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X-ray tomography has been widely used in various research fields thanks to

its capability of observing 3D structures with high resolution non-destructively.

However, due to the nonlinearity and inconsistency of detector pixels, ring

artifacts usually appear in tomographic reconstruction, which may compromise

image quality and cause nonuniform bias. This study proposes a new ring

artifact correction method based on the residual neural network (ResNet) for

X-ray tomography. The artifact correction network uses complementary

information of each wavelet coefficient and a residual mechanism of the

residual block to obtain high-precision artifacts through low operation costs.

In addition, a regularization term is used to accurately extract stripe artifacts

in sinograms, so that the network can better preserve image details while

accurately separating artifacts. When applied to simulation and experimental

data, the proposed method shows a good suppression of ring artifacts. To solve

the problem of insufficient training data, ResNet is trained through the transfer

learning strategy, which brings advantages of robustness, versatility and low

computing cost.

1. Introduction

X-ray tomography technology has the advantages of strong

penetration ability, high imaging resolution and rich contrast

source (Kalender, 2006; Kareh et al., 2014; Pfeiffer, 2018;

Sakdinawat & Attwood, 2010), and is widely used in the fields

of medicine, biology, material science and chemistry due to

these excellent properties (Fu et al., 2022; Jiang et al., 2020;

Kareh et al., 2014; Lee et al., 2021; Li et al., 2022). However,

because of the nonlinearity and inconsistency of detector

pixels, a large number of ring and semi-ring artifacts exist in

X-ray tomography, seriously reducing the 3D imaging quality

(Paleo & Mirone, 2015; Croton et al., 2019; Jha et al., 2014;

Boin & Haibel, 2006). Therefore, a ring artifact correction

method that does not decrease the image resolution is

necessary for the reconstruction of reliable high-resolution 3D

sample structure. Various methods have been proposed for

ring artifact correction. These methods can be divided into two

categories. One is based on a specifically designed computed

tomography (CT) scanning procedure (Davis & Elliott, 1997;

Hubert et al., 2018; Pelt & Parkinson, 2018). For example,

continuously changing the relative positions of samples and

detectors before each projective acquisition can effectively
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reduce ring artifacts, but this requires a high-precision posi-

tioner and increases acquisition complexity. The other method

relies on sinogram stripe removal (Münch et al., 2009; Vo et al.,

2018; Massimi et al., 2018; Miqueles et al., 2014; Titarenko,

2016; Yan et al., 2016). Ring artifacts are generated by stripe

artifacts in sinogram images. Therefore, if stripe artifacts can

also be removed by image post-processing, then ring artifact

correction can be achieved. For example, the Fourier–wavelet

(FW) correction method, which is one of the most popular

correction algorithms, combines wavelet transform and

Fourier filtering to remove stripe artifacts in sinogram images.

However, this method needs complex parameter adjustment

to adapt to different stripe widths, and compromising between

resolution and quality is also inevitable. With the recent rapid

development of artificial intelligence technology (Bai et al.,

2022), the strip noise removal (SNR) network has also been

proposed (Guan et al., 2019). Due to the neural network’s

excellent abilities of feature detection and extraction, this

correction method performs ring artifact correction especially

well. However, given that the traditional network structure is

difficult to achieve a deep network with high accuracy, this

method is not quite adapted to strong artifacts.

To overcome the above drawback in existing correction

methods, a new ring artifact correction method (RRAC) based

on a residual neural network (ResNet)

is proposed. This method can use

complementary information of wavelet

coefficients to remove artifacts while

preserving and restoring details of the

original image. The main views and

contributions of this paper are

summarized as follows:

(1) The artifact correction network

in this paper is designed based on the

residual block, which not only saves

operational costs but also improves the

accuracy of the network.

(2) The input of the artifact correc-

tion network is wavelet coefficients of

the sinogram, and its image size is one-

quarter of the original image. This

input method significantly reduces the

operation time and memory consump-

tion. The network output is the artifact

in wavelet coefficients. This output

mode is not only simpler but also

conducive to accurately obtaining the

intensity and distribution of artifacts.

(3) To prevent the network from

outputting information other than stripe

artifacts, this paper also adds a regular-

ization term to the loss function, so

that the artifact correction network can

more accurately separate the details of

the sample from the artifact.

(4) In order to make the RRAC

method show high accuracy and strong

robustness under limited experimental data, we use the

transfer learning strategy to solve the problem of insufficient

experimental data.

2. Method

2.1. Deep-learning-based artifact correction

The ring artifact correction method based on the ResNet

workflow (Fig. 1) mainly includes two steps: training [Fig. 1(a)]

and application [Fig. 1(b)]. The neural network uses a process

analogous to the human brain, which requires training a

component with labeled data named the training dataset. The

training process is as follows: first, the training set data are

decomposed into four coefficients by Haar discrete wavelet

transform (HDWT) (Lai & Chang, 2006). Second, the

decomposed coefficients are fed into the artifact correction

network. The complementary information of different wavelet

sub-band coefficients can help the network well preserve and

restore the detailed information of an image while eliminating

artifacts. Moreover, given that the dimension of the wavelet

coefficients is half of the original image, training data pre-

processed by HDWT can reduce the required memory space

and speed up the training. Finally, the network output is the
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Figure 1
Flow chart of the ring artifact correction method based on ResNet. (a) Training process.
(b) Application process.



predicted artifact in a wavelet sub-band coefficient After

training, the RRAC method can apply artifact correction to

other data without a given ground truth. The application

process [Fig. 1(b)] is similar to the training process. First, four

wavelet coefficients are generated by the wavelet transform

of the original sinogram image. Second, according to these

coefficients, the predicted artifact can be produced by the

network and, when subtracted from the input wavelet coeffi-

cients, clean wavelet coefficients can be obtained. Finally,

high-quality reconstruction results without ring artifacts can

be generated by inverse Haar discrete wavelet transform

(IHDWT) and filtered back projection (FBP) reconstruction

(Guersoy et al., 2014; Pelt et al., 2016).

2.2. Design of the artifact correction neural network

The core of the RRAC method is the artifact correction

network (Fig. 2), which is designed on the basis of ResNet

(He et al., 2016). The artifact correction network comprises

14 convolution layers, including two 3 � 3 convolution layers

and six residual blocks. Each residual block includes two 3� 3

convolution layers and one shortcut connection. In the resi-

dual block, input data are corrected by the residuals obtained

from the two convolution layers. This structural design of the

residual block has the following three advantages. First, it can

speed up the network training process and save memory space.

Second, the residual block can eliminate the problem of

vanishing/exploding gradients and consequently be conducive

to the establishment of a high-performance deep network

(Balduzzi et al., 2017; Sandler et al., 2018). Third, the residual

is facilitative to image detail preservation. Furthermore,

except that the last convolution layer is four channels corre-

sponding to four input wavelet coefficients, the other convo-

lution kernels are 64 channels. Different network layers are

connected by the ReLU activation function (Xu et al., 2015),

which brings nonlinear mapping to the network and enables

it to deal with nonlinear problems. Moreover, the reason why

the size of the image is not changed in the correction network

is that the image details will inevitably be lost in the down-

sampling process. The purpose of the correction network is to

output stripe artifacts in the wavelet coefficients. Most stripe

artifacts are single-pixel or several-pixel stripes. The down-

sampling will lose some small artifact, which makes it difficult

for the artifact correction network to work on some small

artifacts.

For the artifact correction network, the loss function can

evaluate network output and guide the update of network

parameters during the training process, so it plays an impor-

tant guiding role to the RRAC method. The loss function

comprises two terms: wavelet loss function LM (Chen et al.,

2018; Huang et al., 2017) and regular loss function LW.

The wavelet loss function is the mean square error (MSE)

(Ledig et al., 2017), which is one of the common loss functions

and can evaluate well the error between the network output

and the ground truth. The MSE is defined as follows,

MSE ¼
1

N

XN

i¼ 1

Pi � P 0ið Þ
2
; ð1Þ

where N is the total number of pixels. Pi is the ith pixel value

of the ground truth, and P 0i is the ith pixel value of the network

output. LM can be formulated as follows,

LM ¼ MSEWA þMSEWH þMSEWV þMSEWD; ð2Þ

where MSEWA, MSEWH, MSEWV and MSEWD are the MSE

values for the approximation wavelet coefficient (WA), hori-

zontal wavelet coefficient (WH), vertical wavelet coefficient

(WV) and diagonal wavelet coefficient (WD), respectively.

The stripe’s gray value varies less along the stripe direction

than in the perpendicular direction (Chen et al., 2017; Liu et

al., 2016). Therefore, the regular loss function LW adapts

smoothness in the fringe direction to estimate the fringe noise

and is defined as follows,

LW ¼
��rSWA

��2
þ
��rSWH

��2
; ð3Þ

where r denotes the partial differential operator along the

stripe direction. SWA is the stripe component of WA, and SWH

is the stripe component of WH.

In this study, the loss function of the network is

Loss ¼ LM þ �LW; ð4Þ

where � is the regularization coefficient, which is used to

balance the relationship between the two loss functions and

prevent the network from under- or over-fitting.

3. Experiments and discussion

3.1. Evaluation of the RRAC method by synthetic data

The RRAC method is compiled in a Python environment,

and the neural network is built on the PyTorch framework

(Paszke et al., 2019). All the tests are carried out on a work-

station with a CPU of a 2.2 GHz Intel Xeon silver 4114 and a

NVIDIA Quadro p6000 graphics processing unit.
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Figure 2
Network structure of the artifact correction network.



The accuracy of the RRAC method is evaluated by

synthetic data. Due to the lack of sufficient public CT datasets

to train and test the network, the Div2k dataset is selected as

the synthetic data, which is composed of many high-resolution

2D images (Agustsson & Timofte, 2017). The Div2k dataset is

pre-processed as follows to establish training and test sets:

first, 824 pre-processed slice images P1 are randomly picked up

from the Div2k dataset, converted to grayscale images, and

clipped. Second, images P1 (512 � 512) are Radon-trans-

formed to obtain the ground truth sinogram image S1. (A total

of 360 projective images were recorded over an angular range

of 0� to 179.5�.) Finally, sinogram S1 is added with random

stripe artifacts to acquire artifact sinogram image S2. In total,

the training set includes 712 randomly selected groups of

ground truth S1 and artifact sinogram images S2. The

remaining 112 image groups are adopted as a test set to

evaluate network accuracy. The training and test sets estab-

lished as above not only solve the problem of insufficient

data but also have better visibility of the artifact than CT

data, which facilitate the subsequent evaluation. Moreover,

compared with CT data, the better variety of the Div2k

dataset brings the network more versatility. The degree of

artifacts added manually is evaluated by the peak signal-to-

noise ratio (PSNR). A high PSNR value means few artifacts

in the image.

The effect of complementary information of wavelet coef-

ficients on artifact correction is evaluated through ablation

experiments. The correction network is trained by approx-

imation and horizontal wavelet coefficients, which is called the

related artifact correction model, whereas training through all

wavelet coefficients is called the complete artifact correction

model. The correction results of these two models are shown

in Fig. 3. By comparing reconstructed results it can be seen

that, although the related correction model can remove the

ring artifacts, it has a poor ability to restore and preserve the

original details of the image. The result using the complete

correction model is almost the same as the ground truth. The

above results prove that the complete correction model can

effectively preserve and restore detailed information while

removing artifacts through complementary information of

each wavelet coefficient.

After training, the network can be applied to the test data

to access its performance. The raw sinogram, as illustrated

in Fig. 4(b), is obtained by adding the ground truth sinogram

[Fig. 4(a)] with random stripe artifacts. Its stripe correction

results using the FW, SNR and RRAC methods are displayed

in Figs. 4(c), 4(d) and 3(e), respectively. Figs. 4( f)–4( j) show

enlargements of the outlined areas in Figs. 4(a)–4(e).

Compared with the unprocessed sinogram, an obvious

reduction of stripes can be observed from sinograms

processed by all three methods. However, the RRAC method

has achieved the lowest level of residual stripes. Its sinogram

is also fairly identical to that of the ground truth. The SNR

method cannot remove some strong artifacts with a certain

width, and the FW method is even more inferior. The corre-

sponding slices reconstructed by the FBP algorithm are

presented in Figs. 4(k)–4(o). Ring artifacts in slices are

sensitive to the stripes in sinograms, even the invisible residual

stripes after FW correction can produce strong rings in slices.

The RRAC method can obtain the minimum and almost

invisible ring artifacts and preserve the most image details of

the slices.

The evaluation is performed quantitatively to further

explore the RRAC method. The PSNR and structural simi-

larity coefficient (SSIM,0�1) are chosen as evaluation criteria

(Wang et al., 2004). A high PSNR value means few artifacts in

an image and high accuracy of the corresponding correction

method, whereas a large SSIM value implies a good capability

of preserving and restoring details during the correction

process. The PSNR and SSIM values of different correction
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Figure 3
Reconstructed slice with ground truth (a), without correction (b), with related correction model (c), with complete correction model (d). (e–h) Magnified
views of the selected regions.



methods are calculated and shown in Fig. 5. Although the

accuracy of the FW method for artifacts of different degrees is

relatively stable, this method not only has low accuracy but

also corrupts the details during the correction process.

Although the SNR method shows better accuracy than the FW

method, its accuracy is more vulnerable to artifact strength, so

the robustness and versatility of the SNR method are inferior.

Compared with previous methods, the RRAC method can

obtain a more precise correction and

more stable performance for different

degrees of artifacts.

3.2. Application of the RRAC method
by experimental data

The RRAC method has shown its

advantages of high precision and

performance regarding synthetic data.

However, due to the significant differ-

ence between synthetic and experi-

mental data, the network trained by

simulated data is inapplicable to actual

application directly. The network also

cannot be well trained through limited

experimental datasets. Thus, the

transfer learning strategy has been

adopted to solve experimental data insufficiency (Tan et al.,

2018; Zhang & Gao, 2019). This strategy is as follows: the

network is initialized with the parameters trained by the large

synthetic dataset and is then further trained with a small

experimental dataset. This training strategy not only achieves

excellent results under training data shortage but also greatly

reduces the training difficulty. CT data of shale collected on

the 4W1A station of Beijing Synchrotron Radiation Facility
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Figure 4
Correction results of different artifact removal methods for Div2k simulation data. Sinogram images (a) with ground truth, (b) without correction
(PSNR: 13.51), (c) with the FW method, (d) with the SNR method, and (e) with the RRAC method. ( f – j) Magnified sinogram images corresponding to
the red squares shown in (a)–(e). (k–o) Sinogram images corresponding to slice images. ( p–t) Magnified views of the selected regions shown in (k)–(o).

Figure 5
PSNR/SSIM results of various correction methods.



(Yuan et al., 2012) are adopted to further explore the feasi-

bility of the proposed method as a real-world application. This

projection (512 � 512) is acquired from 361 angles over 180�

at 8 keV by a micrometre-resolution X-ray microscope with an

effective pixel size of 2.5 mm.

Fig. 6(a) shows the unprocessed raw sinogram image.

Figs. 6(b), 6(c) and 6(d) are sinogram images corrected by the

FW, SNR and proposed methods, respectively. Figs. 6(e)–6(h)

show enlargements of the outlined areas in Figs. 6(a)–6(d).

Reconstructed slice images [Figs. 6(i)–6(l)] are obtained from

the FBP reconstruction. Figs. 6(m)–6(p) show enlargements of

the outlined areas in Figs. 6(i)–6(l). Residual stripes can be

found in the sinogram corrected by the FW method [Fig. 6(b)].

Subsequently, the image details of reconstructed slices

[Fig. 6(j)] are corrupted by ring artifacts. In Fig. 6(c), most

artifacts are removed using the SNR method, except some

artifacts of a certain width, resulting in wide ring artifacts in

some slices [Fig. 6(k)]. Referring to the RRAC method, almost

no artifacts can be observed in the sinograms [Fig. 6(d)] and

slices [Fig. 6(l)]. Furthermore, the RRAC method can preserve

the fine structure of the shale when removing the stripes, so

the resolution of the reconstructed slice images [Fig. 6(l)] is

also greatly improved. In summary, the above experiment

exhibits that after incorporating the transfer learning strategy

the RRAC method also shows the remarkable capability of

stripe artifact removal in the application of experimental data

and outperforms the traditional method.

4. Conclusion

This study introduces a ring artifact correction method named

RRAC, which is based on ResNet. Compared with the SNR

method, ResNet is introduced, which is thought to be efficient

in solving complex problems with deep networks. HDWT is

also incorporated to decompose the sinogram into comple-

mentary coefficients before being fed into the network. In

the synthetic data experiment, the combination of residual

network and HDWT exhibits better capability of removing

ring artifacts than the reference methods while fully preser-

ving image details. Given that a large training dataset

comprising experimental data is unavailable, the transfer

learning strategy enables network training with limited

research papers

J. Synchrotron Rad. (2023). 30, 620–626 Tianyu Fu et al. � Deep-learning-based ring artifact correction 625

Figure 6
Correction results of different artifact removal methods for shale data. Sinogram images (a) without correction, (b) with FW correction, (c) with SNR
correction, (d) with deep learning-based artifact correction. (e–h) Magnified sinogram images corresponding to the red squares shown in (a)–(d).
(i–l) Sinogram images corresponding to slice images. (m–p) Magnified views of the selected regions shown in (i)–(l).



experimental data. To reasonably evaluate its accuracy and

performance, the RRAC method is evaluated by synthetic and

experimental data. When applied to synthetic data, the RRAC

method prevails on accuracy and detail preservation in visual

and quantitative comparisons with other methods. Moreover,

through the experiment on real CT data, the transfer learning

strategy succeeds in maintaining the superiority of the RRAC

method over the other methods without the availability of

abundant experimental data for training. In summary, our

proposed method is effective and adaptable to various data

types with minimal training data requirements. Its application

helps further improve CT 3D reconstruction quality and

facilitate subsequent data analysis.
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