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Fast multi-phase processes in methane hydrate bearing samples pose a challenge

for quantitative micro-computed tomography study and experiment steering

due to complex tomographic data analysis involving time-consuming segmenta-

tion procedures. This is because of the sample’s multi-scale structure, which

changes over time, low contrast between solid and fluid materials, and the large

amount of data acquired during dynamic processes. Here, a hybrid approach

is proposed for the automatic segmentation of tomographic data from time-

resolved imaging of methane gas-hydrate formation in sandy granular media,

which includes a deep-learning 3D U-Net model. To prepare a training dataset

for the 3D U-Net, a technique to automate data labeling based on sample-

specific information about the mineral matrix immobility and occasional fluid

movement in pores is proposed. Automatic segmentation allowed for studying

properties of the hydrate growth in pores, as well as dynamic processes such as

incremental flow and redistribution of pore brine. Results of the quantitative

analysis showed that for typical gas-hydrate stability parameters (100 bar

methane pressure, 7�C temperature) the rate of formation is slow (less than 1%

per hour), after which the surface area of contact between brine and gas

increases, resulting in faster formation (2.5% per hour). Hydrate growth reaches

the saturation point after 11 h of the experiment. Finally, the efficacy of the

proposed segmentation scheme in on-the-fly automatic data analysis and

experiment steering with zooming to regions of interest is demonstrated.

1. Introduction

In situ X-ray computed tomography (CT) imaging is crucial

for studying geomaterials, as it enables the observation of

thermo-baric conditions similar to those found in the Earth’s

interior (Fusseis et al., 2014). Synchrotron radiation sources

are particularly useful for time-resolved CT imaging of fast

processes in geomaterials, such as geomechanical deformation

and rock failure (Zhang et al., 2022), gas-hydrate formation

and dissociation in porous samples (Nikitin et al., 2020, 2021),

and dynamic fluid flow through pore pathways (Dobson et al.,

2016). These techniques provide valuable insights into the

pore-scale processes and their effect on the macroscopic

properties of geomaterials.

Accurate segmentation of 3D volumes is crucial in

synchrotron imaging, particularly when dealing with fast data

acquisition rates. However, low data contrast and artifacts in

reconstructions can make automatic segmentation challen-

ging, leading users to resort to slow manual segmentation.

This can be observed, for instance, in materials science and

geology: low-contrast phases observed in CT imaging of

carbonate samples (Alqahtani et al., 2022) and carbon/epoxy

woven composites (Sinchuk et al., 2020). Other examples

include nano-CT in battery research (Hallot et al., 2022) or
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chemical science (Kim et al., 2023). Fast segmentation proce-

dures can aid in localizing regions of interest and selecting

time intervals for studying dynamic phenomena, as well as

providing quantitative estimations of sample components for

input into digital rock physics simulations (Wang et al., 2015;

Sell et al., 2016). The accuracy of segmentation results can

significantly impact image-computed rock properties, poten-

tially affecting the accuracy of numerical simulations (Saxena

et al., 2017; Rezaei et al., 2019).

Micro-CT images can be segmented using various methods,

including global thresholding (Iassonov et al., 2009), marker-

based watershed algorithms (Zhang & Duanquan, 2012) and

clustering algorithms (Kang et al., 2009). However, the

segmentation of multiphase materials with low contrast,

particularly in the context of rock samples, presents limitations

for these conventional methods. Therefore, better segmenta-

tion techniques are needed for the automatic analysis of

images with low-contrast materials.

The global thresholding method, in the case of images with

close gray-level averages, can be improved by the Gaussian

mixture model (GMM) for separating materials (Huang &

Chau, 2008). Another approach is to use deep artificial neural

networks for image processing and segmentation (Egmont-

Petersen et al., 2002). Deep convolutional neural networks

(CNNs) are actively developing due to the increase in

computational performance of graphical processing units

(GPUs). In segmenting scanning electron microscope images,

they produce results of superior quality compared with

conventional algorithms (Ciresan et al., 2012). Further

segmentation improvements were demonstrated with the

architecture of fully convolutional neural networks (FCNNs)

(Long et al., 2015). One of the most popular FCNN archi-

tectures is the well known U-Net (Ronneberger et al., 2015),

which was also extended to 3D (Çiçek et al., 2016). Unlike

previous FCNN models, the U-Net architecture allows

training on a small dataset and is widely used for solving

quantification tasks in various scientific studies (Falk et al.,

2019). However, despite the advancements in neural network

models and the availability of open packages, their use for

segmenting CT images remains limited. This is mostly because

of the difficulty in preparing the training datasets, particularly

for the 3D case.

In this paper, we develop a new method for automatic

segmentation of dynamic CT images for the experiments in

which the multi-phase flow takes place in a sample pore space.

First, we suggest a method for forming a marked training set in

the case of low contrast between the solid and liquid phases.

The rock matrix is immobile throughout the experiment while

the pore fluid moves around occasionally. Thus it is possible to

find regions for which there exist two scans: with pore-space

filled with gas and with liquid. In the case of gas in pores one

can easily segment the matrix using a threshold algorithm.

This segmentation and another scan with fluid-filled pores can

be used in the training set. Given the training set we suggest

the segmentation strategy that consists of two sequential steps:

(1) training and applying a 3D U-Net neural network to

segment the rock matrix for the whole sample; and (2) statis-

tical clustering of the pore-space phases using the GMM. The

method employs the 3D U-Net to effectively distinguish the

low-contrast rock matrix from brine-containing pore phases.

The resulting matrix masks can be used for all time steps of the

experiment (assuming rock matrix immobility). In addition

to segmenting the mineral matrix, our method employs an

unsupervised clustering algorithm to automatically adjust the

threshold for separating the remaining phases with sufficient

contrast. This enables the segmentation of materials with

complex geometries, mixed compositions and variable density,

eliminating the need to create a training set specifically

adapted to these challenging cases.

The effectiveness of the proposed method was demon-

strated through an automatic quantitative analysis of CT data

from dynamic imaging of methane hydrate formation in sandy

samples (Nikitin et al., 2020). Furthermore, we showed the

applicability of the trained model in on-the-fly experiment

steering, particularly in scenarios where information about

future time steps is unavailable and segmentation needs to

be performed in real time. We conducted on-the-fly data

segmentation during continuous scanning of the sample in low

resolution, using the segmentation results to identify regions

of interest for subsequent high-resolution scanning. Note that

the low-contrast issue in hydrate-bearing media is not limited

to the components used in this article. It is also present in

other samples, such as hydrate-bearing coal samples (Nikitin et

al., 2021) and sand samples with NaBr and KI solutions with

different concentrations (Chen et al., 2020).

The paper is organized as follows. In Section 2 we briefly

describe the experimental setup, data acquisition and data

processing procedures used to generate 3D volumes for

further segmentation. In Section 3 we introduce our two-step

automatic segmentation approach involving the usage of

U-Net architectures (2D and 3D) and the GMM. Section 4.1

presents the applications of the proposed technique for

quantitative analysis of the segmentation results and discusses

new insights about the formation process. The experiment

steering with on-the-fly segmentation is demonstrated in

Section 4.2. Conclusions and outlook for further studies are

given in Section 5.

2. Data description and low-contrast problem
definition

The tomographic data used to develop our segmentation

technique were acquired during a dynamic in situ experiment

at the bending magnet beamline 2-BM of the Advanced

Photon Source, Argonne National Laboratory [see Nikitin et

al. (2020) for details]. For gas-hydrate formation, we filled an

environmental cell with silica sand and water, supplied it with

methane gas under high pressure, and continuously cooled it

at �7�C. The cell was rotated, and several subvolumes of the

sample were scanned with a parallel X-ray beam every 15

minutes to capture the sample states without gas hydrates and

the states where the hydrate is continuously forming by filling

the pore space. Acquisition of one tomographic dataset

corresponding to a 180� sample rotation took 70 s.
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To obtain qualitative tomographic reconstructions, we used

the TomocuPy package (Nikitin, 2023) to organize a recon-

struction pipeline. The reconstruction pipeline included

common processing functions such as ring removal, phase

retrieval filtering, and filtered backprojection implemented via

the log-polar-based method (Andersson et al., 2016).

The dynamic synchrotron experiment on gas-hydrate

formation generated more than 200 GB of reconstructed 3D

images per experimental day. Each reconstructed volume was

in 32-bit precision and had a size of 1224 � 1224 � 512,

corresponding to a real sample volume of 4.3 mm� 4.3 mm �

1.8 mm with a voxel size of 3.45 mm � 3.45 mm � 3.45 mm.

Each 3D image was reconstructed from 1500 8-bit projections

of size 2448 � 1024. The reconstruction process for one

dataset took approximately 40 s using an Nvidia Tesla V100

GPU. For the development and testing of our segmentation

algorithm, we used 66 3D tomographic images at various times

during the hydrate formation process.

According to the presence and quantity of each phase (sand

grains, methane hydrate, NaBr brine and methane gas) during

the formation process, we have distinguished three main

experimental stages: (1) before the methane hydrate forma-

tion, (2) during the methane hydrate formation, and (3) after

the methane hydrate formation. In the first stage, tomographic

images contain methane gas, sand grains and NaBr brine. The

second stage covers the sample states with methane gas, sand

grains, methane hydrate, NaBr brine and a mixture of NaBr

brine and methane hydrate. In the third stage the hydrate

formation mostly stops. Rare localized bodies of brine-satu-

rated phases still exist but one can easily find regions free of

brine-saturated phases by visual inspection.

An example of a reconstructed volume after a cylindrical

cut is shown in Fig. 1(a). Panels (b), (c) and (d) of the same

figure show three examples of cropped slices obtained at the

different experimental stages. The figure is equipped with

notes indicating different materials: black color corresponds

to the methane gas, dark gray to the gas hydrate, light gray to

salty water (NaBr brine) and lightest gray to sand grains. One

can also observe regions with a mixture of the NaBr brine and

the hydrate.

Micro-computed tomography imaging of methane-hydrate-

bearing samples poses challenges due to the similar densities

of water and methane hydrate. To address this issue, the use of

salt brine as a phase contrast agent is a common practice. Salt

brine helps to separate the hydrate and water in images by

increasing the contrast between phases. The use of salt brine in

this way is also reflective of the natural conditions under which

hydrates form in the bottom sediments of the sea, where the

water has some salinity. Lei & Santamarina (2018) demon-

strate efficient phase-contrast-enhancing methods using NaBr

and KI brines as hydrate-forming fluids, as opposed to regular

formation with deionized water.

In this work, we tested different levels of brine salinity and

chose 10% NaBr as it demonstrated a more favorable

hydrate–water contrast for further segmentation procedures.

However, increasing the contrast between one pair of phases

reduces the contrast between other pairs of phases. Specifi-

cally, the phase contrast between brine and sand grains is

significantly reduced with the appearance of brine. Conven-

tional segmentation algorithms based on the gray-level

separation become ineffective in this case.

Figure 2 demonstrates an example of incorrect segmenta-

tion based on the gray-level separation. Each slice in the top

row of Fig. 2(a) includes a panel that displays the profile along

the red line, highlighting the instability of gray levels within

the grains, as well as the similarity in gray levels between the

grains and NaBr saturated phases. The bottom row of Fig. 2(a)

shows the results of applying the threshold algorithm for grain

segmentation. In Fig. 2(b), specific areas are highlighted in the

segmented images from each stage of the experiment. A green

rectangle represents an example of the sample area where the

entire brine flows out during the hydrate formation process. In

these areas, the threshold algorithm can effectively segment

the grains after hydrate formation. Conversely, a red rectangle

indicates an area where the brine remains static throughout

the experiment, making the threshold algorithm unsuitable

for segmentation.

In the following we will describe a segmentation approach

utilizing the regions of the sample where the brine outflow

occurs after hydrate formation. This approach will facilitate

the creation of masks for the grains using the threshold

algorithm.

3. Segmentation procedure

In this section we present basic concepts and implementation

details of the two-step segmentation technique developed for

segmenting dynamic CT data obtained during the methane

hydrate formation in sandy samples. The proposed segmen-

tation procedure involves application of the following

methods:

(i) Sand grains segmentation using the U-Net model.
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Figure 1
An example of 3D reconstruction of the hydrate containing sandy sample
(a). Cropped parts of the slices show a typical content of tomographic
data obtained at the main stages of the tomographic experiment (b, c, d).



(ii) Pore space phases segmentation using a clustering

algorithm based on the GMM.

The first step is needed to separate sand grains and brine

filled phases (NaBr brine and the mixture of NaBr brine and

methane hydrate). For this, we apply semantic segmentation of

grains by using models based on deep fully convolutional U-

Net networks (Ronneberger et al., 2015). The approach is well

applicable for grains segmentation as they have distinct shapes

and sizes. Moreover, in Section 3.1.1 we describe an approach

for automatic labeling for training dataset preparation for

both 3D and 2D models, which is important for using super-

vised models. At the second step, the segmented areas of sand

grains are subtracted from the images, and separation of the

remaining phases is carried out with the clustering algorithm

based on the GMM (Huang & Chau, 2008).

The whole segmentation procedure is implemented in

Python using the TensorFlow and scikit-learn packages. We

have made our segmentation approach publicly available

on GitHub (https://github.com/mikhail-qwerty/Unet-GMM_

segmentation). The code implements a segmentation work-

flow on both individual tomographic volumes and a series of

sequential tomographic volumes. The U-Net segmentation

requires training a new model or loading already trained

weights. The results of grains segmentation are used as a mask

for further clustering of the remaining phases. The main input

parameters for the clustering model include the number of

clusters, average intensity values for the clusters, and options

for splitting data into parts for memory optimization. It is also

possible to configure other clustering parameters based on

the scikit-learn package documentation. These settings enable

the setup of the initial model for fitting a mixed distribution

model. The procedure is executed only for the first time step in

the case of time series clustering. Once the model has been

fitted, the distribution parameters are saved and used as input

for the next time step. Consequently, after training the U-Net

and selecting the initial parameters for the GMM model,

segmentation does not necessitate user intervention and

functions automatically.

3.1. U-Net based models for sand grains segmentation

For the grains segmentation we used both 2D and 3D U-Net

implementations based on the models described by Ronne-

berger et al. (2015) and Çiçek et al. (2016). The architecture of

the U-Net models can be divided into the encoder and the

decoder parts. The encoder consists of the convolutional and

downsampling layers applied step by step to compute feature

maps of the input data. The decoder takes low-resolution

feature representations and generates the mask using the

transposed convolutional and convolutional layers. The

resulting masks have the same size as the input data.

A detailed description of the proposed U-Net architecture

is presented in Fig. 3. One can see that the encoder and the

decoder parts consist of four convolutional blocks [Fig. 3(a)].

Each block is highlighted by the color depending on the layers

it contains. So, we used an architecture with two types of

convolutional blocks and one final convolutional layer. Green

color indicates the blocks consisting of two sequential

convolutional layers with the ReLu activation function

[Fig. 3(b)]. Blue color indicates the blocks with two convolu-

tional layers followed by dropout [Fig. 3(c)]. Orange color

indicates the final convolutional layer with a kernel size of

1 pixel and the sigmoid activation function [Fig. 3(d)].

We implemented the described architecture in both 2D and

3D. The number of filters for the first convolutional block was

32 and 16 for the 2D and 3D models, respectively.

3.1.1. Preparation of training and validation datasets. The

supervised learning strategy we propose requires labeled
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Figure 2
Failed segmentation of sand grains using a threshold method due to gray-level instability within the grains and low contrast between the grain phase and
brine-saturated phases within the pore space (a). Demonstration of selected sub-regions of the slices depicting complete brine outflow (green rectangle)
and regions with remaining brine-saturated phases (red rectangle) after hydrate formation (b).



datasets for training. Manual labeling of tomographic images

is time-consuming, especially in 3D; therefore, in this work

we avoided manual data labeling following the strategy

described below.

To automate the data labeling procedure, we utilize one of

the main properties of hydrate formation in porous media:

sand grains remain motionless (unlike a freezing process),

while pore brine is mobile and can disappear by the end of the

experiment due to conversion into gas hydrate or outflow from

the field of view to another hydrate growth region, as

described in detail by Nikitin et al. (2020). As mentioned

earlier, CT images at the end of the hydrate formation exhibit

regions with an absence of brine-saturated phases. These

regions consist of methane gas, methane gas hydrate, sand

grains and constitute only a small portion of the overall

hydrate-containing sample. These areas are primarily located

in regions far from the initial regions of the formation process.

Thus, the first step in preparing the training dataset is to

identify such regions.

Given that the phases present in these regions are well

separated in the gray-level images, conventional thresholding

algorithms can be used to automatically segment the grains,

as demonstrated in the right-hand panel of Fig. 4. Because

the grains remain motionless throughout the experiment, the

resulting grain masks can be applied to images from previous

time steps. Thus, we need only select regions and times when

brine was present in the pore space, as illustrated in the first

two panels of Fig. 4.

Following this automated labeling approach we prepared

a labeled dataset consisting of 1134 sub-volumes

(256 � 256 � 256) overlapping by not more than 145 pixels.

80% of this dataset was used for training and validation. The

remaining 20% was used for testing. The training dataset for

2D segmentation was prepared by slicing the 3D sub-volumes.

3.1.2. Training results and quality comparison. The 2D and

3D segmentation models were trained using the same deep-

learning training strategy. For explanation of all machine-

learning terms and techniques used in this section we refer

to Goodfellow et al. (2016). The training procedure involved

the binary cross-entropy loss function minimization with the

Adam optimizer (learning rate is 10�4, metric is accuracy). The

metric and loss function values on the training and validation

sets were monitored during training to avoid the model

overfitting and determine the optimal number of training

epochs (Fig. 5). As a result, we chose the number of epochs

to be equal to 15. Segmentation quality on the test dataset

was measured by the mIoU metric. To analyze the perfor-

mance of 2D and 3D U-Nets for processing large datasets

we measured the computational time for the training and

prediction stages.
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Figure 4
Demonstration that grains are motionless during the hydrate formation process. The red curves indicate that the borders of the grains at the beginning of
the experiment have the same positions in all images.

Figure 3
Schematic overview of the 2D and 3D U-Net architectures used in this work. Colored squares denote the convolutional blocks and the arrows denote
different math operations.



Table 1 presents the segmentation quality and performance

results, and the training time (for 15 epochs) was estimated by

averaging ten independent training runs on the same dataset.

Prediction time was calculated for a 1224 � 1224 � 512 image

volume divided into 75 patches of size 256 � 256 � 256 with

overlapping by 14 pixels. The training and testing procedures

were implemented in Python using the TensorFlow (Version

2.7.0) package, and the performance testing was carried out on

an NVidia Tesla V100 GPU with 16 GB of memory. Data for

both models were transmitted sequentially. Note that the 3D

model was faster by 5 s than the 2D model in prediction, but

the 2D model was 20 times faster in training. The mIoU metric

demonstrated that the 3D model outperformed the 2D model

by 4% in terms of segmentation quality.

Figure 6 demonstrates a comparison of the grains segmen-

tation quality for the 3D and 2D U-Net models. Each row of

the figure shows the central slice of a sub-volume from the test

dataset: horizontal slice in the upper row (labeled Z-slice),

vertical slice orthogonal to the Y-axis in the middle row

(labeled Y-slice), vertical slice ortho-

gonal to the X-axis in the bottom row

(labeled X-slice). One can see the

original slices in the leftmost column

and the labeled slices (ground truth)

in the rightmost column. The three

columns in the middle show segmenta-

tion results of applying different U-Net

models: 2D U-Net applied to horizontal

slices in a slice-by-slice manner (second

column); 2D U-Nets applied in a slice-

by-slice manner in directions ortho-

gonal to axes X, Y and Z, respectively,

followed by averaging the results (third

column); 3D U-Net applied to the

whole volume (fourth column).

Note that 2D segmentation (second

and third columns in Fig. 6) results in

‘comb’-type artifacts caused by the fact

that the 2D model does not take into

account information from neighboring

slices, and may easily build non-smooth

boundaries in the direction of the slice

sliding. The areas with the strongest

artifacts are highlighted by the red

squares. On the contrary, the 3D model

is able to build smooth boundaries

in all directions and provides the best

segmentation result. Our conclusions

are in line with the assumption of Deniz et al. (2018) that the

end-to-end 3D CNN segmentation model is more favorable

for segmenting challenging 3D images.

3.2. Clustering with the GMM

After extracting segmented sand grains from the original

image, the remaining phases (gas, hydrate, brine and hydrate

mixture, brine) were separated by the global threshold

method. Determining the global threshold is challenging

because of unstable gray-level intervals associated with

changing NaBr brine concentration. These instabilities were

mainly due to the effect of salt ions exclusion from the water

consumed for the hydrate formation process (Chen et al.,

2020). Thus the hydrate formation slowly increases the brine

salinity in time, shifting the gray-level distribution between

phases. As a result, we need to determine the gray-level

thresholding ranges at each time step.

In this work, we used a clustering algorithm based on the

GMM to automatically determine the global threshold at each

time step. This model allows the mixed normal distribution

to be decomposed into the sum of Gaussians, followed by

iteratively calculating their parameters with the Expectation

Maximization algorithm (Balafar, 2014). Definition of the

starting GMM requires setting the number of mixture

components and initializing parameters for Gaussian distri-

butions. We defined the number of components equal to four

according to the maximum number of phases that can be
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Figure 5
Learning curves of the U-Net 3D (left column) and U-Net 2D (right column) models. The curves
display the accuracy and loss function measurements for both the train and validation datasets
during training.

Table 1
Quality and performance testing of 2D and 3D U-Net models for
segmenting sand grains in 1224 � 1224 � 512 reconstructions of hydrate-
bearing samples.

Neural network
architecture

Prediction time
(one volume)

Training time
(15 epochs) mIoU

2D U-Net 19 s 5.4 min 0.931
3D U-Net 14 s 102 min 0.976



presented in our CT data. To include the time dependence of

the data, we used the means, covariances and weights calcu-

lated at the previous time step as parameters for initializing

the starting model at the current time step. For the first time

step, the model was initialized using the k-means algorithm or

by manual definition of the parameters.

Figure 7 shows the results of the mixture distribution

decomposition using the approach described above. Three

time steps were chosen as examples describing the main stages

of the experiment: before hydrate formation (1 h 20 min),

during hydrate formation (9 h 20 min) and after hydrate

formation (15 h 20 min). The experiment time is measured

from the moment when pressure and temperature conditions

for the hydrate formation became stable. Each panel in Fig. 7

includes experimental and predicted probability density

functions (PDFs) marked by blue and red colors, respectively.

Gaussian distributions for each phase from the GMM model

are marked by the black dashed line. The experimental PDF

is calculated from the histogram of the images, while the

predicted PDF is calculated as a sum of predicted Gaussian

distributions. Black arrows indicate phases corresponding to

each Gaussian. One can see that the proposed mixed distri-

bution decomposition into four components gives a good

agreement between the experimental and predicted PDF.

These four components were associated with the following

phases: sand grains, methane gas (gas), methane gas hydrate
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Figure 6
Comparison of segmentation results by the U-Net 2D, averaged U-Net 2D and U-Net 3D neural networks applied to a sub-volume from the test
sample. Each panel shows X, Y and Z central slices from the sub-volume. Red rectangles correspond to the regions with significant differences in
segmentation quality.

Figure 7
Histogram approximation by the GMM. Each graph corresponds to CT data associated with different times in the hydrate formation experiment. The
data histogram is shown by blue dots, Gaussians fitted with GMM by black dots, and sum of the Gaussians by a red line.



(GH), methane hydrate and NaBr brine mixture (GH

mixture), NaBr mixture.

Figure 8 shows the results of clustering CT images with the

proposed two-step segmentation algorithm. The top row

shows central slices of 3D image sample volumes at different

experiment times. Histogram approximation plots in Fig. 7

were prepared by making use of these data. After decom-

posing the gray-level curve into separate Gaussians one

can use thresholding for separating corresponding phases.

Thresholding boundaries were chosen as intersections

between the Gaussians and yielded segmentation masks

shown in the bottom row of Fig. 8. Colors correspond to

different phases in the GMM: sand grains (blue), gas (green),

gas hydrate (brown), mixture of brine and hydrate (orange)

and pure brine (yellow).

4. Results and discussion

The proposed technique is demonstrated in the following

subsections for two applications: (1) quantitative estimation

of phases during the gas-hydrate formation process, and

(2) estimation of regions with dynamic events during hydrate

formation for automated focusing and scanning with high

resolution.

4.1. Quantification of phases during dynamic imaging

Let us discuss some applications of the proposed segmen-

tation method. First, we can use the developed two-step

segmentation algorithm to process 3D CT image volumes in an

automatic manner, where each CT volume is provided as input

and its automatic segmentation is formed as output, see Fig. 9.

The colors of the materials here are the

same as in Fig. 8: sand grains (blue),

gas (green), gas hydrate (brown), pure

brine (yellow), mixture of brine and gas

hydrate (orange). Note that the solid

sample matrix consists of two materials:

sand grains (invariant) and gas hydrate

(changing in time). Thus, as the first

application of our segmentation we can

consider the monitoring of the 3D pore

space geometry changing in time. The

resulting time-resolved 3D models can

be further used in digital rock physics

simulations for estimating changes in

the sample permeability and in other

petrophysical properties during the

hydrate formation.

Another application is related to the

quantitative estimation of the sample

material changes in time. Pore-space

saturation of each particular phase can

be computed as a sum of all voxels

corresponding to this phase, divided

by the sum of voxels corresponding

to the entire pore space. For example,

methane gas saturation in pores of the volume in Fig. 1 is

61.8%. The situation is more complicated for such materials

as the pore brine or gas hydrate. Based on our GMM, the gas

hydrate is presented in two phases: as the GH phase (brown

color in Fig. 8) and as a part of the GH mixture (orange color

in Fig. 8). In the latter case, voxels should be decomposed into

relative amounts of brine and hydrate. Here we assume a

linear dependence of the relative content of these phases on

the gray level within the interval of the GH mixture phase.

Therefore, for quantitative estimation of the gas-hydrate

material in a 3D volume we compute the fraction of the GH-

mixture voxels following our linear dependence assumption

and add it to the number of GH phase voxels. Similar esti-

mations can be done for the pore brine material. To compute

the gas hydrate and brine saturation, the obtained values are

divided by the number of voxels representing the whole pore-

space volume.
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Figure 8
Extracted horizontal slices from the clustered 3D sample volumes by the proposed two-step
segmentation model. Each panel corresponds to CT data from different experiment times.

Figure 9
Example of applying the proposed segmentation method in 3D (color
code is the same as in Fig. 8).



In Fig. 10 we show the saturation of the brine (red curve)

and hydrate (black curve) at different times during the

experiment. These automatically generated curves give new

insights into the hydrate formation process. First, we see two

distinct periods of the hydrate growth. Gas-hydrate growth is

slow during the first 6 h. Close examination of the images

revealed that the hydrate growth rate changed after a massive

volume of brine moved away out of the scanned region shortly

after 6 h. Apparently, the gas transfer into massive water

volumes is slow resulting in a slower hydrate-formation rate of

0.4% per hour – see the interval 0–6 h in Fig. 10. After massive

water outflow the surface of the brine–

gas contact increases resulting in a

faster gas-hydrate formation rate of

2.5% per hour – see the interval 6.5–

11 h in Fig. 10. Finally, the hydrate

growth reaches saturation after 11 h of

the experiment.

4.2. Application to the dynamic
imaging experiment with steering

In this section we describe the appli-

cation of the developed technique for

real-time segmentation of data from

a multi-resolution dynamic experiment

with steering. In the experiment, we

utilize segmentation results to identify

pores exhibiting dynamic events, such

as brine outflows with the initiation of

the hydrate growth. These regions are

then scanned at higher resolutions for

more detailed imaging of the methane

hydrate formation process.

As a sample for the experiment we

used silica sand filled with a 10% NaBr

brine (10 wt%) for the contrast

enchantment. The entire sample was

represented as a cylinder measuring

2 cm in height and 0.5 cm in diameter.

Low-resolution scanning was carried out using a 1.1� optical

lens, providing a pixel size of 3.45 mm, while high-resolution

scanning was performed using a 5� lens, providing a pixel

size of 0.69 mm.

The goal of steering was to monitor the gas-hydrate

formation process at low spatial resolution (1.1� lens) and

then focus into regions where fast water outflows have

occurred spontaneously. While scanning the sample with low

resolution we applied our segmentation workflow on-the-fly

with already trained U-Net and formed GMMs constructed by

using data from the experiment described in previous sections.

Based on the segmentation results, we selected pores with

significant fluid flows and highest amount of the hydrate, and

then automatically zoomed in to these pore regions for higher-

resolution (5� lens) scanning. Such steering allowed us to

capture the initiation of the hydrate formation process and

monitor the evolution of the process in high resolution. Note

that without the proposed on-the-fly segmentation we would

be able to detect water flows with a regular thresholding

method; however, we would not be able to check whether

the pore contains the hydrate or not. The proposed method

prevented selecting regions of interest where the hydrate is

not supposed to form, and, as a result, prevented conducting

the whole experiment several times.

Figs. 11(a) and 11(b) show examples of slices through

reconstructed volumes at low spatial resolution for the sample

state before and after brine outflow. The segmentation results

are shown below them. The region of interest with water
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Figure 11
Horizontal slices of reconstructed volumes at low resolution before and after water redistribution
are shown in (a) and (b), respectively. The corresponding segmentation results are shown below
them. Panels (c) and (d) correspond to the selected ROI scanned with the 5� lens after the water
outflow and after the hydrate formation, respectively.

Figure 10
Hydrate and water saturation plots over the whole hydrate growth
process. The red curve corresponds to water saturation, the black curve to
hydrate saturation.



outflow is marked by a red dashed rectangle. After the low-

resolution scan, this region was imaged with the 5� lens

[Fig. 11(c)], where the gas-hydrate structure begins to form on

the water–gas interface. The region was further continuously

scanned until the final state [Fig. 11(d)] was reached.

As a result, our trained segmentation model enhanced the

information content of CT images during the dynamic process

of hydrate formation. Using the segmentation results, we were

able to identify and select regions of interest containing the

target phase (methane gas hydrate) and the target event (fluid

outflow). Furthermore, this valuable information was obtained

in real time, which is crucial for dynamic imaging of processes

and on-the-fly experiment steering.

5. Conclusions

With the development of new powerful synchrotron sources,

data acquisition rates will become significantly higher, making

it possible for X-ray beamline instruments to generate 100�

more data per experiment (Chenevier & Joly, 2018; Fornek,

2019). Large data volumes require automatic segmentation

techniques, which is particularly challenging for imaging gas-

hydrate formation in granular samples. The phases have weak

gray-level contrast (grains and brine) that is also evolving in

time (brine salinity increases during the hydrate formation).

We proposed a two-step segmentation workflow. Firstly, we

utilized a 3D U-Net architecture to tackle the challenging task

of separating sand grains from brine-saturated phases. To train

the model, we developed an automated workflow that is based

on the mineral matrix immobility (common property of the

hydrate formation process). This allowed the use of a 3D

U-Net, and we have shown that this helps to eliminate artifacts

in images compared with a 2D U-Net slice-by-slice and aver-

aged approaches. Next, we segmented the remaining phases

using the GMM to adapt the global threshold levels that vary

with time. However, a limitation for the application of phase

separation by the GMM model is the requirement for suffi-

cient phase contrast between methane hydrate and water,

which can be achieved by using heavy salt brines such as

NaBr or KI.

We showed application of the proposed hybrid machine-

learning method for quantitative estimation of the hydrate-

saturation changes in time and for brine outflows detection

while dynamic experiment with steering. The hydrate-satura-

tion curve revealed two distinct periods of the hydrate growth:

slow hydrate growth in the beginning, followed by a five-times

faster hydrate growth after the massive water outflow. These

observations are important for a better understanding of the

kinetics of the hydrate formation in porous medium – massive

water outflows in pores improve brine–gas contact facilitating

the hydrate formation.

The proposed method may become an essential tool for

imaging and analyzing gas hydrates in high temporal and

spatial resolution. In fast-evolving dynamic systems, automatic

segmentation, classification and detection may allow for

steering tomographic experiments, e.g. changing environ-

mental conditions (pressure, temperature, electrical charge)

based on real-time sample states. Artificial-intelligence-based

steering techniques will play a very important role in future

complex dynamic experiments at brilliant light sources.

We believe that our automated data labeling approach may

benefit researchers facing similar segmentation challenges and

working with similar experimental processes, such as melting/

freezing permafrost samples, heating up coal media with

diverse inclusions, etc.

Funding information

The following funding is acknowledged: US Department

of Energy, Office of Science (contract No. DE-AC02-

06CH11357); Russian Science Foundation (grant No. FWZZ-

2022-0030).

References

Alqahtani, N. J., Niu, Y., Wang, Y. D., Chung, T., Lanetc, Z.,
Zhuravljov, A., Armstrong, R. T. & Mostaghimi, P. (2022).
Transport Porous Media, 143, 497–525.

Andersson, F., Carlsson, M. & Nikitin, V. V. (2016). SIAM J. Imaging
Sci. 9, 637–664.

Balafar, M. (2014). Artif. Intell. Rev. 41, 429–439.
Chen, X., Espinoza, D. N., Luo, J. S., Tisato, N. & Flemings, P. B.

(2020). Mar. Petrol. Geol. 117, 104340.
Chenevier, D. & Joly, A. (2018). Synchrotron Radiat. News, 31(1),

32–35.
Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger,

O. (2016). International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI 2016), 17–21
October 2016, Athens, Greece, pp. 424–432. Springer.

Ciresan, D., Giusti, A., Gambardella, L. & Schmidhuber, J. (2012).
Adv. Neural Inf. Process. Syst. 25, 2843–2851.

Deniz, C. M., Xiang, S., Hallyburton, R. S., Welbeck, A., Babb, J. S.,
Honig, S., Cho, K. & Chang, G. (2018). Sci. Rep. 8, 16485.

Dobson, K. J., Coban, S. B., McDonald, S. A., Walsh, J. N., Atwood,
R. C. & Withers, P. J. (2016). Solid Earth, 7, 1059–1073.

Egmont-Petersen, M., de Ridder, D. & Handels, H. (2002). Pattern
Recognit. 35, 2279–2301.
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