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The advent of next-generation synchrotron radiation sources and X-ray free-

electron lasers calls for high-quality Bragg-diffraction crystal optics to preserve

the X-ray beam coherence and wavefront. This requirement brings new

challenges in characterizing crystals in Bragg diffraction in terms of Bragg-plane

height errors and wavefront phase distortions. Here, a quantitative methodology

to characterize crystal optics using a state-of-the-art at-wavelength wavefront

sensing technique and statistical analysis is proposed. The method was tested

at the 1-BM-B optics testing beamline at the Advanced Photon Source for

measuring silicon and diamond crystals in a self-referencing single-crystal mode

and an absolute double-crystal mode. The phase error sensitivity of the

technique is demonstrated to be at the �/100 level required by most applications,

such as the characterization of diamond crystals for cavity-based X-ray free-

electron lasers.

1. Introduction

X-ray Bragg diffraction crystal optics play essential roles in

modern X-ray light sources as monochromators (Matsushita

& Hashizume, 1983; Toellner, 2000; Shvyd’ko, 2004), spectral

analyzers (Masciovecchio et al., 1996; Sinn, 2001; Shvyd’ko,

2004; Verbeni et al., 2005; Baron, 2016) and beam splitters

for such applications as beam-multiplexing monochromators

(Als-Nielsen et al., 1994; Stoupin et al., 2014; Zhu et al., 2014),

split-and-delay X-ray photon correlation spectrometers

(Roseker et al., 2011; Osaka et al., 2013; Stetsko et al., 2013;

Hirano et al., 2018) and X-ray cavity output couplers

(Shvyd’ko, 2019). As the next-generation synchrotron radia-

tion sources and free-electron lasers (FELs) are either oper-

ating or being built, crystals with ‘perfect’ qualities are in high

demand. For these sources, the X-ray diffraction crystals need

to be perfect in their structure, cut and, more importantly,

surface finishing. An accurate and strain-free surface polishing

becomes the key to preserving the high-quality X-ray beam

wavefront emitted by these new sources.

Crystal quality can be quantified in several ways, and the

choice of method can depend on the application. The tradi-

tional criterion is the Bragg-plane slope error, which is most

appropriate for monochromator applications. Crystal-based

monochromators are widely used for synchrotron radiation

sources to provide X-ray beams with a narrow spectral

bandwidth. For example, a perfect Si(111) crystal with flat

Bragg planes has an intrinsic relative bandwidth of �E/E ’

10�4 and an angular width of ��B = ð�E=EÞ tan �B, where �B is

the diffraction angle defined by Bragg’s law and the photon

energy E. The Bragg-plane deformation, introduced by strain,

will broaden the bandwidth and distort the wavefront. Tradi-

tionally, Bragg-plane slope error is the main parameter used to
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define the crystal quality, with a general requirement that this

error be much less than the intrinsic Bragg reflection angular

widths. The primary diagnostic technique is Bragg reflection

(rocking) curve topography imaging (RCI) (Lübbert et al.,

2000), which directly measures the local rocking curves and

Bragg-plane slope errors with a micrometer-level spatial

resolution. For high-quality silicon and diamond single crys-

tals, Bragg-plane slope errors as small as �100 nrad RMS

(root mean square) — much smaller than most of the Bragg

reflection widths used in practice — were found to be feasible

(Pradhan et al., 2020).

A different approach is warranted when X-ray Bragg

diffraction flat crystal optics are combined with X-ray focusing

optics; for example, in X-ray spectrographs (Kohn et al., 2009;

Shvyd’ko et al., 2014; Shvyd’ko, 2015, 2016; Chumakov et al.,

2019; Kim et al., 2018; Bertinshaw et al., 2021). In this case,

information on wavefront distortions upon Bragg reflection

becomes more appropriate for achieving perfect focusing or

imaging. Here, the crystal quality is better described by the

Bragg-plane height error, which is directly related to the

wavefront phase error. For the wavefront to be regarded as

diffraction-limited, based on the Maréchal criterion (Maré-

chal, 1947), the RMS wavefront error must be below �/14, with

� being the X-ray wavelength. In extreme cases, the limit must

be set much lower; for example, in X-ray cavities of cavity-

based X-ray free-electron lasers (CBXFEL), which have

multiple low-loss wavefront-preserving flat Bragg-reflecting

crystal mirrors and aberration-free focusing elements that

store and circulate X-ray beams (Kim et al., 2008, 2012; Kim &

Shvyd’ko, 2009; Lindberg et al., 2011; Dai et al., 2012; Freund

et al., 2019; Marcus et al., 2020). In this sensitive case, the

wavefront error induced by each crystal reflection is required

to be as small as �/100. This super-high specification brings not

only many crystal fabrication challenges but also necessitates

high-sensitivity wavefront sensing techniques. In addition,

high-quality diamond crystals are of particular interest in

many applications, such as CBXFEL, due to their high thermal

conductivity, mechanical stiffness, X-ray transparency and

other unique features (Shvyd’ko et al., 2017).

Meeting these challenges requires the characterization of

X-ray optics at the operational wavelength. This type of

characterization, called at-wavelength metrology, is the ulti-

mate approach for determining optics quality and its effects on

the wavefront. Several such techniques exist, though none are

fully adequate for the high sensitivity required for applications

such as CBXFELs. Existing advanced at-wavelength wave-

front sensing techniques are based on either grating inter-

ferometry (Weitkamp et al., 2005; Wang et al., 2011; Grizolli

et al., 2017) or near-field speckle tracking (Berujon et al.,

2020a,b). A recently developed coded-mask method (Qiao

et al., 2021a,b, 2022) combines the advantages of both

approaches with superior resolution and sensitivity. It has

been successfully demonstrated for applications in at-wave-

length metrology and phase-contrast imaging in standard

transmission geometry. However, using this method for crystal

characterization is challenging because of the diffraction

geometry, especially for ultra-high-quality crystals that

produce only small wavefront distortions. In this work, we

study different measurement geometries and propose the

optimal approach for crystal wavefront characterization using

a coded-mask method. The approach was demonstrated in

experiments carried out at the 1-BM-B optics testing beamline

(Macrander et al., 2016) at the Advanced Photon Source

(APS), Argonne, USA. Characterization results of high-

quality silicon and diamond crystals are presented, along with

statistical analysis over the entire crystal surface showing the

distribution of the local Bragg-plane height error and the

effects of the error on wavefront quality.

2. Method

2.1. Coded-mask-based wavefront sensing

The critical component of any near-field speckle-tracking

wavefront sensing technique is a speckle generator to intro-

duce a random speckle pattern in the beam images. Tradi-

tionally, a piece of sandpaper or a membrane filter is used as

the speckle generator, but such materials generate complex

pattern structures that are not necessarily optimal for the

sample and beam condition being tested. By contrast, we

employ a predesigned random-phase mask to accommodate

different test samples and beam conditions and to produce

ultra-high-contrast speckle images. The high contrast in these

images allows high resolution and speed to be achieved by

using advanced phase-retrieval algorithms, such as maximum-

likelihood optimization (Qiao et al., 2021a) and machine

learning (Qiao et al., 2022).

The coded mask is usually a binary mask having randomly

distributed pixels, with each pixel configured to have a 50%

probability of being a high-phase pixel or a low-phase pixel,

wherein a high-phase pixel alters the wavefront phase by a

higher amount relative to the low-phase pixel. This relative

difference between the high-phase and low-phase pixels’

phase shift values is selected from 0 to 2� (typically close to �
for the highest contrast). The pitch size of the mask pixel

(usually a few micrometers) is chosen to be as small as possible

while still being resolvable by the imaging camera.

At-wavelength wavefront metrology of an optic usually

involves collecting two data sets, a ‘sample’ data set (with the

optic in the beam path) and a ‘reference’ data set (without the

optic), both having the speckle generator (e.g. coded mask)

in the beam path. A data set can be a single image (Qiao et al.,

2021a) or an array of images taken in scanning mode (Qiao et

al., 2021b). By comparing the two data sets, the local displa-

cement, �(x, y), of the speckle pattern can be obtained, where

(x, y) is in the transverse plane perpendicular to the wavefront

propagation direction, z. Then the local beam deflection angle

vector �(x, y) caused by the optic can be extracted as

�ðx; yÞ ¼
a �ðx; yÞ

d
; ð1Þ

where a is a geometric scale factor taking into account the

geometric magnification of the beam. The beam propagation

distance d is the sample-to-detector distance if the sample
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is downstream of the coded mask or the mask-to-detector

distance if the sample is upstream.

The gradient of the wavefront phase shift, r�(x, y), is then a

function of �(x, y), given by

r�ðx; yÞ ¼
2��ðx; yÞ

�
: ð2Þ

The map of wavefront phase shifts resulting from the insertion

of an optic, �(x, y), can be obtained by integrating the phase

shift gradients in the two orthogonal transverse directions,

@�/@x and @�/@y.

Next, we aim to connect the phase shift �(x, y) in the

transverse plane (x, y), which is perpendicular to the beam

propagation direction z, to the crystal’s height error h(x, l) in

its surface coordinate (x, l). In this context, the crystal is

placed in a symmetric Bragg diffraction geometry where the

diffraction plane is the (y, z) plane. All coordinates are illu-

strated in Fig. 1(a). The measured phase shift �(x, y) can be

simply projected to the (x, l) plane as �ðx; l sin �BÞ. Consid-

ering that the phase shift correlates with the path length

difference 2hðx; lÞ sin �B by a factor of 2�/�, this leads to

hðx; lÞ ¼
�� x; l sin �Bð Þ

4� sin �B

: ð3Þ

2.2. Geometry

Four possible geometries for measuring wavefront distor-

tions upon Bragg reflection from crystals are shown in Fig. 1,

with the direct beam recorded as the reference image and the

diffracted beam as the sample image.

In Fig. 1(a), the coded mask is positioned downstream

of the crystal. The diffracted beam from the crystal, upon

reaching the detector, is flipped upside down in the diffraction

plane compared with the direct beam image. However, this

inversion does not occur for the detected mask pattern. As

a result, the observed speckle displacements encapsulate not

only the crystal-induced distortion but also the phase infor-

mation from the source beam flipping. This intermingling of

effects prevents us from isolating and analyzing the sole

impact of the crystal.

In Fig. 1(b), with the coded mask placed upstream of the

crystal, both the beam and the speckle pattern are inverted in

the diffracted beam on the detector. It is possible to manually

revert this diffraction image and compare it with the direct

image. However, this procedure assumes the detector retains

identical properties upon inversion. At first glance, this

assumption seems plausible, but experimental outcomes

indicate suboptimal results. Beyond the detector’s inherent

imperfections, which could potentially be corrected through

calibration, additional challenges lie in maintaining detector

stability and accurate alignment along the 2�B diffraction arm.

We believe these aspects significantly contribute to the

experimental difficulties.

There is another fundamental problem when the coded

mask is placed downstream of a one-crystal or a double-crystal

set, as shown in Figs. 1(a) and 1(c), respectively. If a crystal has

a small miscut angle (or different miscut angles for the two

crystals), the direct and diffracted beams will have different

sizes, thus covering different areas of the mask pattern. This

discrepancy makes speckle tracking in the nonoverlapping

areas impossible.

Given these considerations, the geometry in Fig. 1(d) is our

selected arrangement for measuring wavefront distortions in

Bragg diffraction. The nondispersive double-crystal diffrac-

tion geometry ensures parallelism between the direct and

diffracted beams. Keeping a small offset between the two

crystals can also reduce the mechanical instability and

measurement errors due to the motion of the detector.

However, the geometry in Fig. 1(d) is not without issues. Of

course, it allows the characterization only of the combination

of two crystals. Another challenge is that the speckle pattern,

BH, is blurred by

BH ’ 2�H cos �B; ð4Þ

in the diffraction plane because Bragg diffraction with

diffraction vector H takes place within a crystal surface layer

of thickness, the so-called extinction effect, where �H is the

extinction length that is typically �1–100 mm depending on

the Bragg reflection. This one-dimensional blurring effect

makes the speckle tracking between the direct-beam and

diffracted-beam images challenging, because the blurring
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Figure 1
Schematics for measuring wavefront distortions upon Bragg reflection
from one crystal (a and b) or from a nondispersive double-crystal
arrangement (c and d) with the coded mask upstream (a and c) or
downstream (b and d) of the crystals. The dashed lines show the
direct beam path when the crystal(s), mask and detector move to the
dotted positions.



causes large phase-detection errors, especially at high spatial

frequency. Nevertheless, many experimental tests have been

carried out, and the geometry in Fig. 1(d) has proved effective

and provides better performance than the other geometries.

To characterize the quality of just one of the crystals in the

double-crystal arrangement, we propose a self-referencing

method based on the geometry in Fig. 1(d). In this method,

one of the crystals (usually the downstream one) is moved

laterally in its surface plane so that diffracted beam images are

measured from different areas of the crystal surface. A relative

phase shift map extracted from any two of these images (one

as ‘reference’ and the other as ‘sample’ data sets) contains

combined effects of the two areas of the moving crystal but

excludes the effects of the nonmoving one. Since no direct

beam is involved, the blurring effects due to nonzero extinc-

tion length are present for both images and are thus canceled

in the analysis. Details on how to interpret the results from

these measurement schemes are presented in Section 4.1. In

Section 4.2, we show the wavefront error measurements of

the double-crystal assembly in absolute mode using Fig. 1(d)

geometry. In this instance, the ‘reference’ dataset is the direct

beam image without crystals, while the ‘sample’ dataset is the

diffracted image after both crystals.

3. Experiment

At-wavelength wavefront sensing of crystal diffraction was

carried out at the 1-BM-B optics testing beamline at the APS

with the setup shown in Fig. 2. X-rays with a photon energy

of 14 keV were selected by a Si(111) double-crystal mono-

chromator (DCM) placed at 27.5 m downstream of the

bending-magnet source. The double-crystal wavefront sensing

arrangement shown in Fig. 2(b) was situated 31.5 m down-

stream of the source.

The almost flawless single crystals of silicon and diamond

used in the present studies were previously characterized by

RCI (Pradhan et al., 2020). The crystals exhibit very small

Bragg-plane slope errors of <� 0.1 mrad (RMS) in selected

regions of interest of �1 mm2. Special care was taken to

mount crystals strain-free to avoid artificial distortions.

The upstream crystal, serving as a conditioning crystal in the

double-crystal setup, was a high-quality diamond single crystal

in the (100) orientation of type IIa. It was grown under high

pressure and high temperature (HPHT) conditions at the

Technological Institute for Superhard and Novel Carbon

Materials (TISNCM) in Moscow, Russia (Blank et al., 2007;

Polyakov et al., 2011). The diamond crystal was set into the

400 Bragg diffraction with a Bragg angle �400 = 29.77� and an

extinction length of �400 = 3.6 mm. The 440 mm-thick diamond

crystal was furnished with two strain-relief cuts (Pradhan et al.,

2020), as shown in Fig. 2(c), to prevent the clamping strain

from propagating to the working area.

The downstream crystal in the double-crystal setup is the

test crystal that is under study in self-referencing mode. We

characterized two crystals in the downstream test position. In

the first test, we used a high-quality Si crystal to assess the

sensitivity of the method to wavefront phase distortions and

Bragg-plane errors. The crystal was set into the 531 Bragg

reflection with Bragg angle �531 = 28.84�, extinction length

�531 = 5.3 mm, and the entrance surface of the crystal cut

parallel to the (531) plane. The 531 Bragg reflection was

specifically selected to match as closely as possible the Bragg

angle of the 400 Bragg reflection of the upstream diamond

crystal; this choice means the beam reflected from the down-

stream crystal will be close to parallel to the beam incident on

the upstream crystal.

In the second test, we applied this technique to measure

Bragg-plane height errors and wavefront distortions in a

second high-quality type IIa HPHT

diamond crystal made by TISNCM. We

chose the best diamond crystal in the

(100) orientation that was available to

us. It was previously characterized with

RCI (Pradhan et al., 2020) and denoted

in that study as VB4. Like the upstream

diamond crystal, this VB4 crystal has

also been shown to exhibit a near 100%

Bragg reflectivity of X-rays (Shvyd’ko et

al., 2011). Previous studies using RCI

have shown that the Bragg-plane slope

errors of this VB4 crystal are only

slightly larger than in the Si(531) crystal

(Pradhan et al., 2020). The diamond

crystal lay freely in a recess of an

aluminium crystal holder covered with a

thin Kapton foil, as shown in Fig. 2(d).

The phase error due to the Kapton foil

was tested separately; the effects were

negligible.

The speckle generator was a coded

binary phase mask with a pitch size of
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Figure 2
(a) Schematic of the wavefront sensing setup at APS beamline 1-BM-B, and photographs of (b) a
double-crystal arrangement, (c) the upstream crystal — a diamond (100) crystal in the 400 reflection
with strain-relief cuts — and (d) the downstream crystal — a diamond (100) crystal in the 400
reflection in the sample mount.



10 mm. The coded mask was inserted into the X-ray beam

about 130 mm upstream of the double-crystal setup. The pitch

size was chosen to make the speckle size as small as possible

for the best spatial resolution but large enough to overcome

the speckle-blurring effects mentioned in Section 2.2. The

detector system consisted of a 100 mm-thick LuAG:Ce scin-

tillator, a 10� objective lens, and an Andor Neo sCMOS

camera; it was placed at a crystal-to-detector distance of d =

893 mm. The detector system has an effective pixel size of

0.65 mm and an estimated spatial resolution of 2.2 mm (Koch

et al., 1998).

4. Results

4.1. Wavefront error measurement in self-referencing mode

The high-quality Si(531) crystal was used in the downstream

test position of the double-crystal arrangement to demon-

strate the sensitivity of the self-referencing measurement and

data analysis procedures. Recall that in the self-referencing

mode two areas of the test crystal are examined, designated

here A0 and A1, yielding ‘reference’ and ‘sample’ images (data

sets), respectively. First, we screened the whole Si(531) crystal

and identified a suitable reference area, A0, that was free of

any visible defects in the X-ray diffraction image [Fig. 3(a)].

The vertical size of the diffraction image [Fig. 3(a)] is limited

by the angular acceptance of the high-order Bragg reflections

from the crystals and the dispersive geometry relative to

the Si(111) Bragg-reflecting crystals of the beamline DCM.

Figure 3(b) shows the high-contrast speckle pattern generated

by the coded mask at area A0 ; this image was used as the

‘reference’ image for the wavefront error analysis. Note that

the speckle pattern is smeared in the vertical direction, with

lower contrast than in the horizontal direction, due to

the extinction effect in Bragg diffraction, as presented by

equation (4) in Section 2.2.

To complete the self-reference measurement, we moved a

different area of the Si(531) crystal, A1, laterally into the same

field of view and obtained the ‘sample’ diffraction image,

taken with the same phase mask area in the beam. Using the

‘reference’ and ‘sample’ images, we reconstructed the relative

wavefront phase difference profile using a wavelet-transform-

based speckle vector tracking method (Qiao et al., 2020); the

result is shown in Fig. 4(a). Hereafter, the RMS deviation of

the relative wavefront phase � calculated over some area is

referred to as the RMS phase error, ��. The RMS height error,

�h, is similarly defined and related to �� via equation (3). The

RMS phase error over the entire plotted area in Fig. 4 is �� =

0.073 (or �/86), which corresponds to a Strehl ratio (a measure

of the quality of optical image formation) of S = 0.995,

following the equation

S ¼ exp ��2
�

� �
: ð5Þ

The corresponding crystal Bragg-plane height error, extracted

using equation (3), is shown in Fig. 4(b).

In some applications, such as the multicrystal X-ray cavities

of CBXFELs, the beam footprint on the crystal surface spans

only a few hundred micrometers. In such cases, it is beneficial

to characterize crystals within subareas of that size. Figure 4(c)

shows the RMS height errors (�h) within 100 mm � 100 mm

(x � l) subareas. The color plot can assist in finding the best

local areas on the crystal surface. The best subarea has the

lowest RMS Bragg-plane height error of �h = 0.66 pm,

corresponding to an RMS phase error of �� = 0.045 (or �/139)

and a Strehl ratio of 0.998. This result demonstrates not only

that the crystal is of super-high crystal quality but also that this

wavefront sensing technique has a very high phase sensitivity,

beyond �/100.

Statistical analysis of subareas over the entire crystal

surface can provide a quantitative measure of the overall
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Figure 3
Diffraction images of the Si(531) crystal taken in area A0 (a) without and
(b) with the coded mask in the beam path.

Figure 4
(a) Phase difference profile, �(x, y), between the diffraction images
taken in the ‘reference’ and ‘sample’ areas on the Si(531) test crystal.
(b) Relative Bragg-plane height error profile, h(x, l ), between those two
areas. Note that the wavefront coordinate y and the crystal surface
coordinate l in the diffraction plane have the linear relationship y = l sin �B.
(c) RMS height errors, �h, calculated within 100 m � 100 m (x � l )
subareas extracted from plot (b).



crystal quality. For example, Figs. 5(a) and 5(b) show the

statistical distribution of the RMS height errors and the

corresponding RMS phase errors of all subareas with a size

(x � l) of 100 mm � 100 mm and 200 mm � 200 mm, respec-

tively, over the entire crystal. The median (value separating

the higher half from the lower half) error across all subareas is

taken to represent the overall quality of the crystal. We use the

median instead of the average error to avoid contributions of

a few extremely large or small values. A smaller median error

value indicates better crystal quality, and a narrower error

distribution indicates better uniformity of the crystal Bragg

planes. Comparing results in Figs. 5(a) and 5(b), the median

error values increase only slightly (<10%) going from

100 mm � 100 mm to 200 mm � 200 mm areas; it also indicates

high homogeneity of the crystal quality.

Using the same setup, we characterized the VB4 diamond

(400) crystal in the downstream test position of the double-

crystal arrangement; results of the wavefront measurements

are shown in Fig. 6. The RMS phase error over the entire

plotted area [Fig. 6(a)] is �� = 0.098 (or �/64) and the RMS

Bragg-plane height error [Fig. 6(b)] is 1.39 pm. The best

subarea [Fig. 6(c)] has an RMS Bragg-plane height error of

0.74 pm, corresponding to an RMS phase error of �� = 0.050

(or �/120) and a Strehl ratio of 0.997.

Similarly, the histograms of the RMS phase errors of all

subareas over the entire VB4 diamond (400) crystal are shown

in Fig. 7. The quality of the VB4 diamond crystal is compar-

able with that of the Si(531) crystal (see Figs. 4 and 5), albeit

not quite as high, which agrees with the conclusion of Pradhan

et al. (2020). In particular, although the median RMS height

error over all subareas is similar — 1.2 pm for Si(531) and

1.5 pm for C(400) — the width of the �h distribution for the

200 mm � 200 mm areas is a factor of two larger in the

diamond crystal, indicating that, compared with the silicon

crystal, the quality of this diamond crystal is less homo-

geneous.

4.2. Wavefront error measurements in absolute mode

We use the term absolute mode to refer to the geometry in

Fig. 1(d), where the wavefront distortions of both crystals are

measured together by comparing speckles in the double-

diffracted beam (‘sample’ data set) and the direct beam

(‘reference’ data set). This mode is most helpful in char-

acterizing DCMs, especially channel-cut crystals with

restricted access to individual crystal surfaces.

Figures 8(a) and 8(b) show the speckle images in the direct

and diffracted beams, respectively, in the double-diamond-

crystal setup containing the same conditioning crystal and

VB4. The intensity of the diffracted beam is much lower than

that of the direct beam because of the narrower bandwidth

of the diamond 400 diffraction (�E/E ’ 10�5) compared

with the direct beam bandwidth, which is defined by the

111 diffraction in the silicon monochromator (�E/E ’

1.4 � 10�4).

The speckle patterns from the coded mask can be identified

from both images, but the contrast of speckles in the diffracted
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Figure 6
Same as Fig. 4 but showing results for the diamond (400) test crystal, VB4.

Figure 7
Same as Fig. 5 but showing results for the VB4 diamond (400) crystal.

Figure 5
Histograms of the measured RMS height errors (bottom axis) and RMS
phase errors (top axis) of all subareas with size (x � l ) 100 m � 100 m (a)
and 200 m � 200 m (b) over the entire Si(531) crystal.



beam is much lower, especially in the vertical direction,

because of the blurring BH [equation (4)] due to the extinction

effect. Blurring in the 400 Bragg reflection from diamond is

B400 ’ 7 mm, compared with B111 ’ 1.5 mm for the 111 Bragg

reflection from silicon crystals. As a result, applying the

speckle-tracking algorithm directly to the data in Figs. 8(a)

and 8(b) is problematic. Note that the wavefront phase

information is stored only in the speckle displacement, not

in the speckle contrast (which measures the beam transverse

coherence). In order to extract the wavefront phase, a Gaus-

sian smoothing was first applied to the direct beam image to

blur it to a contrast level similar to that of the diffracted beam,

as shown in Fig. 8(c). This step is necessary to improve the

accuracy of phase reconstruction. Thus, Fig. 8(c) becomes the

working ‘reference’ image. The wavefront phase error is then

reconstructed using Figs. 8(b) and 8(c) as the ‘sample’ and

‘reference’ data sets, respectively; the results are shown in

Fig. 8(d). The RMS phase error of the plotted area is �� = 0.34

(or �/19). A similar analysis was also carried out to determine

that the best 100 mm � 100 mm beam subarea [Fig. 8(e)] has an

RMS phase error of �� = 0.10 (or �/60) and a Strehl ratio

of 0.989. Note that a 100 mm (x) � 100 mm (y) beam subarea

corresponds to a 100 mm (x) � 200 mm (l) crystal surface area

at the Bragg angle �B = 29.77�.

Finally, comparing the results of the absolute mode in

Fig. 8(d) and the self-referencing mode in Fig. 6(a), we can

note that the former has lost some of the high-spatial-

frequency information during the smoothing step. Also, we

expect the absolute mode to have a larger systematic error

than the self-referencing mode because of the larger motion of

both crystals and the additional detector motion. However, we

can still observe a phase sensitivity beyond the �/50 level,

sufficient for evaluating the wavefront preservation of DCMs.

5. Conclusions

This work introduces a quantitative methodology to char-

acterize crystal optics in X-ray Bragg diffraction using a state-

of-the-art, coded-mask-based wavefront sensing technique.

The method directly measures the wavefront phase error

induced by the crystal optics and provides information on the

Bragg-plane height error of the optics. These two measures are

essential for evaluating the ability of high-quality crystal optics

to preserve wavefronts and coherence, issues especially critical

for the next-generation synchrotron light sources and X-ray

free-electron lasers. The measured phase information can be

used directly to simulate and predict beamline performance. A

complete characterization of crystal optics can be provided by

combining the proposed method with traditional topography-

based techniques.

Different geometries have been examined. The double-

crystal setup with the coded mask placed upstream is optimal

for evaluating high-quality crystals. Two measurement types

are introduced: the self-referencing single-crystal mode and

the absolute double-crystal mode. The self-referencing mode

gives the highest phase sensitivities, permitting study of crys-

tals of ultra-high quality. The absolute double-crystal mode

is more appropriate for characterizing double-crystal mono-

chromators, especially channel-cut crystals, as a whole system.

Both modes have been successfully demonstrated at the

APS 1-BM beamline by characterization of the highest-

quality silicon and diamond crystals. A systematic analysis

procedure is also introduced to create a quantitative evalua-

tion of the global quality of a crystal and its local wave-

front error distribution. The proposed method will become a

standard tool at the APS 1-BM beamline to assist crystal-

related research and development and beamline optics

characterization.
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Synchrotron Rad. 18, 481–491.

Shvyd’ko, Y. (2004). X-ray Optics – High-Energy-Resolution
Applications, Vol. 98 of Springer Series in Optical Sciences. Berlin:
Springer.

Shvyd’ko, Y. (2015). Phys. Rev. A, 91, 053817.
Shvyd’ko, Y. (2016). Phys. Rev. Lett. 116, 080801.
Shvyd’ko, Y. (2019). Phys. Rev. Accel. Beams, 22, 100703.
Shvyd’ko, Y., Blank, V. & Terentyev, S. (2017). MRS Bull. 42, 437–444.
Shvyd’ko, Y., Stoupin, S., Shu, D., Collins, S. P., Mundboth, K., Sutter,

J. & Tolkiehn, M. (2014). Nat. Commun. 5, 4219.
Shvyd’ko, Y. V., Stoupin, S., Blank, V. & Terentyev, S. (2011). Nat.

Photon. 5, 539–542.
Sinn, H. (2001). J. Phys. Condens. Matter, 13, 7525–7537.
Stetsko, Y. P., Shvyd’ko, Y. V. & Brian Stephenson, G. (2013). Appl.

Phys. Lett. 103, 173508.
Stoupin, S., Terentyev, S. A., Blank, V. D., Shvyd’ko, Y. V., Goetze, K.,

Assoufid, L., Polyakov, S. N., Kuznetsov, M. S., Kornilov, N. V.,
Katsoudas, J., Alonso-Mori, R., Chollet, M., Feng, Y., Glownia,
J. M., Lemke, H., Robert, A., Sikorski, M., Song, S. & Zhu, D.
(2014). J. Appl. Cryst. 47, 1329–1336.

Toellner, T. S. (2000). Hyperfine Interact. 125, 3–28.
Verbeni, R., Kocsis, M., Huotari, S., Krisch, M., Monaco, G., Sette, F.

& Vanko, G. (2005). J. Phys. Chem. Solids, 66, 2299–2305.
Wang, H., Sawhney, K., Berujon, S., Ziegler, E., Rutishauser, S. &

David, C. (2011). Opt. Express, 19, 16550–16559.
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