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Double-crystal monochromators (DCMs) are one of the most critical optical

devices in beamlines at synchrotron sources, directly affecting the quality of the

beam energy and position. As the performance of synchrotron light sources

continues to improve, higher demands are placed on the stability of DCMs.

This paper proposes a novel adaptive vibration control method combining

variational modal decomposition (VMD) and filter-x normalized least mean

squares (FxNLMS), ensuring DCM stability under random engineering

disturbance. Firstly, the sample entropy of the vibration signal is selected as

the fitness function, and the number of modal components k and the penalty

factor � are optimized by a genetic algorithm. Subsequently, the vibration signal

is decomposed into band frequencies that do not overlap with each other.

Eventually, each band signal is individually governed by the FxNLMS

controller. Numerical results have demonstrated that the proposed adaptive

vibration control method has high convergence accuracy and excellent vibration

suppression performance. Furthermore, the effectiveness of the vibration

control method has been verified with actual measured vibration signals of

the DCM.

1. Introduction

Nowadays, the large scientific research platform based on

synchrotron radiation provides advanced experimental tech-

nology tools for many disciplines, such as life science, physics,

chemistry, biology, medicine, materials, archeology, etc. (Jin et

al., 2017). Double-crystal monochromators (DCMs) are one

of the key optical instruments on hard X-ray beamlines at

synchrotron radiation facilities, separating the hard X-rays

from the synchrotron radiation source. As the performance of

synchrotron radiation sources significantly increases, higher

requirements are placed on the stability of DCMs. Using

traditional passive vibration control techniques, such as opti-

mized structures, elastic damping and vibration-absorbing

materials, is unlikely to meet the future requirements of

DCMs (Yamazaki et al., 2013; Baker et al., 2013; Wu et al.,

2021a,b). Therefore, it is necessary to design and implement

efficient active vibration control techniques to further improve

the stability performance of DCMs.

The least-mean-square (LMS) algorithm is widely used in

active vibration control (Sun et al., 2007), and requires no

precise mathematical model of the controlled object and can

adjust the filter parameters adaptively based on system input

and output response; it also has a simple structure and can be

easily implemented, and has strong approximation capability
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for linear systems. However, when the input vector is rela-

tively large, the LMS algorithm encounters the problem of

noise amplification. The normalized LMS (NLMS) algorithm

conquers this problem by normalizing the adaptive step size.

The filter-x normalized least-mean-square (FxNLMS) algo-

rithm based on adaptive filtering technology has been applied

in the field of active vibration control due to its excellent

convergence accuracy, powerful adaptive capability and

robustness (Fallah & Moetakef-Imani, 2019; Yi et al., 2019).

The classical FxNLMS algorithm is illustrated in Fig. 1 The

computational equation of the FxNLMS algorithm is shown

in Table 1.

Empirical mode decomposition (EMD) is flawed by end

effects, modal aliasing and over-enveloping; the short-time

Fourier transform (STFT) processing signal cannot obtain

high time-frequency resolution in the meantime; the local

mean decomposition (LMD) also yields a false product

function component (Wu & Huang, 2009); Bao et al., 2020). To

solve the above problem, the variational modal decomposition

(VMD) algorithm was proposed by Dragomiretskiy & Zosso

(2014). VMD screens the intrinsic mode function (IMF)

components in the form of solving the optimal solution of the

variational problem (Dragomiretskiy & Zosso, 2014). This

method continuously iterates to search for the most suitable

solution and adaptively achieves effective signal decomposi-

tion. Constructing and solving the constrained variational

model to decompose the signal involves techniques such as the

Wiener filter, Hilbert transform and frequency mixing. It is

applied in mechanical fault diagnosis since it adopts a non-

recursive conceptual framework. For instance, Wang et al.

(2015) proposed a method to analyze faults by friction factor

and applied variational model decomposition analysis, which

is known to be more effective in diagnosis by comparison. Dey

et al. (2015) combined VMD and Teager energy operators for

fault diagnosis. The VMD algorithm makes the decomposition

results stable by constructing the variational problem.

However, VMD suffers from the deficiency that the decom-

position effect is strongly influenced by the number of modal

components k and the penalty factor � (Ram & Mohanty,

2017). When using the VMD method to process the vibration

signal, the values of the number of modal components k and

the penalty factor � are set empirically before the calculation.

Therefore, the combination of [k, �] parameters of VMD is

subject to artificial factors that can lead to over- or under-

decomposition of the decomposition results. The value of the

penalty factor � is important to ensure the accuracy of the

VMD algorithm when reconstructing the signal. If the initial

value of � is not set properly, the VMD algorithm will

decompose the overlapping modal signals or the center

frequency will be unstable, which may lead to incorrect

decomposition of the algorithm and failure to obtain optimal

resolution. Li et al. (2017) proposed an independent VMD

method that found optimal modes by peak search and simi-

larity principle. Wang et al. (2018) used the energy difference

of the decomposed signal as a criterion to determine the

preset modal parameters. The genetic algorithm (GA) is an

optimization algorithm that simulates natural biological

selection and genetic evolution. The algorithm consists of

three genetic operators: selection, crossover and mutation.

The GA can solve nonlinear problems quickly, efficiently and

rapidly on a global scale (Singh & Harshit, 2014). Bian (2017)

proposed a VMD method based on the GA to optimize the

number of modal components k and the penalty factor �.

Based on the above introduction, this paper proposes a

novel adaptive vibration control method based on VMD and

FxNLMS to ensure the stability of ultra-precision optical

instruments under random engineering disturbance. Since the

VMD algorithm has a better de-correlation capability, VMD

is implemented into the adaptive filtering algorithm. The

extraction properties of VMD coefficients are used to

decompose the input signal in the multi-scale space, reducing

the dynamic spectral range of the adaptive filter’s auto-

correlated array of input vectors. Consequently, the conver-

gence speed and stability of the FxNLMS algorithm are

improved. The primary process of this method is as follows:

firstly, VMD is proposed to decompose the vibration signals

into IMFs; then, the sample entropy of the vibration signal is

selected as the fitness function, and the number of IMFs and

penalty factor are optimized with GA; eventually, each IMF is

controlled individually by the FxNLMS controller. Simulation

results have demonstrated that the convergence accuracy and

vibration suppression performance of the proposed method is

much better than for the FxNLMS algorithm. Furthermore,

the effectiveness of the method was verified with actual

measured vibration signals.
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Figure 1
Block diagram of the FxNLMS algorithm.

Table 1
Computational expressions of the FxNLMS algorithm.

Interference signal x(n)
Primary path P(z)
Primary path response d(n) = pT(n) x(n)
Secondary path S(z)
Estimation of secondary path ŜS zð Þ
Finite impulse response filter W(z)
Filter output signal y(n) = wTx(n)
Anti-vibration signal y0(n) = sT(n) y(n)
Secondary path filtering signal x̂x

0
ðnÞ ¼ ŝs

T
ðnÞ xðnÞ

Residual signal update function
(Madisetti, 2009)

e(n) = d(n) + y0(n) wðnþ 1Þ = �wðnÞ +
�ðnÞ eðnÞ x̂x0ðnÞ

Adaptive learning rate �(n)



2. The proposed algorithm

2.1. GA-VMD basic principle

The VMD process is essentially the solution process of the

variational problem, which involves three critical concepts:

classical Wiener filtering, Hilbert transform and frequency

mixing (Dragomiretskiy & Zosso, 2014). The basic idea of the

VMD algorithm is to search for a new way to adapt the signal

decomposition process, which turns the decomposition process

into a new constrained variational problem that can be

decomposed. The VMD algorithm abandons the principle of

refinement sieving of the modal signal in EMD. In this paper,

the sample entropy is considered as the fitness function of the

GA to optimize modal components k and the penalty factor �.

The specific process is as follows.

For each modal function, the Hilbert transform is applied to

the function to create a linear operator which can obtain the

resolved spectral signal, expressed by

�ðtÞ þ
j

�t

� �
� ukðtÞ: ð1Þ

Mixing of all modal analysis signals is given by

�ðtÞ þ
j

�t

� �
� ukðtÞ exp j!k tð Þ

� �
: ð2Þ

The constrained equation for the constructed variational

model is given by (Dragomiretskiy & Zosso, 2014)

min
ukf g; ukf g

Xk

k¼ 1

@t �ðtÞ þ
j

�t

� �
� ukðtÞ exp j!k tð Þ

� �����
����

2

2

 !
;

subject to
X

k

uk ¼ f ; ð3Þ

where �(t) is the Dirichlet function; * is the convolution

operation; {uk} = {u1, . . . , uk} is the set of IMFs obtained after

the VMD decomposition of the modes; and {!k} = {!1, . . . , !k}

is the combination of the component center frequencies.

Introducing the penalty factor � and Lagrangian multiplier

�(t), which transforms the constrained variational problem

into the unconstrained variational problem, the extended

Lagrangian is expressed by

L uk

� �
; !k

� �
; �

	 

¼ �

X
k

@t �ðtÞ þ
j

�t

� �
� ukðtÞ exp j!k tð Þ

� �����
����

2

2

þ

��� f ðtÞ �
X

k

ukðtÞ
���2

2

þ

D
�ðtÞ; f ðtÞ �

X
k

ukðtÞ
E
; ð4Þ

where � is the penalty factor and � is the Lagrangian multi-

plier.

The variational problem is addressed by the alternate

direction method of multipliers (ADMM) (Nocedal & Wright,

2006) and the optimal solution is obtained by updating u nþ1
k ,

! nþ1
k and �n + 1. u nþ1

k is denoted by

u nþ1
k ¼ argmin

uk 2X

 
� @t �ðtÞ þ

j

�t

� �
� ukðtÞ exp j!k t

ð Þ

� �����
����

2

2

þ f ðtÞ �
X

i

uiðtÞ þ
�ðtÞ

2

�����
�����

2

2

!
ð5Þ

where n is the iteration.

The Parseval Fourier isometric transformation is utilized for

equation (5), and the frequency domain range expression is

given by

u nþ1
k ¼ argmin

uk 2X

 
�
��� j !� !kð Þ

n
1þ sgnð!Þ½ � ûukð!Þ

o���2

2

þ f̂f ð!Þ �
X

i

ûuið!Þ þ
�̂�ð!Þ

2

�����
�����

2

2

!
: ð6Þ

Equation (6) is converted into the form of the non-negative

frequency interval integral, and then u nþ1
k is given by

u nþ1
k ¼ argmin

uk 2X

(Z1
0

�
4� !� !kð Þ

2
ûukð!Þ
�� ��2

þ 2

���� f̂f ð!Þ �
X

i

uið!Þ þ
�ð!Þ

2

����
2 �

d!

)
: ð7Þ

The optimal solution of the problem can be obtained as

ûu nþ1
k ð!Þ ¼

f̂f ð!Þ �
P

i¼ k ûuið!Þ þ
�
�̂�ð!Þ=2


1þ 2� !� !kð Þ

2 : ð8Þ

Base on a similar scheme, the central frequency problem is

transformed to the frequency domain,

u nþ1
k ¼ argmin

!k 2X

(Z1
0

!� !kð Þ
2

ûukð!Þ
�� ��2h i

d!

)
: ð9Þ

From equation (9), the updated formula of the center

frequency is given by

! nþ1
k ¼

R 1
0 w ûukð!Þ

�� ��2R 1
0 ûukð!Þ
�� ��2 ; ð10Þ

where ûu nþ1
k ð!Þ is equivalent to the Wiener filtering result of

the current residual [ f̂f ð!Þ �
P

i¼ k ûuið!Þ].
The VMD algorithm is continuously updated in the

frequency domain, after which the Fourier inversion is

performed to obtain the results in the time domain. The

practical procedure is illustrated as follows:

(1) Initialize fûu
1
kg, f!̂!

1
kg, f�̂�

1
g and n = 0.

(2) According to equations (8) and (10), update {uk}, {!k}.

(3) Update the Lagrangian multiplier �, which is given by

�̂�
nþ1
ð!Þ ¼ �̂�

n
ð!Þ þ � f̂f ð!Þ �

X
k

ûu
nþ1
k ð!Þ

" #
: ð11Þ

(4) The above iterations continue until convergence. The

deterministic conditions is
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P
k kûu

nþ1
k � ûu

n
k k

2
2

kûu
n
k k

2
2

< e: ð12Þ

The sample entropy method is less dependent on data length

and more resistant to interference, which has been widely

applied in vibration signal research. The sample entropy of the

vibration signal is selected as the fitness function of the GA,

which is applied to determine whether the individual modal

function components and penalty factors meet the decom-

position requirements. The vibration signal Xi(n) is a time

series of length N, i = 1, 2, . . . N. The vectors constructing Xi(n)

are xm 1ð Þ, xm 2ð Þ, . . . , xm N �mþ 1ð Þ, given by

Xm ið Þ ¼ xðiÞ; x iþ 1ð Þ; . . . ; x iþm� 1ð Þ
� �

; ð13Þ

where m is the vector length.

The maximum value of the absolute value of the element-

specific difference of two vectors is given by

de
�
XmðiÞ;Xmð jÞ


¼ max

k¼ 0;...;m�1
x iþ kð Þ � x jþ kð Þ
�� ��� 

: ð14Þ

For individual Xm(i), the difference between Xm(i) and Xm(j)

is calculated to be less than that to the quantity j (1 � j �

N � m, j 6¼ i) of parameter v, defined as

B m
i ðvÞ ¼

1

N �m� 1
Bi; ð15Þ

BðmÞðvÞ ¼
1

N �m� 1

XN�m

i¼ 1

B m
i ðvÞ: ð16Þ

When the dimension is m + 1, the difference between Xm+1(i)

and Xm+1( j) is calculated to be less than to the quantity j

(1 � j � N � m, j 6¼ i) of parameter v, defined as

Am
i ðvÞ ¼

1

N �m� 1
Ai; ð17Þ

AðmÞðvÞ ¼
1

N �m� 1

XN�m

i¼ 1

Am
i ðvÞ: ð18Þ

B(m)(v) and A(m)(v) are the m point probability and m + 1

point probability of being able to match the two sequences of

elements under the similarity tolerance v. The sample entropy

of this time series is defined as

SEðm; v;NÞ ¼ � ln
AmðvÞ

B mðvÞ

� �
: ð19Þ

The dimension m is generally taken as m = 1–2; v = 0.1 std ’

0.25 std (where std is standard deviation of the data).

The sample entropy is selected as the fitness function of the

GA to adaptably obtain the [k, �] optimal parameter combi-

nation of the VMD, which realizes the adaptive determination

of modal components k and the penalty factor � of the

vibration signal for an ultra-precision optical instrument. A

schematic diagram of VMD parameter optimization by GA is

shown in Fig. 2.

2.2. Active vibration control algorithm

A schematic diagram of the adaptive vibration control

method based on VMD and FxNLMS is shown in Fig. 3.

Actual vibration signals are constantly subject to baseline drift

(trend term of the signal) in the acquisition process caused

by environmental interference. Since the correctness of the

vibration signal analysis result is directly related to the trend

term, it is necessary to pre-process the vibration signal to

eliminate the tendency term. The Savitzky-Golay filter is a

polynomial-based least-squares fitting filter method (Schafer,

2011), which has the advantage of following the variation of

the baseline drift (Krishnan & Seelamantula, 2013). The

specific process of adaptive vibration control method is as

follows:

The vibration signal is xk

� �
k ¼ 0; 1; 2 � � � nð Þ; the function

x̂xk is set to be

x̂xk ¼ a0 þ a1kþ a2k2 þ . . .þ amk m ¼
Xn

j¼ 0

ajk
j: ð20Þ

The square sum of xk with x̂xk error is

P ¼
Xn

k¼ 1

x̂xk � xkð Þ
2
¼
Xn

k¼ 1

�Xm

j¼ 0

ajk
j
� xk

�2

: ð21Þ

According to the extreme value condition of the least-squares

method, the first-order partial derivative and second-order

partial derivative of P with respect to ai are 0, given by
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Figure 2
Schematic diagram of VMD parameter optimization by the GA.

Figure 3
Schematic diagram of the adaptive vibration control method base on
VMD and FxNLMS.



@P

@ai

¼ 2
Xn

k¼ 1

ki

�Xm

j¼ 0

ajk
j
� xk

�

¼
Xn

k¼ 1

Xm

j¼ 0

aik
jþi
�
Xn

k¼ 1

xkk i
¼ 0

ði ¼ 0; 1; 2; . . . ;mÞ: ð22Þ

According to equation (22), m + 1 coefficients aj can be

established.

The signal ~xxðkÞ with the trend term removed is given by

~xxðnÞ ¼ ~xxðkÞ
� �

¼ xk � x̂xk

� �
k ¼ 0; 1; 2 . . . nð Þ: ð23Þ

The input signal ~xxðnÞ is decomposed by GA-VMD (VMD

optimized by GA) into a series of signals with different

frequency bands u1ðnÞ; u2ðnÞ; . . . ; uqðnÞ. As shown in Fig. 3,

the output signal of the ith filter is given by

yiðnÞ ¼ uT
i ðnÞWiðnÞ; i ¼ 1; 2; . . . ; q: ð24Þ

The error signal is given by

eðnÞ ¼ dðnÞ �
Xq

i¼ 1

S TðnÞ yiðnÞ

¼ dðnÞ � S TðnÞ
Xq

i¼ 1

uT
i ðnÞ yiðnÞ: ð25Þ

According to the Lagrangian optimality principle, the updated

equation is given by

wi nþ 1ð Þ ¼ �wiðnÞ þ
�

u2
i þ c

eðnÞ u 0i ; i ¼ 1; 2; . . . ; q; ð26Þ

where � is the leakage factor (0 � � � 1); the leakage factor is

introduced to restrict the power of the actuator to reduce

nonlinear distortion. � is the convergence factor (0 � � � 2).

In practice, the iteration step is large when u2
i is excessively

small. For double-precision floating-point inputs, c is

2.22044604925031341 � 10�16; for single-precision floating-

point inputs, c is 1.192092896 � 10�7; for fixed-point input,

c is 0 (Madisetti & Williams, 1999; Akhtar et al., 2004).

2.3. Numerical simulation

In order to verify the effectiveness of the proposed adaptive

vibration control method, numerical simulations were

performed to demonstrate the accuracy of the method. The

expression of the input simulation signal x(t) is

xðtÞ ¼ x1ðtÞ þ x2ðtÞ þ x3ðtÞ þ x4ðtÞ þ x5ðtÞ; ð27Þ

where

x1ðtÞ . . . x5ðtÞ
� �

is

x1ðtÞ ¼ expði100�tÞ; t 2 ½0; 1�;
x2ðtÞ ¼ expði300�tÞ; t 2 ½0; 1�;
x3ðtÞ ¼ expði500�tÞ; t 2 ½0; 1�;
x4ðtÞ ¼ expði700�tÞ; t 2 ½0; 1�;
x5ðtÞ ¼ expði900�tÞ; t 2 ½0; 1�:

8>>>><
>>>>:

Fig. 4 shows comparison results of the vibration control

under the harmonic superimposed signals. Figs. 4(a) and

Fig. 4(b) show the input simulation signal decomposition

IMFs time domain and frequency domain spectra. Three-fold

harmonic, five-fold harmonic, seven-fold harmonic, nine-fold

harmonic and fundamental harmonic components are care-

fully separated from mixed harmonic signal with peaks of

150 Hz, 250 Hz, 350 Hz, 450 Hz and 50 Hz. Obviously, the GA

optimized VMD algorithm has been made more simplified and
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Figure 4
Numerical simulation results: (a) time domain IMFs; (b) frequency
domain IMFs; (c) control results.



robust. Fig. 4(c) shows the convergence results of the

FxNLMS algorithm within 1 second, which decreases the

amplitude by 66.85%. Meanwhile, the proposed method

vibration suppression performance achieves 99.95%.

3. Case validations

To further validate the performance advantages of the

proposed adaptive vibration control method over the

FxNLMS algorithm, in addition to the simulated mixed signals

in Section 2.3, experiments on the measured vibration signals

generated by ultra-precise optical instruments (DCMs at

synchrotron facilities) are reported in this section. A DCM

field vibration measurement diagram is shown in Fig. 5; the

measurement sensor parameters are shown in Table 2.

3.1. Case 1

The actual measured signal of the DCM at Bragg@16 keV

operating mode is shown in Fig. 6. The measured vibration

signal is decomposed into different frequency bands with the

variable modal decomposition algorithm optimized by the

GA, as shown in Fig. 7. An optimization diagram of the GA

is shown in Fig. 8. Fig. 9 shows the vibration suppression

performance of the FxNLMS algorithm and proposed method

at Bragg@16 keV operating mode. Fig. 10 shows the vibration

signal’s RMS values under the FxNLMS algorithm and

proposed method at Bragg@16 keV.

From Figs. 9(a) and 10(a), it can be seen that the proposed

adaptive vibration control method has a significant advantage

over the FxNLMS algorithm in terms of vibration suppression

in the pitch direction at Bragg@16 keV. The FxNLMS algo-

rithm decreased the angular displacement in the pitch direc-

tion by 16.89%, while the proposed method reduced the

angular displacement in the pitch direction by 84.73%. Simi-

larly, from Figs. 9(c) and 10(b), the FxNLMS algorithm

decreased the angular displacement in the roll direction by

54.08%, while the proposed method reduced the angular

displacement in the roll direction by 88.74%. From Figs. 9(b)

and 9(d), in the frequency range 0–150 Hz, the proposed

method shows a 	10 dB decrease in the pitch direction and

	20 dB reduction in the roll direction. Consequently, the

proposed method has a satisfactory vibration suppression

performance at low frequencies. On the contrary, the

FxNLMS algorithm has weak vibration damping ability at

low frequencies.
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Figure 5
DCM field vibration measurement diagram.

Table 2
Measurement sensor parameters.

Brand Germany / attocube
Model IDS3010
Probe type IDSHI1010632
Resolution 1 nm
Repeatability (vacuum state) 2 nm
Bandwidth 10 MHz

Figure 6
Actual measured signal of the DCM at Bragg @ 16 keV: (a) pitch direction; (b) roll direction.
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Figure 7
Decomposed signal and spectrum: (a) time-domain results in the pitch direction; (b) frequency-domain (0–500 Hz) results in the pitch direction; (c) time-
domain results in the roll direction; (d) frequency-domain (0–500 Hz) results in the roll direction.

Figure 8
Optimization diagram of the genetic algorithm: (a) pitch; (b) roll.



3.2. Case 2

The actual measured signal of the DCM at 5–30
 uniform

scanning operating mode is shown in Fig. 11. The measured

vibration signal is decomposed into different frequency bands

with the variable modal decomposition algorithm optimized

by GA, as shown in Fig. 12. The optimization diagram of the

GA is shown in Fig. 13. Fig. 14 shows the vibration suppression

performance of the FxNLMS algorithm and proposed method

at 5–30
 uniform scanning operating mode; Fig. 15 shows the

vibration signal’s RMS values under the FxNLMS algorithm

and proposed method at 5–30
 uniform scanning.
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Figure 9
Vibration suppression performance comparison results at Bragg @ 16 keV: (a) time-domain results in the pitch direction; (b) frequency-domain (0–
500 Hz) results in the pitch direction; (c) time-domain results in the roll direction; (d) frequency-domain (0–500 Hz) results in the roll direction.

Figure 10
Vibration signal RMS results at Bragg @ 16 keV: (a) pitch direction; (b) roll direction.
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Figure 11
Actual measured signal of the DCM at 5–30
 uniform scanning: (a) pitch direction; (b) roll direction.

Figure 12
Decomposed signal and spectrum: (a) time-domain results in the pitch direction; (b) frequency-domain (0–500 Hz) results in the pitch direction; (c) time-
domain results in the roll direction; (d) frequency-domain (0–500 Hz) results in the roll direction.



It can be visualized from Figs. 14(a) and 15(a) that both the

FxNLMS algorithm and the proposed method have vibration

suppression effects. Compared with the FxNLMS algorithm,

the proposed adaptive vibration control method decreases the

angular displacement in the roll direction by 85.03%. From

Figs. 14(b) and 14(d), in the frequency range 0–150 Hz, the

proposed method shows 	40 dB decrease in the pitch direc-

tion and 	10 dB reduction shown in the roll direction.

Consequently, the proposed method has a satisfactory vibra-

tion suppression performance at low frequencies. On the

contrary, the FxNLMS algorithm has weak vibration damping

ability at low frequencies. In particular, it can been seen from
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Figure 13
Optimization diagram of the genetic algorithm.

Figure 14
Vibration suppression performance comparison results at 5–30
 uniform scanning: (a) time-domain results in the pitch direction; (b) frequency-domain
(0–500 Hz) results in the pitch direction; (c) time-domain results in the roll direction; (d) frequency-domain (0–500 Hz) results in the roll direction.



Fig. 14(c) that the FxNLMS algorithm suffers from control

failure and vibration amplification in the pitch direction in the

time range 35–50 s. Therefore, it can be seen that the stability

and adaptive capability of the proposed adaptive control

method has been relatively prominent.

4. Conclusion

This paper presents a novel method for adaptive vibration

control based on VMD and the FxNLMS algorithm for DCMs

at synchrotron radiation facilities. The VMD is optimized by

a GA, and then a separate controller is designed for each

decomposition signal based on the FxNLMS algorithm. The

results show that the proposed adaptive vibration control

method is superior to the conventional FxNLMS algorithm in

terms of vibration suppression and convergence rate. More-

over, the process has a significant computational weight, which

can be considered in the future to optimize the filter structure.

This work should be of great significance for solving the

stability of DCMs in the future. In future work, the application

of the proposed method in practical beamline engineering

will be promoted.
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Figure 15
Vibration signal RMS value results at 5–30
 uniform scanning: (a) pitch direction; (b) roll direction.
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