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Adaptive X-ray mirrors are being adopted on high-coherent-flux synchrotron

and X-ray free-electron laser beamlines where dynamic phase control and

aberration compensation are necessary to preserve wavefront quality from

source to sample, yet challenging to achieve. Additional difficulties arise from

the inability to continuously probe the wavefront in this context, which demands

methods of control that require little to no feedback. In this work, a data-driven

approach to the control of adaptive X-ray optics with piezo-bimorph actuators

is demonstrated. This approach approximates the non-linear system dynamics

with a discrete-time model using random mirror shapes and interferometric

measurements as training data. For mirrors of this type, prior states and voltage

inputs affect the shape-change trajectory, and therefore must be included in the

model. Without the need for assumed physical models of the mirror’s behavior,

the generality of the neural network structure accommodates drift, creep and

hysteresis, and enables a control algorithm that achieves shape control and

stability below 2 nm RMS. Using a prototype mirror and ex situ metrology, it is

shown that the accuracy of our trained model enables open-loop shape control

across a diverse set of states and that the control algorithm achieves shape error

magnitudes that fall within diffraction-limited performance.

1. Introduction

The next generation of light sources, including free-electron

lasers and diffraction-limited storage rings, will produce

X-ray beams of unprecedented brightness and coherent flux,

enabling fast experiments where wavefront phase information

will be used to study matter in exquisite detail.

Reflective X-ray optics (e.g. mirrors and gratings) are illu-

minated at glancing angles of incidence and their surface

shape tolerances are on the scale of nanometres. Achieving

high Strehl ratios from beamlines with several mirrors requires

that individual-mirror height errors be limited to the nano-

metre scale, depending on the wavelength (Shi et al., 2016). To

reach efficient diffraction-limited X-ray optical performance

in routine operation, it is necessary to correct residual aber-

rations arising from imperfect optical surfaces, misalignment,

thermo-mechanical deformations and dynamic mirror shape

deformations caused by time-varying power loads and beam

profiles (Sanchez del Rio et al., 2020; Cutler et al., 2020).

The development of X-ray adaptive optics started in the

mid-1990s (Susini et al., 1996). Over the last decade, significant

advances (Mimura et al., 2010; Sawhney et al., 2010) have

led to the commercial availability of piezo-bimorph mirrors

(Alcock et al., 2019a; Ichii et al., 2019) and their successful

deployment on several beamlines (Matsuyama et al., 2016;
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Sutter et al., 2019). A recent review by Cocco et al. (2022)

summarizes alternative approaches to deformable mirrors.

These mirrors have symmetrically placed bimorph elements

attached to silicon mirror substrates, which allow these

systems to maintain thermal stability while providing one-

dimensional shape actuation. Investigations of the mirrors’

linear response demonstrate that their shape along the

tangential (longitudinal) direction can be controlled to a

nanometre level in a predictive way (Vannoni et al., 2016;

Alcock et al., 2019a) as required for diffraction-limited

performance. Studies of the mirrors’ dynamic response show

that appreciable shape changes on the scale of 1 s are possible

(Alcock et al., 2019b), as well as precise actuation relying on

closed-loop feedback with accuracy better than 1 nm using

arrays of laser interferometers (Alcock et al., 2019c).

Measuring the performance of one such piezo-bimorph

mirror using X-ray light and a wavefront sensor, we have

observed time-dependent and history-dependent behaviors

that defy a simple linear response model. The use of piezo-

electric materials to induce deformation of relatively thick

substrates is associated with nonlinearities such as cross-talk

between actuators, creep and hysteresis (Alcock et al., 2015).

The nanometre-scale magnitudes of these effects are relevant

for our applications. Our work confronts the challenge of

controlling the mirror shape in the presence of dynamic

non-linear behavior. For soft X-ray applications, in particular,

wavefront monitoring interrupts the beam delivery. With the

increased ability to predict the temporal behavior following

actuation, fewer wavefront measurements are required to

achieve and maintain the desired shape, and systems progress

toward the goal of open loop operation.

Current approaches for in situ mirror shape control rely on

a linear model. Nonlinearities are usually compensated using

closed-loop feedback from an X-ray wavefront sensor

(Assoufid et al., 2016; Liu et al., 2018; de La Rochefoucauld et

al., 2018; Goldberg et al., 2021; Shi et al., 2020) or in situ

monitoring (Badami et al., 2019). In practice, beam pick-up for

feedback can be invasive or interrupting, and systems that can

operate in open-loop are desirable. Moreover, while linear

models may be adequate for small surface changes, they have

significant limitations for larger moves and fail to capture the

dynamic response at short (seconds) and long (minutes) time

scales. Comprehensive physical modeling of the mirror (e.g.

using finite-element analysis) is possible (Song et al., 2009;

Jiang et al., 2019), but it requires highly specific system char-

acterization, which cannot always be achieved in practice. In

recent years, similar complex systems such as the storage ring

itself are now using techniques derived from machine learning

to improve their stability (Leemann et al., 2019). Given their

success, we aim to apply similar data-driven techniques to

the operation of adaptive X-ray optics and circumvent the

limitations of linear methods.

2. Methods

In this paper we propose a two-part framework for the open-

loop operation of an X-ray deformable mirror, involving

(1) approximating the nonlinear system dynamics using a

feedforward neural network, and (2) control to a desired

surface shape using nonlinear quadratic cost regulation over a

finite time horizon. We developed and tested our approach

using an ex situ visible-light Fizeau interferometer to record

the behavior of an adaptive mirror driven through various

shape transitions. The test mirror is a PZT (lead zirconate

titanate)-glued bimorph mirror fabricated by JTEC

Corporation (see Appendix A.1 for details). Our methodology

is broadly applicable to X-ray or other optical systems utilizing

an adaptive element, independent of the optical configura-

tions and wavelength ranges.

2.1. Predictive modeling

We want to find a discrete time model for the nonlinear

dynamics of the bimorph mirror with the general form

stþ1 ¼ f st; st�1; st�2; vt; vt�1; vt�2; vt�3ð Þ; ð1Þ

where st and vt represent the mirror surface and voltage input

applied to each actuator at discrete times t, respectively. For a

fixed time step of �t, the model should predict the shape of the

mirror one time step in the future given its current shape,

current input voltage, and a finite history of shapes and inputs

[see Fig. 1(a)]. The number of past states and inputs was

chosen empirically based on observed performance, and our

time step of �t – 2.0 s was limited by interface latency with the

prototype mirror.
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Figure 1
Discretization and neural network architecture. (a) Our discrete-time
model aims to predict the shape of the mirror at a time �t in the future
(st+1) using a finite history of mirror shapes and voltages input to
actuators. Note that st�3 and vt+1 are not used in the prediction of st+1.
(b) Our learned system dynamics model consists of five fully connected
(FC) layers ([input dimension, output dimension]) followed by exponen-
tial linear unit (ELU) activation functions. Additionally, a skip
connection was introduced which greatly improved its ability to predict
when the mirror was at or close to rest.



We use a feedforward neural network (Bishop, 2006) as our

discrete-time forward model for the nonlinear dynamics of the

bimorph mirror, with five fully connected layers and expo-

nential linear unit activation. An additional skip (or shortcut)

connection was introduced due to their effectiveness in

modeling an identity mapping (Bishop, 2006; He et al., 2015);

in our case, this greatly improved the predictive performance

when the mirror was at or close to rest. The network archi-

tecture is shown in Fig. 1(b). The size of the input layer is

determined by the dimension of our surface representation,

the number of actuators being controlled and the amount

of history incorporated in making a prediction. Due to the

limited field-of-view (FOV) of the Fizeau interferometer being

used to measure the mirror surface, we restrict actuation and

analysis to the central 9 of 18 actuators. The mirror surface

within the FOV is parametrized by heights at 14 equidistant

points. A history of three discrete-time inputs and measure-

ments, in addition to the input at the current time, are

concatenated and treated as the input to a neural network that

predicts the surface shape at the next time step.

To train our model, we collect a large ensemble of surface

profiles occurring with sequences of random applied voltage

inputs. The application of inputs and measurements of the

mirror surface are synchronized according to our discrete-time

model. In this study, the voltage input to an individual actuator

is limited to a range of [�100 V, 100 V].

The surface measurements are acquired using a 4D Tech-

nology FizCam Fizeau interferometer, shown in Fig. 2.

Appendix A.1 contains more details about the setup. To

minimize the contribution of small vibrations, piston and tilt

terms are removed from the 2D surface measurements. The

surface is averaged in the narrow sagittal direction to produce

1D curves along the tangential dimension of actuation. The

sequential data are divided into sub-sequences which consti-

tute input–output training examples for the supervised

learning of our dynamics model. A total of 5964 examples

were collected and used to train the neural network. A

detailed description of the data acquisition and learning

process can be found in Appendix A.2.

2.2. Control

Once the parameters of the nonlinear system dynamics

model, f (�), are learned, the model is used to determine a

sequence of voltage inputs that will drive the mirror from a

measured initial state to a desired final state in a given finite

number of steps. Our algorithm solves a quadratic cost func-

tion, similar to the iterative linear quadratic regulator (Li &

Todorov, 2004), that penalizes state error at each simulated

intermediate step. However, rather than linearizing the system

dynamics around the initial state and finding an analytic

solution to the reduced problem, we directly minimize the

non-convex objective function using the Adam algorithm

(Kingma & Ba, 2014). While this does not theoretically

guarantee optimality of the converged solution, the observed

performance meets our specifications in a majority of

experiments.

The cost function is given by

fvg� ¼ argmin
fvg

XN

k¼ 1

wk ksk � s�k2
2; ð2Þ

subject to

sk ¼ f ðsk�1; sk�2; sk�3; vk�1; vk�2; vk�3; vk�4Þ

for k 2 f1; 2; . . . Ng; ð3Þ

with initial conditions

sk ¼ s0 8 k � 0; vk ¼ v�1 8 k � �1: ð4Þ

In this equation, N is the total number of computed steps, {v}

represents the set of inputs {v0, v1, . . . vN�1}, s� is the desired

mirror shape, and the wk coefficients apply a weighted penalty

to the shape error at each time step. For the experiments

discussed in this paper, we assume the first input, v0, is applied

at time step 0, and that the mirror begins at rest with some

arbitrary shape. Additionally, we use constant weights wk in

these experiments.

3. Results and discussion

To test the predictive performance of our learned system

dynamics model, we collect a sequential test dataset similar to

our training data. The voltages applied to the mirror actuators

are updated and measurements of the surface are acquired at
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Figure 2
Experimental setup. (a) Mirror surface profiling with a Fizeau
interferometer (� = 658 nm) mounted vertically above the bimorph
mirror. (b) An example interferogram. Four such measurements are
acquired simultaneously and used to recover a surface profile, which is
cropped to the active area of the mirror.



fixed time intervals (2, 12, 30 s). The learned model is applied

to sub-sequences of these data, and the prediction is compared

with the next measurement. Our test dataset consists of a total

of 497 input–output examples. Here we evaluate the perfor-

mance of our model when used with different time intervals,

and in comparison with a linear-response model.

3.1. Comparison with a linear-response model

We compare the performance of our model with that of a

linear prediction based on ‘influence functions’ (also called

‘actuator response functions’ or ‘characteristic functions’)

(Hignette et al., 1997; Goldberg & Yashchuk, 2016; Merthe et

al., 2012). In that approach, voltage is supplied to individual

actuators in isolation and the resulting surface is measured

once the mirror has settled. The set of shape measurements is

treated as a basis, and a linear model predicts the resultant

shape from an arbitrary set of inputs. To achieve a desired

shape, the actuation matrix is then inverted using least-squares

in order to obtain the corresponding input voltages. In prac-

tice, a linear model such as this is applied iteratively, with

measurement at each step, to overcome discrepancies with

the real-world response and converge to the target shape in

several steps; this is known as feedback control.

Some examples of shape prediction are demonstrated in

Fig. 3(a), and the corresponding prediction errors for neural

network (our method) and linear prediction are labeled. The

aggregate performance over the entire test dataset is shown in

Fig. 3(b). Overall, the mean prediction error for our method

was 1.26 nm root mean square (RMS), compared with 4.20 nm

RMS for linear prediction. Our neural network model

demonstrated lower prediction error than the linear model in

460/497 test examples. The cases for which linear prediction

demonstrated lower prediction error generally involved very

small changes in input voltage.

It is well known that the linear model defined as a basis of

influence functions is more appropriate for small changes in

surface shape than for large changes. Moreover, since the

influence functions are measured after waiting for the mirror

to settle, they fail to capture dynamics over small time scales.

In Fig. 3(c), the prediction errors for both models are plotted

against the magnitude of observed shape change for a variety

of time scales.

3.2. Varying the time interval

While the training data are acquired using a fixed 2 s time

interval, we can apply the forward prediction process to a
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Figure 3
Performance of predictive model on test data. (a) Predicted curves from the neural network and linear models for three examples in the test dataset.
(b) Predictive performance of neural network and linear models across a full test dataset. (c) Prediction errors of neural network and linear models
plotted against the observed RMS change in surface shape for three different time scales. For time scales larger than 2 s, the neural network model is
iteratively applied.



variety of time intervals, and compare with linear modeling.

For all time intervals tested, the linear prediction is computed

using a basis of influence functions measured at steady state.

Testing the model’s predicted system response with a 2 s time

interval gives the highest measured accuracy because the test

data are acquired through a procedure identical to that of the

training data. At this short time scale, errors from the linear

model are essentially random since transient effects are poorly

characterized by influence functions measured at steady state.

For longer time scales, we apply our learned model itera-

tively, using predicted intermediate surface shapes as input for

subsequent steps toward the goal shape. For 12 s intervals (six

prediction steps), we see that the neural network prediction

performs worse on a somewhat sparse set of examples, and

linear prediction begins to exhibit a linear correlation between

the shape change observed (requested) and error. For 30 s

intervals (15 prediction steps), neural network predictive

performance degrades over a larger set of examples, and

linear prediction maintains its linear correlation, albeit with

lesser slope.

Unsurprisingly, the tests show that the predictive perfor-

mance of our neural network model is best at the time interval

used to acquire the training data; its performance degrades

when used at longer time intervals. This is likely due to the

much more limited representation of repeated inputs in our

training data set. As shown in Appendix A.2, the training data

set extracted from measurements with repeated inputs (no

voltage input change) is only one-third of the total training

data set. Also, the maximum number of consecutive

measurements with repeating voltage inputs is only five,

corresponding to a maximum of 10 s mirror relaxation without

varying voltages. While the network effectively predicts shape

changes when all voltage inputs are updated, more data are

required to inform the network of convergence behaviors at

different states when the inputs are held constant. We believe

this can be improved with the acquisition of more finely

sampled data. The results also demonstrate that linear-model

prediction can be effective for small shape changes (<20 nm

RMS) over long time scales. However, linear prediction,

without repeated measurement and iteration, may be an

inappropriate choice for applications where speed and open-

loop operation are important.

3.3. Directed shape control

In practice, mirror shape control will be used to compensate

phase errors in the wavefront of a focused beam. Therefore,

it is of central importance to be able to direct the mirror to

achieve and hold arbitrary shapes within its capabilities.

As a demonstration, we test the ability of our control

algorithm to direct the mirror to a series of 50 random

prescribed shapes. For each target shape, an initial surface

measurement is acquired and used to generate a ten-step

sequence of voltage inputs, to achieve the shape and stabilize

the mirror. We allow 150 s to elapse between experiments so

that the initial conditions [equation (4)] are approximately

true.

The results of these experiments are shown in Fig. 4. A

selected sequence of transitions to three prescribed shapes

is shown in Fig. 4(a), where the measured surface profiles

(colored, dashed) closely approximate the desired shapes

(black, solid). Figure 4(b) shows the voltages applied to each

of the nine actuators over the ten steps that were generated by

the optimization algorithm.

We observe that these voltage sequences sometimes

demonstrate oscillatory behavior, suggesting that the model is

accommodating dynamic effects such as overshoot and creep.

In Fig. 4(c), we see that the algorithm drives the mirror close

to the goal after the first step, with the remaining nine steps

being used to maintain the position. Some overshoot may still

occur, as the error with respect to the prescribed shape is often

slightly larger after ten steps than after the first step. This

may be caused by a combination of the non-convexity of the

optimization problem and the lack of guaranteed optimality,

and by any residual errors in the predictive capability of our

learned system dynamics model. The former can be somewhat

addressed by changing the parameters of the Adam algorithm

(learning rate, iterations) or the weights wk in equation (2), or

by adding regularization to the objective function, e.g. pena-

lizing RMS differences between time-adjacent voltage inputs

or predictions (‘velocity’). Figure 4(d) shows the aggregate

performance of our control algorithm across the 50 test cases.

The mean RMS errors between the measured and prescribed

shapes are 1.70 nm after the first step and 1.91 nm after

ten steps.

Among the directed shape-control tests, we drove the

mirror to a set of cylindrical shapes with prescribed radii of

curvature from 2 km to 6 km. This emulates the case of an

adaptive mirror used to vary the focal distance, as in Sutter et

al. (2019). In our applications, we consider these to be rela-

tively large moves, with central surface height changes from

146.3 nm in the 6 km case to 429.0 nm in the 2 km case.

Test results are shown in Fig. 5. We observe that the mean

RMS errors between the measured and prescribed shapes are

1.44 nm after one step and 1.51 nm after ten steps.

4. Conclusion

We have shown that the combination of a data-driven model

for piezo-bimorph adaptive mirror shape dynamics and an

optimization-based control strategy was able to reduce resi-

dual mirror figure errors in open-loop operation below 2 nm

RMS, outperforming linear models and achieving the shape-

control accuracy required to achieve diffraction-limited

performance in the X-ray regime.

Our method effectively accounts for creep and hysteresis,

nonlinear properties that currently limit the performance

of such devices in open-loop operation. Accurate predictive

modeling to achieve stable arbitrary surface shapes is

essential for effective deployment on high-coherent-flux

X-ray beamlines where continuous feedback may be difficult

to implement.

This calibration method is simple to implement and easily

automated, requiring only a sequence of random shape
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commands and surface profile measurements. The data can be

collected ex situ, as presented in this paper, or even in situ with

a wavefront sensor, where the phase of the beam can be

mapped back into the mirror shape if required. The method is

also robust, providing accurate predictions and control across

the full range of operation of the mirror. Other types of

adaptive mirrors, such as resistive-element mirrors (Cocco et

al., 2020), can also be characterized with this technique.

The number of shape measurements required to build the

training dataset is larger than what is required to acquire the

characteristic functions in the linear model, but the training

data can be gathered during routine operation, over time.

There is some flexiblity around the structure of the neural

network itself (hyperparameters such as number of inputs,

layers), but the performance level we found is very close to the

noise level of our sensor, and needed no further refinement

despite being rather economical.

APPENDIX A
A1. Experimental setup

The bimorph mirror was fabricated by JTEC and measured

with a metrology setup designed in-house at the Advanced

Photon Source, using a FizCam 2000 Fizeau interferometer

(4D Technology) with 100 mm aperture. The interferometer is

oriented vertically to measure mirrors with the optical surface
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Figure 5
Controlling the mirror to cylindrical surface shapes. (a) Measurements of
the mirror surface taken after the ten-step control algorithm is used to
achieve cylindrical surface shapes. The piston was added to desired and
measures surface profiles for visualization only. (b) Total shape error in
nm RMS over ten time steps.

Figure 4
Controlling the mirror to desired surface shapes. (a) Measurements of
the mirror surface taken over a sequence of three prescribed shapes.
(b) Voltages applied to actuators over ten solved time steps for the three
shape transitions. (c) Total shape error in nm RMS over ten time steps.
(d) Aggregate performance of the control algorithm for the full test set
of 50 prescribed random shapes.



facing upwards. The setup includes a manual tip-tilt stage

for high-precision mirror alignment. A Lexan enclosure is

constructed to enclose the X-ray mirror and the transmission

flat of the interferometer to avoid air turbulence and reduce

temperature fluctuation.

The bimorph mirror substrate (enclosed in the mirror box

as shown in Fig. 6) has an overall dimension of 160 mm

(length)� 50 mm (width)� 10 mm (thickness). The Pt-coated

optical surface is 150 mm (length) � 8 mm (width), centered

on the top side of the mirror. There are two piezo strips (one

strip is visible in Fig. 6), each with 18 separate electrodes, that

sandwich the optical surface. The two electrodes at a corre-

sponding position of the two strips comprise one electrode

channel (referred to as the actuator in this paper), which

locally perturbs the optical surface. There are a total of 18 such

channels (CH1 to CH18). There are two additional piezo strips

glued to the bottom surface of the mirror, which act as a single

electrode channel (CH20) that globally perturbs the optical

surface. The grounded channel (CH19) is on the back side of

all piezo strips and adjacent to the mirror surface. The resting

state of the mirror is defined as when all 20 channels are at the

same voltage. In this work, we kept CH19 and CH20 at the

fixed voltage of 500 Vand only varied the top-surface channels

in a relative range of [�100 V, 100 V] around their nominal

value of 500 V. Since the Fizeau interferometer aperture

(100 mm) is smaller than the mirror length, we only used the

nine central channels (CH5 to CH13).

A2. Data acquisition and learning process

The data used to train our neural network model were

acquired by applying voltages to the central nine mirror

actuators and recording the resulting mirror shapes after a

fixed, 2 s, time interval. An acquisition consists of ten images

captured with an exposure time of 0.126 ms and averaged

together. Acquisitions are triggered such that this exposure

time does not contribute delays to the 2 s interval. The

voltages are uniform random values in the range

[�100 V, 100 V] and are rounded to the nearest tenth of a volt.

A time interval of 2 s between the application of voltage

inputs and surface measurement is maintained throughout the

acquisition of training data.

We acquire eight separate sequences of surface measure-

ments, starting with an initial measurement followed by 500

voltage changes. We acquire an additional four sequences of

501 measurements in which voltage changes are held for five

time steps (i.e. the same voltage input is applied for five

consecutive measurements). We believe these data are vital

for informing the model of system convergence behavior.

Since each training example requires four sequential

measurements (one state to be predicted from three inputs),

we can extract a maximum of 497 training examples from each

of the 501-measurement sequences. In total, the 12 sequences

give 5964 training examples.

We used the PyTorch library as the machine learning

framework. To train our dynamics model, we perform a 15-

fold cross validation on the training dataset with 3000 itera-

tions of the Adam algorithm per fold. To test the model’s

performance, we acquire another independent sequence of

measurements and divide into sub-sequences, as described

above, resulting in 497 test examples.
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