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SYNCmoss is a software package dedicated to fitting Mössbauer spectra

measured with a synchrotron Mössbauer source (SMS). Operation conditions

of an SMS can be continuously varied from high resolution and low intensity

to the opposite extreme. These variations influence the width and shape of the

instrumental function. The main purpose of SYNCmoss is to fit data obtained

with instrumental functions of various shapes. SYNCmoss allows the instru-

mental function to be extracted from the spectrum of a standard absorber, and

then to utilize it in the fitting procedures for the samples studied. SYNCmoss

is standalone software – it does not require installations of any software

environment. Setting input parameters and the fitting procedure are controlled

within a graphical user interface. High-intensity mode of the SMS leads to a

short acquisition time, allowing for fast (for example, operando) measurements

resulting in a long sequence of spectra with close or smoothly varying

parameters. For such cases, SYNCmoss provides an option to fit a series of

spectra in automatic mode. SYNCmoss provides fitting models for various cases

of hyperfine interaction including the full Hamiltonian for the combined

interaction. Finally, for generality, the software has the ability to also fit

conventional Mössbauer spectra and simple cases of nuclear forward scattering

spectra.

1. Introduction

A synchrotron Mössbauer source (SMS) enables conventional

(energy-domain) Mössbauer spectroscopy for the 57Fe isotope

at synchrotron radiation facilities (Smirnov et al., 1997; Mitsui

et al., 2007; Potapkin et al., 2012). An SMS provides several

significant advantages: (1) small beam size, (2) almost 100%

recoilless radiation, and (3) polarized radiation, making it

extremely useful in different scenarios where conventional

Mössbauer spectroscopy cannot be used or its usability is

noticeably limited, like at high pressures (Potapkin et al., 2013;

Kupenko et al., 2019; Hamada et al., 2021), with small inclu-

sions (Andrault et al., 2018; Nestola et al., 2016; Blukis et al.,

2017), for surface studies (Cini et al., 2018; Fujiwara et al.,

2021; Mitsui et al., 2020), and others.

In comparison with radioactive sources, the SMS can be

adjusted for specific experiments. This adjustment includes

changes in the intensity and in the shape of the instrumental

function to achieve maximum signal-to-noise ratio (Yaro-

slavtsev & Chumakov, 2022). In order to fit SMS spectra, one

should take into consideration the exact shape of the instru-

mental function in each individual case. The influence of the

instrumental function becomes more pronounced at higher

statistics, where features of its shape could not be attributed

to the noise and, thus, will lead to uncertainties in the inter-

pretation of the results. Therefore, the instrumental function
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should be determined prior to any fitting. Most of the software

are aimed to fit spectra measured by conventional Mössbauer

spectroscopy [see, for example, Rusakov & Matsnev (2012)]

and therefore there is no need to take into account the shape

of the instrumental function. Only few software solutions

provide the ability to somehow approximate the instrumental

function [see, for example, Prescher et al. (2012) and Žák

& Jirásková (2006)]. In one of the most popular pieces of

software, MossA (Prescher et al., 2012), it can be approxi-

mated by a Lorentzian, Gaussian or Lorentzian-squared

shape, but actually the instrumental function of SMS is an

asymmetric function, the shape of which cannot be described

analytically (Smirnov et al., 2011; Yaroslavtsev & Chumakov,

2022). The main aim of SYNCmoss (https://gitlab.esrf.fr/

yaroslav/syncmoss) is to provide the ability to determine the

instrumental function and to use it for fitting of experimental

spectra. This feature could be crucial in cases when spectra

contain both high- and low-intensity subspectra, or when the

determination of hyperfine parameters with a high accuracy is

required (corresponding examples are discussed below).

2. Instrumental function

The instrumental function should be found prior to the fitting

session, as it is used in all fitting procedures. It can be extracted

from the spectrum of a standard absorber, the intrinsic spec-

trum of which is known1 [see Yaroslavtsev & Chumakov

(2022) for how to extract an intrinsic spectrum]. Unfortu-

nately, the instrumental function shape cannot be described by

an analytical equation, which is why it is fitted with a number

of Gaussian lines (the exact number can be changed by the

user). The Gaussian form was chosen due to its steeper profile

compared with a Lorentzian or Lorentzian-squared – there-

fore fitting the latter two with a set of Gaussians is easier than

vice versa. After the extracting procedure is completed, the

instrumental function found will be used in all further fittings.

Fig. 1 shows the SMS spectrum of an �-iron foil fitted

with the instrumental function extracted from the standard

absorber, and also with the Lorentzian-squared shape instru-

mental function, the width of which was also determined

from the spectrum of the standard absorber. The difference

between approaches is clearly seen in the resulting �2 (Pear-

son’s criteria) and in the residual lines. Fitting with the

incorrect instrumental function provides different hyperfine

parameters. To reach an acceptable �2 it will require more

subspectra which are not physically justified, thus it could

create uncertainties in the interpretation of the results.

Utilizing the instrumental function extracted from the stan-

dard absorber, the hyperfine parameters of the second

component are the following: central shift � =

�0.01 (1) mm s�1, quadrupole shift � = 0.00 (1) mm s�1, and

hyperfine magnetic field H = 31.0 (1) T, and the effective

thicknesses of the two components are 7.95 (5) and 0.59 (4).

These parameters are reasonable and show that the second

component corresponds to Fe atoms that have some other

metal atom in the nearest environment (a small impurity of

other transition metals is typical for �-iron foils). At the same

time, the Lorentzian-squared shape for the instrumental

function results in the second component having � =

0.19 (3) mm s�1, � = 0.02 (2) mm s�1 and H = 32.6 (1) T, and

the effective thicknesses for the two components are 7.8 (1)

and 0.81 (7). Most importantly, the fitting quality drops down

significantly – �2 is equal to 8.8 or worse2 compared with 1.8.

Thereby, the second component could be incorrectly inter-

preted as a presence of Fe oxides on the surface because the

central shift is close to typical values for Fe3+. Such a mistake

occurs because the second subspectrum matches features of
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Figure 1
Spectrum of an �-iron foil measured with SMS and the result of fitting with an instrumental function of Lorentzian-squared shape (left) and with an
instrumental function extracted from a spectrum of the standard sample (right). The model consists of a sextet related to �-Fe (blue subspectrum), an
additional sextet with a smaller magnetic field typical of the presence of residual traces of other metals (red subspectrum), and an asymmetric doublet for
the Fe in Be lenses (yellow subspectrum). The green line under the spectra is the residual line. The cyan line shows the quality of the numeric integration
(see Section 5 below for more details). The result of fitting is presented in the same way as in the GUI of SYNCmoss.

1 The intrinsic spectrum of the standard absorber is a single line with a small
distribution of an effective thickness, whose mean value and width along with
central shift and resonance line FWHM are stored in an internal file. Thus, if
SYNCmoss is to be used on other facilities, these parameters can be easily
changed to match a specific standard sample.

2 Trying to vary parameters around correct values results in an increase of �2

up to 11.5 which is even worse. Thus, in a real case such a fitting would be
rejected due to a worse �2.



the main component caused by an asymmetric instrumental

function. Indeed, in this case (Lorentzian-squared shape of the

instrumental function) the position of the resonance lines of

the second subspectrum are shifted to the right of the main

subspectrum (see Fig. 1, left), describing actually the features

of the instrumental function. On the contrary, with a correct

instrumental function the resonance lines of the second

subspectrum are closer to the center indicating a smaller value

of the hyperfine magnetic field. Of course, hyperfine para-

meters of the dominant component coincide with theory (� =

0.00 mm s�1, � = 0.00 mm s�1, H = 33.04 T) within error in

both cases. In practice, spectra of higher complexity will create

more uncertainties and imperfections due to incorrect

instrumental functions.

The standard absorber was measured several times under

SMS conditions close to standard [temperature of iron borate

around 75.825�C and incidence angle of 0.004�; see Yaro-

slavtsev & Chumakov (2022) for more details]. This is the

most typical mode of SMS operation. Under these conditions

the instrumental function looks like a single line but has some

asymmetric features. Extraction of the instrumental function

from these spectra shows that three Gaussian lines are already

sufficient to approximate the shape of the instrumental func-

tion. Of course, this depends on the quality (i.e. the signal-to-

noise ratio) of the standard absorber spectrum: the higher the

quality, the larger the number of Gaussians required. The

quality of the tested spectra was up to 180. The quality of the

standard absorber spectrum should not be less than the quality

of the spectra of the studied samples, otherwise an error

induced in the process of determining the instrumental func-

tion could prevail over a standard deviation of the found

optimal parameters for the experimental spectrum. A change

of the SMS conditions also could result in a more complex

instrumental function and the necessity for more Gaussian

lines to approximate the instrumental function.

In order to make this software more generalized there is

also an option to fit conventional Mössbauer spectra (CMS).

When fitting spectra measured with a radioactive source, the

Voigt shape is a reasonable approximation of the instrumental

function. However, its width could vary from source to source.

The Lorenzian width is close to the natural width and the

Gaussian width is usually about 0.06 mm s�1 which is set as

a default value, but if it is known specifically it can be set

manually in the appropriate text box in the GUI. After setting

the instrumental function, the fitting procedure is the same for

the CMS and the SMS cases.

3. Models

Fitting of Mössbauer spectra starts with choosing the model

and then finding its optimal parameters to match the experi-

mental spectrum. A model can consist of submodels which

describe specific cases of hyperfine interaction. The more

models of different hyperfine interactions that are in the

software, the more flexible tool it becomes. SYNCmoss

provides to the user a decent set of models which will be

described in this section (and which are implemented in the

software at the time of publishing this work). In particular, the

software contains one of the most general cases of the full

Hamiltonian describing the combined interaction in a most

general case where the asymmetry parameter is not necessary

zero. Since implementation of the model for the SMS and

CMS is almost the same, all models are present for both of

them, but not for the case of nuclear forward scattering (NFS)

which is standalone.

Each model includes the unitless absorber effective thick-

ness as a parameter. Each submodel corresponds to Fe atoms

in a specific local environment, and an effective thickness

represents its fraction more accurately than a subspectrum

area. This could be crucial in cases when saturation effects are

significant (usually this takes place with an effective thickness

of >� 2). The effective thickness, T, is

T ¼ fa NM �0; ð1Þ

where fa is the probability of recoilless absorption, NM is the

number of Mössbauer nuclei per unit area of the absorber, and

�0 is the resonant cross section. The effective thickness can

be estimated before fitting by simple calculations if sample

information is known.

3.1. Basic models

Most Mössbauer experimental spectra can be fitted using

only simple models which approximate a solution to the

hyperfine interactions static Mössbauer problem. Such models

work only under specific conditions, which, however, are

rather common.

Even though simple cases can be described by solving the

full Hamiltonian in general terms, it may be overcomplicated

and inconvenient to use such a representation. In this regard,

SYNCmoss contains classical approximations which describe

the hyperfine interaction in the presence of only an electric

monopole interaction (singlet), when there is an additional

electric quadrupole interaction (doublet), and the case when

there is also a magnetic dipole interaction which is signifi-

cantly larger than the electrical quadrupole interaction

(sextet).

The singlet, doublet and sextet models contain parameters

defining the isomer shift, and the widths of the deconvoluted

Lorentzian and Gaussian functions which define the Voigt

shape of a resonance line. The doublet also includes a quad-

rupole shift (half of a quadrupole splitting), the ratio between

line intensities and the ratio between line widths. The first

ratio is needed to describe polarization effects and texture,

and the second is helpful when there is a linear correlation

between an isomer shift and a quadrupole shift, as often

observed in glasses (Dunlap et al., 1998); the sextet, in addi-

tion, includes a hyperfine magnetic field, width of hyperfine

magnetic field normal distribution, ratios between line inten-

sities (I1 :I2 and I1 :I3, where In is the intensity of the nth line)

and two parameters which provide additional shifts of the

resonance line positions for a more accurate approximation of

the combined interaction [for more details see Onodera et

al. (1987)].
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3.2. Combined interaction/full Hamiltonian

In cases where approximate models do not fit the experi-

mental spectra, one can use the exact full solution to the

general combined interactions static Mössbauer problem. This

is also called the full Hamiltonian model because it requires

the full Hamiltonian of the combined interaction to be diag-

onalized and its eigenvectors and eigenvalues to be found.

This model is indispensable if the energies of the electric

quadrupole and magnetic dipole interactions are comparable.

In such cases line positions and intensities do not match

a simple sextet, and sometimes even two additional lines

become visible.

The full Hamiltonian model in SYNCmoss is based on the

approach presented by Voyer & Ryan (2006) where this model

is described in detail for the CMS case. The coordinate system

is chosen to match eigenvectors of the electric field gradient

tensor, and the orientation of the main component Vzz is

chosen as the quantization axis. In SYNCmoss the multi-

polarity of transitions is assumed to be pure M1, because the

E2 contribution is negligible in the case of 57Fe [less than

0.1%; see Bhat (1998) and references therein]. There are two

Hamiltonian models in this software, one for a powder sample

and another for a single crystal. It is obvious that powder

sample solutions for SMS and CMS are completely the same

due to an all-around averaging. In the case of a single crystal,

the switch from CMS to SMS is achieved by changing the

amplitude angular distributions3 [equations (20), (21) and (22)

of Voyer & Ryan (2006)],
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where 	k and �k are used for the CMS describing the direction

of a 
-quantum propagation, and 	h and �h are for the SMS

defining a direction of the magnetic vector of the beam.

3.3. Relaxations

In addition to static models, the SYNCmoss package

includes two common relaxation models. They represent

dynamic cases when changes of a local state happen on the

time scale of the Mössbauer window (the nucleus excited

state lifetime).

The two-state relaxation model is based on the Blume

approach (Blume & Tjon, 1968), but describes the more

general case when an isomer shift and a quadrupole shift can

be different for two states. This generalization is straightfor-

ward because a relaxation appears between each pair of lines

corresponding to the transition between two specific levels

(for example, 3=2 ! 1=2), thus it only requires imple-

mentation of a different isomer shift, quadrupole shift and

hyperfine field for each state. This model can be useful in cases

of two-paramagnetic-state relaxation which can be observed

in materials with a superstructure or with movable ions [see,

for example, Ellis et al. (2006)] and as an approximation of a

fast fluctuating hyperfine magnetic field as in the initial model

(Blume & Tjon, 1968). This model can be written in the

analytic way only for the case of zero Gaussian broadening

(an ideal homogeneous sample). Thus, Gaussian broadening

in this model is added afterwards in a numeric way by point-

by-point convolution4.

The many-state magnetic relaxation model is described by

Jones & Srivastava (1986). This model is implemented without

changes. It is dedicated to fitting of the superparamagnetic

relaxation. However, it also could be useful in cases when

some small areas containing magnetic ions are spread within

one bigger particle (Yaroslavtsev et al., 2020).

3.4. Distribution

There are many cases of the hyperfine interaction that can

be described (or approximated) in terms of a distribution

and correlations of some parameters within a simpler model.

Examples are various relaxations, spin density waves, cases

of correlated parameters distributions induced by inhomo-

geneity, and others.

To deal with such cases, SYNCmoss provides an ability to

distribute one of the parameters within any of the above-

described models. The distribution is set by left and right

boundaries for a distributed parameter and an equation for

the density probability function which could be written in a

simple mathematical language and could contain parameters

from other models or independent variables. The number of

points for this distribution can also be set by the user. A low

number of points does not represent a real distribution, but

increasing the number of points, of course, increases the

calculation time. Therefore, a compromise should be found for

each specific case. Other parameters can correlate with the

distributed one; in this case the user is able to set functions

which describe the dependencies of these parameters on the

distributed one.

3.4.1. Distribution example. Here we consider one

example. In order to resolve the magnetic properties of a

sample it could be useful to perform measurements under an

external magnetic field. If the studied sample is a powder, then

there is a distribution of particle orientations and thus aniso-

tropy axis orientations, while orientations of the external

magnetic field and radiation are fixed. Therefore, this will lead
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3 In the CMS case, an angular distribution answers the question: ‘what is the
amplitude of radiation propagated along a specific direction?’, and, in the SMS
case: ‘what is the amplitude of radiation polarized along a specific direction?’.

4 It imposes a requirement that the spectrum should reach the baseline at
the edges.



to a two-dimensional distribution of the hyperfine magnetic

field and its orientation relative to the magnetic vector of the

beam (Long et al., 2011). Here we will consider one of the

most common cases where the absolute values of the aniso-

tropy energy and exchange integral are significantly larger

than the interaction of magnetic moments with an external

field (hard magnetic material) and easy axis anisotropy.

First we need to determine the direction of the magnetic

moments. For a specifically oriented particle, this can be found

by minimization of the magnetic energy,

EM ¼ �Hex cos 	1 �Hex cos 	2 þ K sin2 �� 	1ð Þ

þ K sin2 �þ 	2ð Þ � J cos 	1 þ 	2ð Þ; ð5Þ

where Hex is the external magnetic field, K is the anisotropy

constant multiplied by a particle volume and divided by the

magnetic moment, J is the exchange integral divided by the

magnetic moment and by the number of neighbors, � is the

angle between the anisotropy axis and the external magnetic

field, and 	1 and 	2 determine the angles between magnetic

moments and the external magnetic field. Two different angles

(	1 and 	2) are needed for the antiferromagnetic case. After

finding sets of values for 	1 and 	2 they could be united into

one set which we will call 	. Fig. 2 shows all angles and vectors

for one of the magnetic moments in a particle with a certain

orientation.

The internal hyperfine magnetic field in most cases is

collinear (and usually also opposite) to the magnetic moment

of the Fe atom. Only two impacts due to the full hyperfine field

are non-parallel to the magnetic moment – an external field

and dipole–dipole interaction. A dipole–dipole interaction is

usually two orders of magnitude less than a full hyperfine field,

thus for most cases we can assume its perpendicular compo-

nent to be negligible. Thus, knowing the orientation of the

magnetic moment one could find the full hyperfine magnetic

field,

H 2
¼ H 2

ex þH 2
in � 2HexHin cos 	; ð6Þ

where Hin is an intrinsic hyperfine magnetic field and 	 is some

specific value from sets of 	1 or 	2.

The intensities of the lines in a sextet depend on the angle 

between the magnetic vector of the beam (hbeam) and the full

hyperfine magnetic field (H)5,

I1 : I2 : I3 ¼ 3 sin2 
 :4 cos2 
 : sin2 
: ð7Þ

Hereby, we have sextets with a distribution of the hyperfine

field and a distribution of 
 which defines the intensities of

the resonance lines. To build a model we need to find the

distribution of the effective thickness over the hyperfine field,

T(H) (which is a probability density function of H multiplied

by the full effective thickness), and the distribution of 
 as a

function of H.

Let us start from the 
 problem. We need to introduce the

angle � between an external magnetic field and magnetic

vector of the beam (see Fig. 2). This angle should be known

from the experimental setup, so we consider it a constant. To

find 
 we need also the angle � between an external magnetic

field and the full magnetic field (see Fig. 2), which can be

found from the equation

cos � ¼ H 2 þH 2
ex �H 2

in

� �
= 2HHexð Þ; ð8Þ

where � corresponds to a set of particles with the same

absolute value of H but differently oriented in space (rotation

around Hex). If H = 0 then � does not matter because there will

be no magnetic splitting; if Hex = 0, then �, 	 and � should be
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Figure 2
Directions of the magnetic moment (�), anisotropy axis (K), external magnetic field (Hex), internal hyperfine field (Hin), full hyperfine field (H),
and magnetic vector of the beam (hbeam) for a certain orientation of the magnetic moment. All vectors except hbeam are coplanar (left panel). The
directions of hbeam and Hex depend on the experimental setup and are predefined, while H could be different for each orientation of the magnetic
moment (right panel).

5 In the case of CMS, I1 : I2 :I3 = 3ð1þ cos2 
kÞ : 4 sin2 
k : ð1þ cos2 
kÞ, where

k is the angle between a hyperfine field and the direction of the radiation



redefined as angles between some chosen direction (instead of

external field) and corresponding vectors.

Because all sextets which correspond to specific � have the

same splitting but different ratio of line intensities, we can find

the average for cos2 
 for specific �,

hcos2 
i ¼
1

2
sin2 � sin2 �þ cos2 � cos2 �; ð9Þ

and finally the intensities of the lines in our model are

I3 ¼
1

3
I1 ¼

1

8
sin � 1� hcos2 
i

� �
; ð10Þ

I2 ¼
1

2
sin � hcos2 
i; ð11Þ

where sin � appears as a probability density function of �. The

use of the hcos2 
i value is not an approximation but provides

an exact solution because the averaging is performed for a

specific value of a full hyperfine field (and so for a specific �).

As seen from the equations, the ratio of the line intensities

does not depend on �. Thus, the problem can be reduced to a

much simpler one, namely to a correlated distribution of H

and hcos2 
i [in other words I1 :I2 :I3(H)].

In the general case, T(H) could be found from the following

idea. Due to the particle orientation along with the direction

of anisotropy being randomly distributed, � has a probability

density function equal to sin �. 	 is a function of �, while H

is a function of 	. Thus, knowing H(�) and the distribution

of � and the full effective thickness, we are able to find T(H).

T(H) along with I1 :I2 :I3(H) define the position and intensities

of the lines, together with the central shift and quadrupole

splitting which are not distributed.6

In the case of hard magnetic material it is obvious that 	1

and 	2 will approach � and ��� if J < 0 (antiferromagnetic)

or � and �� if J > 0 (ferromagnetic). It is easy to show that

the probability density function of the full hyperfine field will

be linear with a zero intercept in the range from jHin �Hexj

to Hin + Hex if J < 0 or to ðH 2
in þH 2

exÞ
1=2 if J > 0 and equal

to zero out of this range.

Fig. 3 shows an example of an experimental spectrum of

hard magnetic material. Fitting was performed within the

approach described above using a linear distribution of the

hyperfine field and correlated ratio of line intensities. This is

an example where such distributions with correlations allow

users to create new models without changes in code.

3.5. Nuclear forward scattering

In addition, SYNCmoss also provides models for simple

cases of hyperfine interaction (singlet, doublet, sextet) to fit
57Fe time-domain Mössbauer spectra which can be measured

by the nuclear forward scattering (NFS) technique. This
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Figure 3
Example of data fitting for a powder antiferromagnetic sample (SmFeAsO) at 5 K under an external magnetic field of 7.9 T oriented perpendicular to
the magnetic vector of the beam. Fitting was performed utilizing the model described in Section 3.4.1. The green line is a residual between the
experimental spectrum and the model. The cyan line is the difference between a model calculated with a selected number of points per integration and
that with four times more points.

6 It should be noted that the visible quadrupole splitting depends on 	 but the
described case is based on a sextet which assumes the quadrupole interaction
to be small.



makes SYNCmoss more comprehensive software for

synchrotron facilities. In the case of fitting NFS spectra, the

first 20 terms of a series expansion are used (Sergueev, 2003).

In NFS spectra the intensity exponentially decreases with

time, which is why a user can choose between fitting on a

linear scale and on a logarithmic scale which will give a much

worse �2 but better fitting of features at a later time where the

statistics are worse.

4. Manipulations with data and model

SYNCmoss can open spectra as files of types *.txt and *.dat

which should consist of two columns, one for the velocity

and the other for counts. Software can calibrate the velocity

scale using the spectrum of �-Fe (*.mca file directly from a

CANBERRA multichannel analyzer, where counts are

written per channel). Then all other *.mca files will be open

with the found velocity scale and can be converted to *.dat

files with two columns within the software.

The fitting model can include an arbitrary number of

submodels with distributions and correlations. While setting

the model one can fix some parameters, link parameters

between each other with multiplier coefficients, and set

boundaries. There is also the possibility to set an expression

as a function of parameters and link other parameters to

this expression.

Any minimization method is sensitive to the initial guess of

parameters which is why it is necessary to set the initial

parameters values somewhere around the expected values. To

visualize the model with the initial set of parameters the user

can view it by pressing a corresponding button ‘Show model’

(see Fig. 3) and then correct the parameters if needed, before

starting the fitting procedure. All chosen submodels and their

starting parameters form the model which can be saved as a

text file (*.mdl) to open in the next sessions. After fitting is

completed, the result can be saved as an image and text files

consisting of a table of parameters and a table containing the

spectrum, full model and all submodel envelopes at points

where the spectrum is defined (for plotting in any external

graphical editor). All fitting and modeling manipulations are

performed within the GUI (see Fig. 3).

An additional feature of the software is the ability to fit

spectra in a sequence. If more than one spectrum is selected,

then spectra will be fitted one after another. The initial set of

parameters for each subsequent spectrum at the discretion of

the user can be either the first initial set of parameters or the

result of fitting of a previous spectrum in the sequence. This

opportunity is extremely useful while fitting data of operando

and in situ measurements or any other big set of similar or

slowly changing spectra.

5. Mathematical and program details

The task of spectrum fitting always comes down to a mini-

mization problem. The Levenberg–Marquardt algorithm is

used to minimize �2 in order to find optimal model parameters

[the implementation of the algorithm is given, for example, by

Lourakis (2005)]. This algorithm requires a calculation of first-

and second-order partial derivatives. Second-order derivatives

are approximated as a direct multiplication of the first-order

derivatives. A covariance matrix is estimated at the end of

fitting, and is then used to calculate the standard deviation of

the model parameters. The Levenberg–Marquardt algorithm

in the original form does not accept boundaries for variables.

Therefore, the algorithm was slightly modified in such a way

that if some parameter during minimization reaches its

boundary it becomes fixed at this boundary and further fitting

is continued as it is fixed. After optimal parameters are found,

there is an attempt to unfix this parameter to check whether it

should be change to an allowed direction. The same algorithm

is also used while extracting the instrumental function and in

the calibration procedure.

As mentioned above, the instrumental function is found

as a set of Gaussian lines from a spectrum of the standard

absorber. The number of lines can be chosen by the user, and

depends on the quality of the standard absorber spectrum and

the accuracy needed to fit the experimental data. In order to

reduce the calculation time the instrumental function can be

refined, and then a previously found instrumental function is

used as the initial guess.

Resonance lines in Mössbauer spectroscopy in an ideal case

should have Lorentzian shape, but inhomogeneity of Fe nuclei

local states (induced by strains, vacancies, dopants, impurities

and other defects) leads to additional Gaussian broadening.

Therefore, the shape of the resonance line is described by the

Voigt function. The Voigt function requires an integral to be

calculated that makes this function inconvenient due to the

long time needed to reach a sufficient accuracy. Thus, it is

better to use an approximation of the Voigt function. In this

software the pseudo-Voigt function from Ida et al. (2000) is

used as a reasonable compromise between calculation time

and accuracy (the deviation from Voigt is <� 0.12%). Two

parameters are enough to define the pseudo-Voigt (as well

as the Voigt) function. These parameters could be chosen

differently; in this software they represent the widths of

Lorentzian and Gaussian functions, the convolution of which

is the desired Voigt function. The full line width of the intrinsic

spectrum could be easily calculated afterwards with an accu-

racy of 0.01% by using the approximation from Olivero &

Longbothum (1977) if needed.

The experimental spectrum can be described by the full

transmission integral [see, for example, Gütlich et al. (2011)]

as a convolution of the source instrumental function and

absorber intrinsic spectrum. The intrinsic spectrum (which is

also called the ‘absorber response’) is the theoretical spectrum

of an absorber in the case where the instrumental function is

equal to the Dirac delta function. The intrinsic spectrum Sin

can be written as

Sin ¼ exp �
X

Ti si

� �
; ð12Þ

where Ti is the effective thickness of the ith component and

si is a subspectrum of the ith component. In the SMS case,

knowing that the instrumental function is described by a set
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of Gaussians, and each subspectrum can be expressed as a set

(or distribution) of lines with a Voigt shape, the transmission

integral Itr could be written as

Itr ¼

Z1
�1

X
i

Gi


E0

c
� E

� �
exp �

��0

2

X
j

TjVjðEÞ

" #
dE;

ð13Þ

where 
 is the velocity of the source relative to the absorber,

E0 is a resonance energy, c is the speed of light, ��0 /2 is a

normalization constant, and �0 is the natural width. In the case

of a thin absorber it can be calculated easily but the high value

of the effective thickness is usually necessary to measure

spectra with a high Mössbauer effect to reach the best signal-

to-noise ratio within a specific time. Therefore, to take into

account the saturation effect, the integral should be calculated

in the general form.

For the convolution a numerical integration is used. In

order to simplify calculations and to reduce numerical errors

we do the following. The integration over energy in infinity

boundaries is substituted by the integration from �1 to 1 by a

change of the variable to the hyperbolic tangent of energy.7

The real boundaries are set to �0.9999 and 0.9999 due to the

function not being defined at the boundaries but tending to

zero; thus in a numerical case its impact also tends to zero. In

order to optimize the integration, the X-axis is stretched and

X-zero moved to be close to the centroid of the instrumental

function. The exact stretching coefficient and shifting are

calculated to reach minimum error for the specific instru-

mental function after it is found. From real and simulated

cases, it was found that after these manipulations 32 points for

the SMS case are sufficient to obtain an accuracy better then

0.1% in most cases. However, in order to reduce the calcula-

tion time or to obtain a better accuracy, the number of points

per integral could be changed. It is important to mention that

the number of points also influences the determination of the

instrumental function because this procedure also includes a

calculation of the full transmission integral. The calculation

of the full transmission integral is the most time-consuming

procedure. Thereby it is done in parallel where each process is

calculating one point of the integral.

To be sure about the correctness of the model one can rely

on �2 and the absence of a systematic deviation of the residual

line which is presented in the GUI under the fitted spectrum

(Fig. 3). In order to check the numerical integration accuracy,

there is also a line showing the difference between the final

model and that calculated with four times more points per

integral (Fig. 3). This line should be straight; if it is curved then

the number of points should be increased.

6. Conclusions

SYNCmoss is a software package designed to fit data obtained

with a synchrotron Mössbauer source. The software has a

convenient and user-friendly graphical user interface where

one can set the initial parameters, fit spectra and save results.

The operation of a SMS provides an opportunity to vary the

conditions in the range from low resolution and high intensity

to vice versa. This leads to a significant change in the shape of

the SMS instrumental function. SYNCmoss software extracts

the instrumental function from a spectrum of the standard

sample; then the instrumental function is used in fitting

procedures. The software provides a comprehensive func-

tionality to fit data within various models of the hyperfine

interaction including the full Hamiltonian case. Among non-

common features, it has the ability to set the analytical density

probability function for the parameter distribution. Further-

more, the software has an automatic mode to fit a large set of

similar spectra in a row. The SYNCmoss package consists of

code blocks which make it easy to add new mathematical

models for other cases of hyperfine interaction. At the time of

publishing, this software is already available for users of the

ESRF nuclear resonance beamline and later will be distrib-

uted by the corresponding author on reasonable request.

SYNCmoss can be downloaded from the following url:

https://gitlab.esrf.fr/yaroslav/syncmoss.
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