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Recently, there has been significant interest in applying machine-learning (ML)

techniques to the automated analysis of X-ray scattering experiments, due to the

increasing speed and size at which datasets are generated. ML-based analysis

presents an important opportunity to establish a closed-loop feedback system,

enabling monitoring and real-time decision-making based on online data

analysis. In this study, the incorporation of a combined one-dimensional

convolutional neural network (CNN) and multilayer perceptron that is trained

to extract physical thin-film parameters (thickness, density, roughness) and

capable of taking into account prior knowledge is described. ML-based online

analysis results are processed in a closed-loop workflow for X-ray reflectometry

(XRR), using the growth of organic thin films as an example. Our focus lies on

the beamline integration of ML-based online data analysis and closed-loop

feedback. Our data demonstrate the accuracy and robustness of ML methods for

analyzing XRR curves and Bragg reflections and its autonomous control over a

vacuum deposition setup.

1. Introduction

X-ray user facilities are amongst the largest scientific data

producers in the world (Yanxon et al., 2023). While experi-

ments performed at these facilities cover an extensive range of

multi-disciplinary sciences, they typically share a common data

generation pattern, namely precisely positioning a specimen in

the path of the X-ray beam and recording data (e.g. radiation

scattered by the sample) captured by dedicated detectors

(e.g. diffraction, imaging, spectroscopy) further downstream.

Recent advances in accelerator development such as fourth-

generation synchrotron light sources (Raimondi, 2016) and

innovative detector technology (e.g. higher acquisition rates

and larger area detector dimensions) lead to continuously

increasing data volume of these datasets that are more and

more difficult to handle. In fact, in order to manage acquisi-

tion, analysis and storage of these, specific solutions developed

at the facilities (Guijarro et al., 2018; Allan et al., 2019; Novelli

et al., 2023) or in data-driven national and international

collaborations, e.g. DAPHNE4NFDI (Barty et al., 2023) or

PaNOSC (Carboni, 2022; see also https://www.panosc.eu/),

have been put in place, addressing these challenges.

Through the described technological advances and newly

deployed infrastructure at modern beamlines and facilities, the
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way experiments are performed has changed significantly

towards more and more data-intense and data-driven experi-

ments, increasingly relying on machine-learning (ML) based

approaches for data analysis (Chen et al., 2021; Campbell et al.,

2021). While facility instruments used to be basically fully

isolated systems, often posing complications for visiting facility

users to integrate sample-environment-related equipment or

data sources into the beamline data acquisition system, this

has changed rapidly with the recent developments in many

aspects. This process is generally encouraged as the value

of freely available, complete, augmented and documented

FAIR datasets (Wilkinson et al., 2016; Scheffler et al., 2022) is

recognized. These datasets are specifically valuable for ML

activities and enable novel, previously impossible experiments

that fully utilize modern infrastructure.

This paper introduces an approach for integrating real-time

X-ray scattering and diffraction data analysis into a closed-

loop control system that actively adjusts sample environment

parameters. This approach unlocks exciting possibilities for

conducting experiments using synchrotron radiation that

unveil new insights into the underlying physics. While several

approaches focusing on automatic and optimized data acqui-

sition based on, for example, Gaussian processes defining an

acquisition function have been reported (Teixeira Parente et

al., 2023; McDannald et al., 2022; Kusne et al., 2020; Yager et

al., 2023; Noack et al., 2021), in this study we describe a

feedback mechanism relying on actual online data analysis,

extracting physical parameters on-the-fly to control an in situ

experiment.

We demonstrate the seamless integration of user-developed

ML code with the beamline control infrastructure, enabling

real-time data analysis and integrated archiving of the

analyzed results improving the dataset quality with respect to

FAIR principles. Additionally, focusing on reflectometry as

a case study, we provide a concise overview of a ML-based

approach for predicting thin-film parameters in both single-

layer and multilayer structures. This use case convincingly

demonstrates the main advantages of using ML in this context.

The ML approach gives reliable fit results both for simple

two- to three-layer models as well as for complex multilayer

models in the millisecond regime. The combined speed and

reliability of the ML approach could not be achieved by

simple fitting scripts or with reliance on human supervision.

2. Methods and data

Several recent publications highlight the use of ML in

synchrotron and neutron beamline environments (Noack et

al., 2021; Yager et al., 2023; Beaucage & Martin, 2023;

Szymanski et al., 2023; Kandel et al., 2023; Suzuki et al., 2020).

These developments have mainly been initiated at large-scale

facilities or laboratories using privileged access rights to

integrate additional software code into beamline software

environments. However, often user- and sample-specific ML

techniques are needed in experiments. Therefore, this study

explores potential approaches to deploy ML-based real-time

analysis code at large-scale facilities (X-ray and neutron

sources) that are relevant also beyond the specific experiment

or research facility by highlighting general deployment and

integration strategies of user-developed ML codes at such

facilities. Where possible, we follow guidelines based on

community initiatives such as PaNOSC, ExPaNDS (https://

www.panosc.eu/), DAPHNE4NFDI (Barty et al., 2023) or

MLExchange (Zhao et al., 2022) (for details see the glossary in

Appendix A).

2.1. Software environments and structural requirements

Before discussing the architecture in detail, it is worth

describing the complete data acquisition and handling process

on a conceptual level and experiment-specific level summar-

ized in Fig. 1. First, in Figs. 1(a) and 1(b) we aim at separating

conceptually feedback architectures operating in synchronous

and asynchronous closed loops. In the first case, Fig. 1(a), data

analysis is subsequently taking place after data acquisition

(e.g. a scan) has finished. This simple mode of operation might

be preferable in cases where data analysis is much faster

than the actual data acquisition process. In the second case,

Fig. 1(b), data analysis might also follow data acquisition;

however, the data acquisition part does not wait for analysis

results but keeps measuring, i.e. beamline motors keep moving

while data are still analyzed and results are transferred into

the appropriate feedback action on-the-fly.

Independent of the choice regarding synchronous or asyn-

chronous control we can identify one part in these control

loops that is strictly attached to beamline operation and as

such also to a beamline software environment. A second part

is potentially user-developed code that is to be executed in a

user software environment. Software interfaces that enable

the embedding of user-developed code into the beamline

software environment are crucial for the presented experi-

ment and – in our view – most likely also for many future

experiments yet to come. To ensure operational stability of

instruments with rapidly changing users there is an inherent

dilemma from the facility point of view, since allowing modi-

fications to the beamline’s control software environment by

one user puts the experiments of subsequent users at risk.

Therefore, as a matter of best practice, well isolated software

environments for beamline control and user code are crucial

and one must find suitable methods to exchange data between

these environments and software processes [Figs. 1(a) and

1(b)]. From a practical point of view, such an approach also

removes the burden of dealing with incompatibilities in soft-

ware dependencies (e.g. versions of specific Python packages)

that are used on both sides.

Approaching the specific experiment that is conducted in

this study at high abstraction level, the acquisition of every

X-ray reflectometry (XRR) profile is followed by immediate,

ML-based online data analysis. In this step, prior knowledge,

e.g. boundary conditions on the thin-film thickness that may

change during the course of the growth process, is taken into

account. The extracted thin-film parameters are used to esti-

mate the time at which a predefined thickness is reached and
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the termination of the growth process is triggered – serving as

the most simple example of a closed-loop feedback.

On a technical level and from an experimentalists’ point of

view, there are two main types of data generators: (i) area

detectors (specifically a Dectris Pilatus 300k and a MaxiPix

2�2 with a CdTe sensor) controlled via LIMA (Petitdemange

et al., 2018), and (ii) motor positioners. Experiment control is

performed via BLISS (Guijarro et al., 2018) which also handles

saving of the collected data in the NeXus-HDF5 file format

(Könnecke et al., 2015) and triggers the ingestion of data and

metadata into the facility data catalog.

2.2. Distributed online data analysis and closed-loop
beamline integration

We identified different ‘hooks’ that typically exist in a

modern beamline environment to achieve this inter-process

communication between the beamline control software and

user-supplied data analysis code, focusing on various levels

of integration and portability between different light sources

targeting universal concepts to make user-developed ML

analysis available from the beamline control system.

Furthermore, we aim at increasing the reusability of the

produced datasets by enriching facility-produced datasets with

user-provided real-time data analysis results (data + meta-

data), working towards datasets in facility data catalogs that

are FAIR ‘immediately’ after acquisition without manually

revisiting the dataset.

Modern beamline control systems, such as BLISS at the

ESRF (Guijarro et al., 2018) and Bluesky (Allan et al.,

2019), offer dedicated frameworks to access data in the

beamline environment, e.g. through ‘publishing’ the data

through an integrated in-memory database or via direct access

to data- and event-streams produced by the acquisition

process. Evidently, these are hooks that could be used to

integrate online data analysis (see the example in Section SI-3

of the supporting information); however, these are usually

tightly coupled to a specific facility and typically introduce a

number of critical dependencies into the user-supplied code.

Another relatively simple option for external users to

handle and test prior to the experiment is to integrate on the

level of the SCADA (supervisory control and data acquisition)

used at the respective facility. The two most spread systems

in this field are TANGO controls (Götz et al., 2022; see also

https://www.tango-controls.org) and EPICS (https://epics-

controls.org/). In the context of this study, we evaluated the

integration via TANGO that is used at a sizable fraction

of, mostly European, synchrotron facilities such as ESRF,

DESY, SOLEIL, MAX IV and ALBA, but also in the broader

scientific community such as the square kilometre array tele-

scope. Data transfer from the beamline control system via the

available SCADA system forms part of the most common

operations performed on the control system level and thus
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Figure 1
Illustration of a synchronous (a) and asynchronous (b) control loop with tasks split across a beamline, and user software environment. (c) Simplified
schematic of the measurement protocol consisting of XRR acquisition, instantaneous ML-based online data analysis and thin-film growth control based
on closed-loop feedback. Based on preceding measurements a time estimate to reach the predefined thickness is established to stop the growth process.



does not induce any additional software dependencies for the

beamline control software environment. To our knowledge

this study represents a first attempt to combine ML/AI and

TANGO.

Further, there is also the possibility to rely on workflow

engines offered by facilities; for example, at the ESRF docu-

mented by De Nolf et al. (2022). However, care must be taken

with respect to the online analysis capabilities of these systems

since they inherently rely on queue systems (job schedulers for

batch processing) and thus may introduce additional delays

under heavy load.

When it comes specifically to ML/AI pipelines, there is also

potential to rely on standardized solutions that specifically fit

the needs of handling larger ML models (e.g. NVIDIA Triton

Inference Server) and thus abstract even beyond the specifi-

city of beamline environments.

Splitting beamline control and ML-based online data

analysis in terms of infrastructure makes sense also when

looking at the different hardware requirements of the two

processes. While the beamline control process links to beam-

line instrumentation, it is physically tied to hardware that is

available on the beamline itself. The ML data analysis process,

which requires a powerful GPU, can also run on edge

computing nodes (Babu et al., 2022) or even in central

computing facilities (Starostin et al., 2022). For more inte-

grated, routine solutions offered by the facilities themselves,

edge computing is an attractive option in this context. Prior-

itizing the user’s requirements, it is advantageous for a facility

to offer infrastructure that is exclusively available to the

particular user group performing the experiment. Through

collaborative efforts in the context of PaNOSC the VISA

system based on OpenStack (see https://visa.readthedocs.io/)

has been developed which essentially fulfills the needs

described above.

Modern synchrotron beamlines are an ecosystem of

distributed computing resources on their own. Therefore,

a simple choice to establish communication between the

beamline control software and the user-provided online data

analysis resources is to rely on the beamline’s SCADA system

(at ESRF: TANGO controls) for low-dimensional data

(Sections SI-1 and SI-2 of the supporting information).

Streaming options, however, become inevitable for high-rate,

multidimensional data sources such as large area detector

images.

In Fig. 2 we illustrate the layout of two independently tested

software configurations evaluated during the experiment

presented. Figure 2(a) shows a fully synchronous acquisition

and online analysis scheme relying on TANGO communica-

tion to transfer one-dimensional (1D) data [binned region-of-

interest (ROI) intensities extracted from detector images, here

done via LIMA (Petitdemange et al., 2018)] to the online data

analysis running on a user-controlled virtual machine provi-

sioned via VISA where the ML inference takes place. After

processing, ML results are made available in the main

beamline control process and ‘closed loop action’ can be

triggered. Once completed, another acquisition starts (see

Section SI-2 of the supporting information).

Figure 2(b) shows a configuration that decouples the

data acquisition and analysis + feedback into independent

processes (asynchronous feedback) to maximize the data

acquisition rates. Here, we use the streaming capabilities of

BLISS to transfer reflectometry profiles into a workflow

engine available at the beamline which in turn can commu-

nicate directly with an industrial AI inference server (here

Nvidia Triton deployed on VISA hardware).

We emphasize again that for both described schemes no

additional software needs to be installed into the beamline

control software environment. The first, TANGO-based,

approach largely benefits from the independence regarding

the specific beamline control software solution and therefore

its transferability to other facilities with a TANGO support

layer on beamlines. Using industrial AI inference server in the

second approach instead targets the use of standardized API

interfaces commonly used in ML/AI.
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Figure 2
Illustration of timing and architecture of the implemented synchronous and asynchronous feedback loops. In (a), data acquisition, ML inference and
feedback action follow each other strictly in time (synchronous over distributed system) while, in (b), acquisition and data analysis + feedback are
separated in independent co-routines to decouple independent processes. Further direct communication with the ML model using TANGO controls is
illustrated in (a) while in (b) an intermediate workflow system and an industrial inference server are used.



2.3. ML methods

Bringing ML into XRR data analysis is a community-wide

effort also recognized by the Open Reflectometry Standards

Organization (ORSO). There are several ML implementa-

tions with considerably different approaches, all being chal-

lenged by the ambiguity induced through the phase problem

and the particularities of XRR signals, e.g. high dynamic

range, sensitivity to marginal misalignment especially at the

critical angle, and sensitivity to interpolation or insufficient

sampling (Greco et al., 2019; Munteanu et al., 2023). This

is addressed in existing implementations, e.g. by restricted

parameter ranges (Doucet et al., 2021; Mironov et al., 2021;

Greco et al., 2021), a focus on identification of different

families of SLD profiles based on symmetry (Carmona Loaiza

& Raza, 2021), employing mixture density models (Kim &

Lee, 2021), using variational autoencoders (Andrejevic et al.,

2022) or neural operators (Munteanu et al., 2023) and

convolutional neural networks (Aoki et al., 2021). The

approach chosen for this work distinguishes itself from

previous implementations by allowing or accommodating

prior knowledge (e.g. restricting parameter ranges) at infer-

ence time. This is achieved by implementing a 1D convolu-

tional neural network (1D CNN) as an embedding network

that is followed by a multiplayer perceptron (MLP) which

combines prior information along with the XRR profile

processed by the 1D CNN (Fig. 3). For further details

regarding the specific network architecture used in the work

we refer to previous works of the authors (Greco et al., 2019,

2021, 2022; Mareček et al., 2022; Munteanu et al., 2023). For

fast automated analysis of the measured XRR and Bragg

reflection data, we rely on neural-network-based maximum-

likelihood estimation (MLE). Compared with previous

implementations, here we incorporate prior knowledge about

the sample at a given time into the ML pipeline, thereby

effectively mitigating uncertainty and constricting the range of

potential solutions. For a comprehensive, detailed discussion

of this approach, see Munteanu et al. (2023). Optimized

implementation and the availability of

dedicated GPU hardware during the

experiment made the training process

fast enough to allow for training from

scratch, e.g. when adopting the sampling

strategy during the beam time.

The reflectometry analysis aims at

reconstructing the scattering length

density (SLD) profile of the studied

sample based on the measured reflec-

tivity curve. Given an SLD profile, the

corresponding theoretical curve can

be swiftly calculated (Parratt, 1954).

However, reversing this operation

presents a challenge because of the

inherent ambiguity that often allows

for multiple, different SLD profiles to

correspond to the same curve within

the bounds of measurement uncertainty.

Fundamentally, this is related to the famous phase problem

of scattering (since only the intensity, not the phase, is

recorded in the detector). Consequently, it is vital in reflec-

tivity analysis to make use of the physical understanding of the

investigated system in order to reduce the number of potential

solutions and identify the correct one. In previous ML-based

works with two-layered structures (Greco et al., 2019;

Hinderhofer et al., 2023), we approached this task by effec-

tively fixing most of the parameters characterizing the SLD

profile and training the neural network to estimate only the

three unfixed parameters – thickness, roughness and density of

the top organic layer – anticipated to vary among the samples

under study, with parameters of the silicon substrate with a

silica top layer held constant. Expanding this method to

accommodate a larger set of variable parameters, further

techniques to address the ambiguity problem are needed

(Munteanu et al., 2023). In the present study, we build upon

this approach and showcase two potential methods for inte-

grating physical knowledge into the ML framework.

First, we propose to include the boundaries of the open

parameters as an additional input to the neural network. As

before, for each open parameter �i we designate broad ranges

½� total min
i ; � total max

i � that determine the general scope of the

neural network. Yet, in conjunction with these fixed ranges, we

introduce sample-dependent ranges ½�min
i ; �max

i � (�min
i � �max

i ;

�min
i ; �max

i 2 ½� total min
i ; � total max

i �) that impose constraints on the

fitted parameters for each sample studied and are supplied as

additional input to the neural network alongside the measured

curve. This method effectively confines the solution space for a

particular sample while maintaining extensive overall para-

meter ranges within a single neural network. In instances

where a single solution exists within the provided sample-

dependent boundaries, the inverse operation becomes well

defined, enabling a precise fit. We note that this approach

effectively combines the best of the two worlds: the flexibility

of the parameter ranges of the conventional differential

evolution method, and the speed of the neural network.

Furthermore, for the real-time in situ analysis, it allows
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Figure 3
Sketch of the neural network architecture consisting of an embedding 1D CNN and prior injection
into a combining multilayer perceptron. Here we use dynamic parameter ranges (min/max) for all
free parameters. The Q-axis is to be defined prior to the training process, to be able to only provide
1D data (without q support vector). Postprocessing involves polishing of parameters predicted by
ML by applying a traditional least-mean-squares fit.



harvesting the information from the previous fits, as prior

knowledge, so that the analysis of curves measured at different

times for the same sample are no longer independent. For

instance, during the growth experiment, we define the sample-

dependent constraints on the growing film thickness based on

the obtained result from a previous fit. This way, we leverage

the physical understanding of the growth process (the thick-

ness of the growing layer cannot decrease over time) and the

experimental setup (thickness cannot increase too rapidly),

without a specific growth model restriction as used by

Mareček et al. (2022).

The second method for integrating physical knowledge into

the ML framework that we employ in this work is physics-

based parameterization. In the case of ML-based reflectivity

analysis, this approach was first introduced by Mareček et al.

(2022), where the physics-based growth model allows the

number of estimated parameters to be effectively reduced.

In this work, we apply this approach to the case of periodic

multilayer structures by implementing a physics-based para-

metrization of the SLD profile. The standard parameterization

of the box model implies three parameters (or four parameters

when including absorption) per single layer for each box

(density, thickness, roughness). Given that a single molecular

monolayer block is typically modeled by two layers, such

parameterization would require up to 2 � 30 � 3 = 180

independently fitted parameters (when considering 30 mono-

layers) resulting in a R
180 solution space. However, such

parameters are largely correlated, because the monolayers

consist of the same material, feature the same thickness, etc.

To provide this information to the neural network, we intro-

duce a set of 17 independently fitted or predicted parameters,

that together define all the 180 parameters of the box model.

Such parameterization is based on a physical understanding

of monolayer structures and significantly decreases the task’s

complexity (Mareček et al., 2022). The parametrization is

illustrated in Fig. 4 and is discussed in more detail by

Munteanu et al. (2023).

We have developed a fast, GPU-accelerated module within

the PyTorch framework that calculates reflectivity curves in

order to train the neural networks utilized in the experiment

in real time during the beam time. This module seamlessly

integrates into the training process, enabling on-the-fly XRR

simulations throughout the training phase. Consequently, we

were able to quickly adjust the training settings (even during

the beam time), eliminating the requirement for meticulous

pre-planning. Note that we rely on preprocessing operations

and the rich postprocessing pipeline introduced by Greco et al.

(2021, 2022) that features q offset sampling and least-mean-

squares (LMS) fit. A major addition to the postprocessing step

of the previous works is the introduction of a new optional

fitted parameter that models a linear change of thickness

during the measurement of a single curve as we perform in situ

and real-time experiments. Therefore, for a single scan,

we take into account the time-dependent layer thickness d(t)

and the time-dependent incidence angle corresponding to

momentum transfer q(t). Together with other time-indepen-

dent parameters, �, d(t) and q(t) define the curve: R =

R[q(t), d(t), �]. A linear model of a growth process d(t) = d0 +

t(�d /�t) is a very good approximation for the short duration

of a quick real-time scan. Consequently, we fit two parameters

d0 and �d /�t for each curve via LMS, using the neural

network prediction as an initial guess for the parameter d0.

The introduction of this time-dependent parameter is required

to accurately fit XRR curves measured during the growth in

the case of a fast growth process relative to the data acquisi-

tion time for a single XRR profile, as Kiessig fringes will be

slightly narrower at high q as compared with low q.

2.4. Data handling

All data, including the extracted parameters of the online

data analysis, have been stored in a fully correlated fashion,

i.e. raw data alongside analysis results in NeXus HDF5, and
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Figure 4
Parameterization of the periodic multilayer structure. The stacked layers share the same thickness dmonolayer, roughnesses and SLD densities. Most of the
parameters introduced are relative to dmonolayer. Two sigmoid functions modulate the resulting periodic SLD profile. The position of the first sigmoid csig

defines the number of monolayers and the corresponding thickness dfilm = dmonolayer csig, while its width �sig determines the surface roughness �film =
�sig dmonolayer. The second sigmoid modulates the contrast �� between the layers, resulting in smoother SLD profile at the surface.



are publicly available through the ESRF data portal (Pithan

et al., 2023).

Using the ESRF file-saving infrastructure (Bliss + NeXus-

Writer) enabled the visiting experimentalists to directly insert

the online data analysis results into the data files published

by the beamline (see supporting information for details).

Furthermore, through integrating into the ESRF beamline

software ecosystem, the online data analysis results could

seamlessly be transferred into the accompanying electronic

logbook, allowing a first overview of the experimental results

ordered via timestamps.

2.5. Experiment

This study has been performed on the surface scattering

branch of the ESRF ID10 beamline (Jankowski et al., 2023). A

beam energy of 17.0 keV and beam size of 30 mm � 30 mm

were used. We use XRR, an established surface scattering

technique, performed following standard procedures (Daillant

& Gibaud, 2009; Tolan, 1999; Holý et al., 1999; Seeck et al.,

2002). A user-supplied UHV sample environment has been

installed in horizontal geometry. Molecular thin-film samples

are prepared in situ using molecular beam deposition (Ritley

et al., 2001; Zykov et al., 2017).

To achieve the objective of stabilizing and terminating the

self-assembly, growth and crystallization characteristics of

molecular thin-film studies in situ, a closed-loop control system

has been implemented, leveraging the ML-based online

analysis. This closed-loop control allows for autonomous

experiments. In this particular study, the ML-based closed-

loop system assumes control over the operation of two shut-

ters, which involves covering either the substrate or the

incoming molecular beam. To limit beam damage, which might

occur for longer scan times at lower deposition rates, we

reduced the X-ray flux to a level where there was no notice-

able impact on Bragg peak intensities over the time of a

growth run at our deposition rates.

In this study, molecular thin films of aluminium-tris(8-

hydroxychinolin) (Alq3, C27H18AlN3O3), a frequently used

component in organic light-emitting diodes, were grown to

serve as an exemplary material system for amorphous mole-

cular thin films (Mondal et al., 2021). To demonstrate the

online capabilities regarding the analysis of crystalline multi-

layer systems the organic semiconductor N,N 0-dioctyl-3,4,-

9,10-perylendicarboximid (PTCDI-C8, C40H42N2O4) (Zykov

et al., 2017; Krauss et al., 2008) was chosen for demonstration

purposes. For details on the scientific background of these

materials, we refer to Kowarik et al. (2008), Schreiber (2004)

and Witte & Wöll (2004).

3. Results and discussion

To verify and test the technical solutions discussed above, we

aim to grow molecular thin films of predefined thickness

where the ML-based closed loop takes control over the

termination of the growth process by closing the relevant

deposition shutters. It became evident that it is crucial

to provide prior knowledge about the film parameters (e.g.

plausible film thickness ranges) as input of the ML-model to

achieve robust fitting for a large number of consecutive scans.

In this work priors were used to describe minimum and

maximum boundaries for each parameter.

3.1. Discussion of ML in XRR and Bragg reflection fitting

To achieve good performance of ML predictions on XRR

signals it is important to consider corrections such as q-shift

(for slight misalignment) and subsequent fitting using an LMS

algorithm as described by Greco et al. (2021). Furthermore,

due to the in situ data-taking that is inherent to closed-loop

feedback, the varying film thickness during a single scan must

be taken into account if the scan speed is not fast compared

with the deposition speed. We accommodate this additional

effect as an additional parameter in the subsequent LMS fit

as discussed above (snippet in Section SI-4 of the supporting

information). In both examples of amorphous and multilayer

thin films, prior information was taken into account for the

online ML analysis result. In the multilayer fits physical

knowledge was embedded in the parametrization of the

electron density model and rather narrow training ranges of

the ML model. In contrast, wide training ranges were used for

the single-layer model, but prior information was taken into

account by inputting it into the ML model to achieve a certain

regularization of the results. Here, in the dataset presented in

Fig. 5, through the use of priors, the expected film thickness

was constrained to increase by at most 50 Å and decrease by

no more than 25 Å for the ML-based real-time analysis. This

still gives the model sufficient flexibility to predict changes

during the film growth, but imposes weak boundaries based on

the scan speed and deposition rate.

3.2. Single-layer fits (Kiessig oscillations)

In Fig. 5(a) we show exemplary reflectometry profiles

acquired during thin-film growth of Alq3 using continuous

scans (also known as flyscans or fastscans) together with the

corresponding ML results of layer parameters. As can be seen

from the presented footprint-corrected scans, we achieved a

very good fit quality using the ML approach with priors. Both

the period of Kiessig fringes as well as the roughness-induced

damping of Kiessig fringes are correctly reproduced in the ML

fits. Careful post-experiment data analysis did not yield any

improvement of the fit quality with respect to online data

analysis. The achieved high fit quality of the ML-based online

data analysis is a prerequisite for achieving closed-loop

control to terminate growth at the target thickness, but, due

to the finite duration of the scans [45 s per XRR profile in

Fig. 5(a)] and an average growth rate of 1 nm min�1, the target

thickness may be reached during a scan. Therefore, we used a

linear extrapolation of the thickness information of previous

scans to automatically calculate the best moment to close the

shutter, as yet another asynchronous process (see Section SI-3

of the supporting information). Figure 5(b) shows the result of

the closed-loop deposition control for several target thick-

nesses between 80 Å and 640 Å. The target thicknesses are
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plotted on the x-axis, while the true film thicknesses at which

the deposition was terminated are given on the y-axis. As

expected for a functioning closed-loop control, the data

indeed fall on the diagonal line, except for one outlier.

Overall, the chosen target thicknesses could be reached within

�2 Å average accuracy.

3.3. Multilayer fits (Bragg reflections)

Not only amorphous thin-film structures but also multi-

layers of the molecule PTCDI-C8 were studied. By incorpor-

ating physical knowledge of the sample structure into the

parametrization of the used ML model we are able to fit

Laue fringes and the molecular Bragg peak that arises with

increasing film thickness from molecular multilayers

[Fig. 6(a)]. To speed up data acquisition, only a relatively short

q-range centered around the molecular Bragg peak was

repeatedly scanned while running in closed-loop mode. An

initial ‘full’ XRR curve, including the total reflection edge, was

used for signal normalization before activating the closed-loop

operating mode.

Again, these scans around the Bragg reflection could be

fitted by ML with high fidelity, reproducing the Bragg peak

and the period of the Laue oscillations and their asymmetric

intensity to the left and right of a Bragg reflection. The

corresponding electron density profiles from the live fits are

shown in Fig. 6(b), from which one can directly infer the

number of deposited monolayers, as one oscillation of the
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Figure 5
ML-controlled thin-film deposition. (a) Exemplary measurements and fits based on online data analysis. The experimental data are acquired using fast,
real-time scans, thus the poor counting statistics around q’ 0.11 Å�1 are due to the limited number of absorber changes. (b) Target thicknesses in closed-
loop operation versus actually measured thicknesses after the closed-loop feedback terminated the growth. Target thicknesses were defined in 25 Å steps
starting from 75 Å. Profiles shown in (a) correspond to a subset of data points shown in (b).

Figure 6
(a) ML-based fits of PTCDI-C8 multilayer structures (1 Monol. corresponds to �20 Å film thickness). As input for the ML model only points measured
around the PTCDI-C8 Bragg peak were taken into account to enable faster data acquisition. (b) Scattering length density profiles corresponding to (a).



scattering length density corresponds to one PTCDI-C8

monolayer. Comparing the film thickness from the ML fits of

the Bragg region with the total thickness derived from a

measurement of the deposition flux with a quartz crystal

microbalance (QCM) one again finds reasonable agreement as

shown in Fig. 7(a). For thicknesses above 250 Å the agreement

is good. Some scatter is visible below this thickness, even

though the quality ML fit of the individual reflectometry

curves is good [Fig. 7(b)]. This particular example shows

the difficulty of ambiguous XRR fits, where several sample

structure models can fit a single X-ray curve. Also, note that

the QCM measures total film thickness only if a constant

sticking factor on the substrate and previously deposited

molecular material are assumed. Further, the Laue oscillations

do not correspond to the total film thickness but to the

coherently ordered film thickness, so initial disorder in the

crystal lattice may to some degree contribute to the observed

deviations for low film thicknesses [additionally, of course, the

potentially non-integer layer occupancy during growth may

interplay as well (Rieutord et al., 1989)]. Overall, we conclude

that the ML results (live) of the coherent film thickness during

data acquisition nicely match our detailed post-growth

analysis and yield consistent data for larger film thickness of

our sample system. This, in principle, enables closed-loop

feedback, e.g. to target growth of a fixed number of crystalline

lattice planes in a thin-film sample.

3.4. Robust feedback to control growth

Within the domain of ML-based closed-loop feedback, we

emphasize the criticality of robust real-time analysis for

successful operation. Especially in Fig. 5 the expected trend of

increasing thickness from scan to scan during growth is clearly

observed. The robustness of the ML results is especially

important when facing the challenge on the control side that

extracted parameters must be used to extrapolate the film

thickness into the near future. Only robust fits can lead to a

meaningful time-series, so that after extrapolation the auton-

omous growth termination can act at the moment the prede-

fined film thickness is reached – which does not necessarily

coincide with the end of a performed scan. In this study, the

time resolution of the reflectivity measurements (repeat rate

of scans) could be identified as the most critical bottleneck of

the given setup. Therefore, the limited time resolution had

to be addressed through an additional asynchronous process

taking care of the temporal extrapolation and the triggering

of actions in close-loop operation. Here BLISS is very well

equipped for this kind of tasks through its tight integration of

Gevent to enable co-routine operation (Bilenko & Madden,

2023). Through averaging several of the last ML-results (a.k.a.

‘predictions’), isolated slight outliers in the ML results could

be tolerated and were not sufficient to invalidate the live

feedback mechanism. Overall, the 2% thickness error proves

the robust ML fitting, extrapolation and closed-loop feed-

back action.

3.5. Further integration potential

For the experiment conducted in the context of this work it

was possible to store ML analysis results together with the

original raw data and to interact with the facility-provided

electronic logbook (ELN). However, ingesting machine-

readable metadata into the facility data catalog remained

difficult. In order to support and contribute to a thriving

ecosystem of ML models for X-ray data analysis, i.e. physics-

informed ML models and sample-system-specific ML models,

it is of crucial importance that facilities provide – ideally

standardized – interfaces and best practice guidelines on how

externally developed code should interact with the respective

beamline control and data storage systems. Initiatives similar

to DAPHNE4NFDI (Barty et al., 2023) are well suited for

discussion in this context, since they bring together facilities

and the user community, including experienced users, to

jointly design research data infrastructure along a process

chain all the way from the proposal and experiment to the

fully analyzed and archived data.
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Figure 7
(a) Thin-film thickness extracted through the ML model in real time during the measurement compared with a quartz crystal microbalance (QCM)
reference. For films with thickness above roughly 250 Å, i.e. 12 molecular monolayers, ML results are reliable. (b) Selected fits from the real-time dataset.
Ambiguity in the thickness predictions for lower thicknesses mainly results from the absence of significant features in the investigated q-range.



4. Conclusions and outlook

In this study we established a complete closed-loop feedback

cycle for controlling thin-film and crystal growth exclusively

relying on real-time scattering data and online ML analysis.

The presented scheme is well suited for a broader range

of in situ and in operando experiments. Not only growth

dynamics can be observed with X-rays but also processes in

dynamic equilibrium where the information extracted from

the scattering data itself can be used to stabilize the equili-

brium. Specifically, for XRR this may for instance involve

control over various liquid systems with a Langmuir trough as

one possibility to prepare environments (e.g. lipid bilayers)

with precise surface pressure to have stable conditions at

the liquid–air interface. Here the ML approach for feedback

directly relates to the film properties measured with XRR,

whereas of course the sample environment (e.g. surface

pressure of a Langmuir trough) may also be controlled

externally. In a broader picture, we see a bright future to

embed ML-based feedback loops also for other types of

scattering experiments, e.g. involving electrochemical control

over battery charging or control over electrochemical sample

environment conditions or catalytic conditions in experiments

on nanoparticles. It also extends to other synchrotron-based

techniques (Chen et al., 2021; Hinderhofer et al., 2023), as well

as neutron-based techniques, including in particular neutron

reflectometry (Treece et al., 2019).

With the focus on publicly available FAIR datasets hosted

in facility data catalogs we see the potential of ML-based

online data analysis in helping to make these datasets in

catalogs ‘more fair and more reusable’. This is possible

through enriching the currently archived raw dataset at least

with the preliminary analysis results on-the-fly. Live ML

X-ray data analysis has the ability to complete datasets with

scientifically relevant machine-readable metadata as well as

automated capture of scientific results in ELNs accompanying

the dataset in the facility data catalog. We are convinced that

the presented approach can contribute significantly to a more

efficient use of beam time at large-scale facilities. We envision

that integration of live data analysis and feedback loops with

ML models will become more established at beamlines along

the lines presented here. Then, facility users can use ML to

observe live how experiments progress and also perform

previously unattainable experiments with direct feedback and

contribute to an ever-growing, meaningful X-ray dataset pool.

5. Data availability statement

The specific beamline integration Python scripts as well as the

TANGO server embedding the ML model used in this study

are available in the supporting information accompanying the

published article. Data underlying this publication are avail-

able in the ESRF data repository (Pithan et al., 2023).

Experimental data used to prepare for the beam time are

available – see Pithan et al. (2022). A reference ML model is

available – see Greco (2022) and Munteanu et al. (2023).

APPENDIX A
Glossary

See Table 1 for a glossary of beamline control, open data and

ML community initiatives and products.
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Table 1
Glossary of beamline control, open data and ML community initiatives
and products.

BLISS High-level experiment control system developed at the
ESRF providing a similar feature-set to Bluesky,
predominately used at US facilities
(https://gitlab.esrf.fr/bliss/bliss)

DAPHNE4NFDI German, national big-data initiative embedded in NFDI
(National Research Data Infrastructure) focusing on
DAta from PHoton and Neutron Experiments

ExPaNDS European Open Science Cloud (EOSC) Photon and
Neutron Data Service; ExPaNDS is a federated
structure of ten European national photon and
neutron research institutions

HDF5 Container file format used for NeXus provided by the
HDF Group

ICAT Open source metadata management system designed for
large facilities – ESRF is one facility, amongst others,
using ICAT (https://icatproject.org)

LIMA Library for Image Acquisition (ESRF)
(https://lima1.readthedocs.io)

MLExchange A web-based platform enabling exchangeable machine
learning workflows for scientific studies

NeXus A common data format, e.g. for neutron and
X-ray science, defining community standards
(https://www.nexusformat.org/)

ORSO Open Reflectometry Standards Organization: an
international, open effort to improve the scientific
techniques of neutron and X-ray reflectometry
(https://www.reflectometry.org)

PaNOSC Photon and Neutron Open Science Cloud is the science
cluster representing photon and neutron European
research infrastructures providing and connecting
related services to the European Open Science
Cloud (EOSC)

SCADA Supervisory Control And Data Acquisition system
SciCat Community-developed metadata catalog, in use at

several facilities including PSI, ESS, MAX IV, ALS
as well as indiviual labs and research groups
(https://scicatproject.github.io)

TANGO SCADA system used at numerous scientific facilities
including ESRF, ALBA, SOLEIL, DESY, ELI
BEAMS and SAK-ZA. In the context of synchrotron
facilities: device abstraction layer with comparable
functionally to EPICS, another commonly used
SCADA system in this kind of environments
(https://www.tango-controls.org)
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