 mm glass beads packed in a kapton tube with 4 mm

diameter. The measurements were performed at the bending-

magnet micro-CT beamline 2-BM (Nikitin et al., 2022) of the

Advanced Photon Source. The beamline was adjusted for

using pink beam (polychromatic X-ray beam reflected from a

grazing mirror) cutting energies higher than 30 keV, and with

additional 6 mm glass filtering of low energies. Projections

were acquired by a CMOS detector Oryx 5.0 MP Mono

10 GigE, 2448 � 2048 chip size, 3.45 mm pixel size, made by

Teledyne FLIR LLC. The detector used a 2� magnification

infinity-corrected objective by Mitutoyo resulting in 1.725 mm

pixel size. The lens was focused to a 50 mm Crytur LuAG:Ce

scintillator converting X-rays to visible light.

Tomographic projections were acquired in fly scanning

mode, while the sample was continuously rotated for a 180�

interval. In total, 2048 projections of size 2048 � 2048

(cropped field of view for the detector) were collected with

0.05 s exposure time per projection, yielding 1.7 min total

acquisition time. The reconstruction procedure was performed

by using three reconstruction algorithms implemented in

TomocuPy, and by using the Gridrec method from TomoPy

(with the TomoPy-cli interface for data pre-processing and

transfers):

(1) FourierRec – Fourier-based method with exponential-

function interpolation in the frequency domain (Beylkin,

1998), computational complexity OðN 3 log NÞ .

(2) LpRec – log-polar-based method with cubic interpola-

tion in the space domain (Andersson et al., 2016), computa-

tional complexity OðN 3 log NÞ .

(3) LineRec – direct discretization of the line integral with

linear interpolation for computing backprojection, computa-

tional complexity OðN4Þ .
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(4) Gridrec – TomoPy implementation of the Fourier-based

method (Dowd et al., 1999), computational complexity

OðN 3 log NÞ .

Here, the computational complexity is calculated assuming

the number of projection angles and the object size in each

dimension are of the order of N. All methods employed the

commonly used Parzen filter for implementing filtered back-

projection.

Figure 3 presents a comparison for reconstructions using

TomocuPy (FourierRec, LpRec, LineRec) with 32- and 16-bit

floating-point arithmetic. Each image shows one reconstructed

slice using different methods, together with insets showing

10� zoom-in to the region marked with the black rectangle.

Visually, reconstructions for FP32 and FP16 look the same.

The right-hand part of the figure shows the difference between

them, i.e. the calculated structural similarity index (SSIM)

(Wang et al., 2004), quantifying the image quality degradation.

SSIM is higher than 0.93 for all methods, which confirms

the high quality of the FP16 results. Note that the data were

collected in 12-bit precision, i.e. in maximum precision for

most of the tomographic detectors used in fast imaging. For

additional confirmation, we checked the accuracy with 16-bit

synthetic Shepp–Logan phantom datasets generated as

described in Section 7 of Andersson et al. (2016). The results

confirmed that the error of the FP16 computations is negli-

gible compared with those of FP32. We can therefore conclude

that 16-bit arithmetic is sufficient for processing tomographic

data, and all reconstructed volumes can be stored using twice

lower amounts of memory.

As a second quality test, we compared TomocuPy recon-

structions with those produced by the Gridrec method

implemented in TomoPy. Gridrec is a Fourier-based method,

i.e. uses the Fourier-slice theorem and fast evaluation of

Fourier transforms on unequally spaced grids. The difference

with its TomocuPy equivalent, called FourierRec, is in the

interpolation kernels used for data re-gridding in the

frequency domain, and oversampling factors for frequencies.

TomoPy implementation of Gridrec does not include over-

sampling, therefore regular reconstruction contains phase

wrapping artifacts. In order to minimize these artifacts, addi-

tional padding of sinograms is typically performed before

the filtered backprojection operation (Marone & Stampanoni,

2012). FourierRec includes oversampling by a factor of two

and accuracy controls in computing the backprojection inte-

gral. A detailed accuracy analysis for evaluating back-

projection with the Fourier and log-polar-based methods for

the Shepp–Logan phantom sample is given by Andersson et al.

(2016). In the paper, filtered versions of the Shepp–Logan

phantom, as well as corresponding projection data, are

computed analytically and therefore directly used for evalu-

ating the backprojection error for different methods. Based on

the fact that the FourierRec method is the method with the

highest accuracy in computing backprojection [based on the

accuracy tests from Andersson et al. (2016)], we will present

results for other methods in comparison with FourierRec.

Additionally, all reconstruction methods implemented in

TomocuPy involve data padding for the filtering operation,

which allows for suppressing artifacts when processing

samples not fitting into the detector

field of view.

In Fig. 4(a) we show the difference

in reconstructions between Gridrec

from TomoPy and FourierRec from

TomocuPy. One can see that the

regular TomoPy Gridrec reconstruc-

tion (top row) has errors in the low-

frequency components, visible as

amplitude changes in the regions close

to the borders. SSIM is relatively low

(0.731). In turn, reconstruction with

additional sinogram padding (bottom

row) does not have visually observed

amplitude changes; however, the

difference with TomocuPy FourierRec

still highlights errors at low frequen-

cies. Despite the errors at low

frequencies, TomoPy is still commonly

used for reconstructing tomographic

data because information given by

high frequencies (small features) is

more important in several applications,

and it is accurately recovered with

SSIM = 0.915. Note again that the

accuracy of the methods implemented

in TomocuPy was checked using

analytical expressions for the Shepp–

research papers

J. Synchrotron Rad. (2023). 30, 179–191 Viktor Nikitin � TomocuPy 185

Figure 3
Comparison of micro glass beads reconstructions for 16- and 32-bit floating-point precision
arithmetic. Inset plots show 10� zooming to the region marked by the black square. The color bar
range for the difference plot is ten times smaller than for reconstructions.



Logan phantom and its projection data

(Andersson et al., 2016).

In Fig. 4(b) we provide the difference

images between LpRec and FourierRec

(top) and between LineRec and

FourierRec (bottom). One can observe

a very high accuracy of the LpRec

method where cubic interpolations to

and from log-polar coordinates are

carried out in the image domain. The

LineRec method is implemented with

linear interpolation in the image domain, thus errors in high-

frequency components are clearly visible. The SSIMs for these

two methods are 0.998 and 0.812, respectively.

For the performance analysis, the TomocuPy package was

tested using synthetic HDF5 datasets of different sizes.

Synthetic datasets were generated for N 16-bit tomographic

projections with N � N detector sizes, where N ranges from

512 to 16384. Reconstructed volumes (N � N � N) were

obtained as sets of tiff files in 16-bit and 32-bit precision. Note

that the selected projection data sizes do not satisfy the

Crowther sampling criterion stating that the number of angles

should be ð�=2ÞN ’ (3/2)N (Crowther et al., 1970). In

tomographic experiments this criterion is typically relaxed,

and reconstruction results with acceptable quality are

demonstrated for a significantly lower number of angles,

e.g. equal to N or (3/4)N.

For completeness, we also analyzed the performance of the

TomoPy-cli package, where all pre-processing steps and the

Gridrec reconstruction were accelerated using multi-threaded

CPU functions and the Intel Math Kernel Library. Recall that

both TomoPy-cli and TomocuPy command-line interfaces

have almost the same set of parameters and in most cases can

be easily interchanged.

Performance tests were carried out on a machine with Intel

Xeon Gold 6326 CPU @ 2.90 GHz, 1 TB DDR4 3200 memory,

one Nvidia Tesla A100 with 40 GB memory, and Intel SSD

D7-P5510 Series PCIe 4.0 NVMe disks of total capacity 84 TB.

Installed software included Python 3.9, CuPy 10.4.0, Nvidia

CUDA toolkit 11.6, and Intel Math Kernel Library Version

2022.1 (only for fast CPU-based computations in TomoPy).

Table 1 shows the dataset dimensions used to test the

performance of TomocuPy methods (FourierRec, LpRec,

LineRec) and the CPU-based TomoPy Gridrec.

Table 2 shows the total time to reconstruct the test datasets

listed in Table 1 using TomocuPy’s FourierRec and LpRec

methods with FP16 and FP32 precision, TomocuPy’s LineRec

with FP32 precision, as well as results for the TomoPy-cli

package where all pre-processing steps and Gridrec method

for reconstruction are executed in FP32 precision.

There are several observations from Table 2. First, all

methods allow working with very large data sizes (up to

several TB on SSD), which is useful for processing data from

the detectors with large sensors or from mosaic tomographic

scans.

Second, we observe that FP16 computations not only

reduce data sizes but also accelerate the reconstruction step by
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Table 1
Dataset dimensions used to test the performance of TomocuPy methods (FourierRec, LpRec,
LineRec) and TomoPy Gridrec.

Test dataset 1 2 3 4 5 6

Size in each
dimension, N

512 1024 2048 4096 8192 16 384

Raw data size
on SSD, 8-bit

128 MB 1 GB 8 GB 64 GB 512 GB 4 TB

Reconstruction
size on SSD,
16 (32)-bit

256 (512) MB 2 (4) GB 16 (32) GB 128 (256) GB 1 (2) TB 8 (16) TB

Figure 4
Comparison reconstruction results in 32-bit floating-point precision: (a) for TomocuPy FourierRec and TomoPy Gridrec (with and without padding of
sinograms) methods, and (b) between TomocuPy FourierRec, LpRec and LineRec. Inset plots show 10� zooming to the region marked by the black
square. The color bar range for the difference plots is ten times smaller than for reconstruction.



approximately 10% and 30% for LpRec

and FourierRec, respectively. Double

memory size reduction allowed proces-

sing data for N = 16384, which was not

possible for 32-bit precision due to the

GPU memory limit. We think that the

difference between acceleration factors

for the two methods (10% and 30%) is

caused by the implementation of cubic

B-spline interpolation procedures in the

log-polar-based method [see Andersson

et al. (2016) for details]. Hard-wired

linear interpolation is implemented in

GPU texture memory and works with

lower than 32-bit precision due to the

texture reading access organization. As

a result, the performance of read/write

texture access with interpolation might

not be significantly different for 16- and

32-bit precision.

Third, the table shows that for large

data sizes the fastest TomocuPy method

(LpRec) outperforms the CPU-based

TomoPy implementation of Gridrec by

a factor of 33 and 29 for 16- and 32-bit

precision, respectively. It has already

been demonstrated that GPU is more

efficient than CPU for tomographic

data reconstruction [see Table 1 of Andersson et al.

(2016)]. However, additional time for CPU–GPU data

transfers and read/write operations with storage drives

concealed this efficiency. With the asynchronous execution

proposed in this work, the benefits of using GPU became

clearly visible.

Finally, it is important to note that the computational

complexity of algorithms is crucial in accelerating recon-

struction algorithms. The computational complexity of all

algorithms presented in Table 2 is OðN 3 log NÞ, except

for LineRec that has complexity O(N 4). Although LineRec

is also optimized and works via asynchronous execution,

its reconstruction time for large data sizes is higher than

that for the CPU-based TomoPy reconstruction. We expect

to see a similar performance behavior when working with

other GPU-based implementations, such as the ASTRA

Toolbox wrapper inside TomoPy (Pelt et al., 2016) or the

UFO package (Vogelgesang et al., 2016), where the back-

projection method has computational complexity of

OðN 4Þ. With such complexity, the total reconstruction time

for large data volumes will be mostly estimated by the

GPU processing time, since the time for all data transfers

increases linearly with data sizes. More accuracy and perfor-

mance comparisons between the Fourier-based, log-polar,

ASTRA Toolbox and other methods are given by Andersson

et al. (2016).

In the previous section, we mentioned that multi-GPU

reconstruction can be performed by setting the environment

variable CUDA VISIBLE DEVICES associated with the GPU

number and running daemon processes in bash for subsets of

slices. For demonstration, we executed reconstruction on one

node of the Polaris (https://www.alcf.anl.gov/polaris) super-

computer of the Argonne Leadership Computing Facility.

Compared with the workstation used for preparing Table 1,

a Polaris node is equipped with a more powerful processor

(AMD EPYC Milan series) and four Tesla A100 GPUs with

the SXM connection interface (not PCI Express) and having

high-speed HBM memory architecture. The storage is also

based on NVMe PCIe v4 SSDs. From Table 3 one can see

that time scaling with increasing number of GPUs is almost

linear for the FourierRec method. In turn, the LpRec method

demonstrates an overhead when the number of GPUs is

increased from 2 to 4 (e.g. 1:9 � 102 s versus 1:3 � 102 s for

test dataset 5). We explain this overhead by the fact that GPU

computations for LpRec are faster than for FourierRec and

thus time for data management becomes more significant.

Indeed, in this case four processes associated with GPUs

compete with each other for the storage and system bus used

for data transfers.

To provide additional performance comparison that could

be relevant for the reader, in Table 4 we report reconstruction

times on a regular workstation equipped with one NVidia

Quadro RTX 4000 GPU and an NVMe SSD connected via

PCI Express v3.0. This workstation is less expensive and

therefore affordable for most tomographic beamline users.

The table shows that such a workstation still demonstrates

favorable performance results when processing tomographic

data.
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Table 3
Total time to reconstruct test datasets 5 (N = 8192) and 6 (N = 16384) by using one node of the
Polaris supercomputer (four Tesla A100 GPUs with HBM memory, storage consisting of NVMe
PCIe v4 SSDs).

Reconstruction parameters are the same as in Table 2.

Test dataset 5 6

Number of GPUs 1 2 4 1 2 4

FourierRec, 16-bit 6:2�102 s 3:1�102 s 1:6�102 s 5:7�103 s 3:0�103 s 1:6�103 s
LpRec, 16-bit 3:6�102 s 1:9�102 s 1:3�102 s 3:7�103 s 1:9�103 s 1:1�103 s

Table 2
Total time to reconstruct the datasets listed in Table 1 using TomocuPy’s FourierRec and LpRec
methods with FP16 and FP32 precision, TomocuPy’s LineRec with FP32 precision, and the
TomoPy-cli package where all pre-processing steps and the Gridrec method for reconstruction are
executed in FP32 precision.

Raw data (16-bit) and reconstructed volumes (16- or 32-bit) both have sizes N � N � N, assuming the
number of projection angles is equal to N. Reconstruction time includes all parts of the processing pipeline
(reading HDF5 data chunks from NVMe SSD, writing reconstructed tiff files to NVMe SSD, CPU-GPU
transfers, and all CPU/GPU computations).

Test dataset 1 2 3 4 5 6

FourierRec, 16-bit 4:2�10�1 s 1:7�100 s 1:1�101 s 8:2�101 s 6:8�102 s 6:7�103 s
FourierRec, 32-bit 6:3�10�1 s 2:4�100 s 1:5�101 s 1:2�102 s 9:8�102 s –
LpRec, 16-bit 3:1�10�1 s 1:1�100 s 6:4�100 s 5:2�101 s 4:9�102 s 5:2�103 s
LpRec, 32-bit 4:3�10�1 s 1:4�100 s 7:3�100 s 5:9�101 s 5:5�102 s –
LineRec 6:5�10�1 s 5:5�100 s 8:0�101 s 1:3�103 s 2:1�104 s –
TomoPy Gridrec, 32-bit 3:7�100 s 1:5�101 s 1:4�102 s 1:7�103 s 1:6�104 s 1:7�105 s†

† Estimated by using a lower number of chunks.



4. Dynamic tomography experiment with steering

To briefly demonstrate the efficacy of the TomocuPy package

for processing data from a dynamic experiment with steering,

we considered an in situ multi-resolution study of gas-hydrate

formation inside porous media. The setup of the experiment

has been given by Nikitin et al. (2020, 2021); multi-resolution

scanning of gas-hydrates with an automatic lens-changing

mechanism of the Optique Peter system (Optique-Peter, 2022)

is described by Nikitin et al. (2022).

The whole sample was represented as a cylinder with height

2 cm and diameter 0.5 cm. For low-resolution scanning of the

middle part of the sample, 1200 projections were acquired with

0.04 s exposure time per projection, which together with dark/

flat-field acquisition yielded 50 s per scan. High-resolution

scans with a 5� lens were acquired with 1800 angles per scan

and 0.15 s exposure time. The reconstruction procedure

involved dark/flat-field correction, ring removal, taking the

negative logarithm, and filtered backprojection by the log-

polar-based method. Additional phase-retrieval filtering

(Paganin et al., 2002) was applied for processing high-resolu-

tion data to enhance the gas-hydrate contrast in local tomo-

graphy imaging.

For the steering demonstration, we monitored the gas-

hydrate formation process in low spatial resolution (1.1�

lens), detected regions with fast water flows occurring spon-

taneously, and automatically zoomed-in to these regions for

higher-resolution (5� lens) scanning. Such automatic steering

allowed us to capture the initiation and evolution of the

gas-hydrate growth process inside the pore initially filled

with water.

The detection of regions with fast water flows was carried

out after reconstructing full data volumes with TomocuPy

and comparing them with those from the previous sample

state by taking the element-wise difference. Reconstruction

and region-of-interest detection took approximately 12 s,

which is much less than the total scan time (50 s). Therefore

the steering engine had sufficient time to select the appro-

priate region for high-resolution scanning with the 5� lens.

Figs. 5(a) and 5(b) show slices through reconstructed volumes

at low resolution for the sample state before and after water

redistribution. In this figure, bright color corresponds to sand

grains and water solution, and dark gray/black to methane gas.

The region with water outflow is marked by white arrows.

Immediately after the low-resolution scan, this region was

detected and scanned at high resolution [Fig. 5(c)], where the

hydrate structure formed on the water–gas interface can be

observed in light gray color. The region was further continu-

ously scanned until the final state (the end of experiment time)

shown in Fig. 5(d).

In Table 5 we provide a part of the timeline for the gas-

hydrate formation experiment with steering. Note that some

actions, such as scanning for one state and reconstruction for

another, are overlapped in time. Although this study is far

from real time, it still demonstrates an example of automatic

steering implementation. This dynamic study can be poten-

tially accelerated. First, one can switch to fast data acquisition

(e.g. with pink beam). Second, data transfers to the processing

machine can be avoided by broadcasting data directly to the

CPU RAM or GPU memory. Third, TomocuPy reconstruc-

research papers

188 Viktor Nikitin � TomocuPy J. Synchrotron Rad. (2023). 30, 179–191

Table 5
Timeline for the gas-hydrate experiment with a steering demonstration.

Time Action

00:00 – 00:50 Low-resolution scan for State 0
00:50 – 00:53 State 0 data transfer to the processing machine
00:50 – 01:40 Low-resolution scan for State 1
00:53 – 01:01 Reconstruction for State 0
01:40 – 01:43 State 1 data transfer to the processing machine
01:40 – 01:55 Next low-resolution scan (not finished because the ROI

found earlier)
01:43 – 01:51 Reconstruction for State 1
01:51 – 01:55 Automatic selection of the ROI by taking the difference

between State 0 and State 1 reconstructions (both are in
CPU memory)

01:56 – 02:01 Automatic lens change with the Optique Peter system and
moving the sample stack motor to have the ROI in the
middle of the field of view

02:02 – 06:34 High-resolution scan for State 1
06:34 – 06:38 State 1 data transfer to the processing machine
06:38 – 10:10 High-resolution scan for State 2
06:34 – 06:45 Reconstruction for State 1, including phase retrieval
. . . . . .

Figure 5
Gas-hydrate formation experiment with automatic steering (zooming to a
region of interest with water outflow). (a, b) Sample states in low spatial
resolution before (State 0) and after (State 1) water redistribution,
respectively. (c) The region of interest in high spatial resolution after
water redistribution (State 1). (d) The region of interest with formed gas
hydrate (State 2). Bright color corresponds to sand grains and water
solution, dark gray/black to methane gas, and light gray in high-resolution
images to gas-hydrate.

Table 4
Total time to reconstruct test datasets 1–4 (N = 512 . . . 4096) by using a
regular workstation (one Quadro RTX 4000, 1 NVMe PCIe v3 SSD).

Reconstruction parameters are the same as in Table 2.

Test dataset 1 2 3 4

FourierRec, 16-bit 2:1�100 s 4:6�100 s 2:2�101 s 1:8�102 s
LpRec, 16-bit 2:3�100 s 4:6�100 s 1:9�101 s 1:5�102 s



tions can be performed with binning (Table 2 shows that

reconstruction of 10243 takes about 1 s). Finally, the motorized

lens-changing mechanism of the Optique Peter microscope

system can be replaced by a pneumatic mechanism, which will

spend less than a second switching the lens as opposed to 5 s

for the current motorized system.

5. Conclusions and outlook

By developing the TomocuPy package we have shown that full

tomography reconstruction from a standard detector (2k � 2k

sensor size), including all read/write operations with storage

drives and initialization functions, can be done in less than 7 s

on a single Nvidia Tesla A100 and NVMe PCIe v4 SSD. The

asynchronous data processing almost completely hides the

CPU–GPU data transfers time, and read/write operations with

storage drives are optimized for parallel operations. Addi-

tionally, switching to 16-bit floating-point arithmetic decreased

memory usage and processing times without significant

reduction in reconstruction quality. The package is publicly

available at https://readthedocs.org/projects/tomocupy.

Performance tests showed almost linear time scaling with

increasing data sizes up to 163842 slices. The linear scaling is

due to efficient TomocuPy algorithms with low computational

complexity (N 3 log N), which becomes beneficial when

working with modern detectors having large sensors. The full

processing time to reconstruct a 163843 volume on one GPU is

approximately 1.5 h, and can be decreased with adding GPUs

because tomography slices are processed independently. For

comparison, a CPU-based reconstruction with an Intel Xeon

Gold processor takes approximately 47 h, i.e. requires at least

33 computing nodes and a fast GPFS storage to demonstrate

the TomocuPy performance. Reconstruction on one node of

the Polaris supercomputer with four more powerful GPUs and

fast NVMe storage took about 20 min. We note that a Tesla

A100 (40 GB) has enough memory to process 163843. If GPU

memory is not enough, the TomocuPy reconstruction engine

automatically switches to using unified memory (Chien et al.,

2019) and processes data by automatically transferring data

parts to and from CPU RAM memory. However, since auto-

matic CPU–GPU data transfers with unified memory typically

show low performance, we still plan to optimize reconstruction

algorithms by also processing each slice by chunks asynchro-

nously. Specifically, we will optimize 2D FFTs and interpola-

tion functions in FourierRec (interpolation to a polar grid in

the frequency domain) and LpRec (interpolation to polar and

log-polar grids in the space domain). 2D FFTs can be repre-

sented as a combination of 1D FFTs and thus computed by

chunks on GPUs. Evaluation of interpolations to irregular

grids can be also done by splitting all grid points into chunks

that are independently processed by GPU. We expect that, by

using an optimized asynchronous pipeline implemented with

CUDA Streams, the overhead for CPU–GPU data transfers

will be negligible, which will allow us to process huge datasets

on GPUs in a reasonable time. Similar pipelines can be

constructed for chunked read/write operations with storage

drives if data do not fit into CPU RAM memory.

Fast 3D tomographic reconstruction with TomocuPy opens

new possibilities for automatic steering in situ experiments. As

a first application, we considered a geological experiment for

gas-hydrate formation in porous media, where the initiation of

the formation process after water redistribution was captured

at high resolution inside a large sample. As the next step, we

plan to conduct gas-hydrate experiments with varying cooling

temperature based on the sample state. It has been shown with

acoustic measurements that temperature cycles affect the

hydrate growth speed (Dugarov et al., 2019) and new tomo-

graphy measurements may provide more details about this

process. The steering mechanism could have a wide range of

applications not only in geosciences but also in materials

science, environmental science and medical research. We plan

to study the crack formation process inside different materials.

The crack will be initiated using a load cell while low-resolu-

tion projection data are continuously captured and recon-

structed. The deformed regions of interest will be measured

with high resolution to monitor the crack initiation in detail.

Additionally, we plan to vary pressure according to the sample

state obtained from reconstructions.

Although in this work we have demonstrated steering with

sub-minute temporal resolution, most of the listed applica-

tions require imaging with sub-second resolution and corre-

sponding sub-second reconstruction speeds. As Table 2 shows,

such reconstruction speeds with TomocuPy can already be

achieved for the data volumes that are smaller than 10243.

To steer most dynamic experiments there is no need for

data reconstruction at high resolution, which means that

TomocuPy can potentially be used with real-time dynamic

experiments where detector data are slightly cropped or

binned. However, the package needs a couple of adjustments

for that. First, we need to organize streaming data processing

as in Nikitin et al. (2022) where data are transferred directly

from the detector to the processing computer over the high-

speed network and where data capture to the storage drive is

performed on-demand. Second, 3D reconstructed volumes

will be generated by TomocuPy in real time and thus have

to be immediately analyzed (segmented, classified, etc.). We

envision that fast machine-learning-based techniques (prob-

ably running on an independent GPU) should optimize

data analysis and generate quick automatic feedback to the

acquisition system. For instance, Tekawade et al. (2022) have

recently shown an example of real-time tomographic data

analysis that can be adapted for different applications.

The TomocuPy package can be extended by adding new

processing and reconstruction methods. New methods imple-

mented with the Python NumPy library are directly adapted

for GPU computations by switching to the Python CuPy

library. Currently TomocuPy provides GPU implementations

only of the one-step filtered backprojection, which is

explained by the aim of having reconstructions as fast as

possible. Iterative reconstruction schemes are significantly

slower but they still can be added to process data more effi-

ciently. Iterative schemes, especially those where slices are not

reconstructed independently (e.g. 3D total variation regular-

ization), can be implemented more efficiently with asynchro-
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nous GPU reconstruction and CPU–GPU data transfers. The

same holds also for laminography reconstruction where data

chunks can be organized not only in data slices but also in

projections. If data volumes are too large then the asynchro-

nous pipeline should also include read/write operations with

the storage drive.

The TomocuPy package is in routine use at the micro-CT 2-

BM and nano-CT 32-ID beamlines. Because of its easy-to-use

command-line interface that has almost the same commands

as the one used by TomoPy, the package has quickly become

popular for beamline users. Data reconstruction for most

experiments is currently done during the experiment beam

time.
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