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Synchrotron radiation can be used as a light source in X-ray microscopy

to acquire a high-resolution image of a microscale object for tomography.

However, numerous projections must be captured for a high-quality tomo-

graphic image to be reconstructed; thus, image acquisition is time consuming.

Such dense imaging is not only expensive and time consuming but also results in

the target receiving a large dose of radiation. To resolve these problems, sparse

acquisition techniques have been proposed; however, the generated images

often have many artefacts and are noisy. In this study, a deep-learning-based

approach is proposed for the tomographic reconstruction of sparse-view

projections that are acquired with a synchrotron light source; this approach

proceeds as follows. A convolutional neural network (CNN) is used to first

interpolate sparse X-ray projections and then synthesize a sufficiently large set

of images to produce a sinogram. After the sinogram is constructed, a second

CNN is used for error correction. In experiments, this method successfully

produced high-quality tomography images from sparse-view projections for two

data sets comprising Drosophila and mouse tomography images. However, the

initial results for the smaller mouse data set were poor; therefore, transfer

learning was used to apply the Drosophila model to the mouse data set, greatly

improving the quality of the reconstructed sinogram. The method could be used

to achieve high-quality tomography while reducing the radiation dose to

imaging subjects and the imaging time and cost.

1. Introduction

Synchrotron X-ray computed tomography (SXCT) can be

applied to acquire tomographic images for microscale or

nanoscale objects (Stampanoni et al., 2002), and has been used

for both industrial applications (Lo et al., 2007) and biology

research (Chien et al., 2012).

The Nyquist–Shannon sampling theorem (Shannon, 1949)

states that, to accurately reconstruct a signal or image, the

sampling rate must be at least twice the highest-frequency

component of the signal. In tomography, this translates to the

requirement that the number of projections should be at least

twice the number of pixels in the direction of rotation to

ensure that the object is adequately sampled and that the

reconstructed volume is free from aliasing artefacts. The

Crowther criteron (Jacobsen, 2018) indicates that the number

of projection views should be N� = (�/2) Nt for a tomographic

image of N 2
t pixels to be constructed. However, the number of

projection views should be minimized to prevent the target

object from receiving an excessive dose of radiation.
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Numerous low-dose computed tomography techniques have

been developed for medical imaging (Zhu et al., 2004;

Rampinelli et al., 2012). One such method is sparse-view

computed tomography (SVCT) (Kudo et al., 2013; Labriet et

al., 2018; Liu et al., 2020), in which the imaging dose can be

decreased by reducing the number of projection views. In

SVCT, the aim is to use fewer than N� projection views to

reconstruct an image of N 2
t pixels without visible artefacts

or noise. However, directional reconstruction methods for

sparse-view projections, such as the filtered back-projection

(FBP) algorithm and the simultaneous algebraic reconstruc-

tion technique (Kak & Slaney, 2001), may produce streak

artefacts. For example, visible artefacts and noise are

produced if an image of 5122 pixels is reconstructed from

fewer than 100 views.

Figures 1(a), 1(b) and 1(c) present 512 � 512 pixel images

produced by FBP from 180, 90 and 75 projection views,

respectively. Figures 1(d), 1(e) and 1( f) display magnifications

of the region bounded by the yellow rectangle in each image.

Numerous streak artefacts and noise are apparent in the 75-

view image in Fig. 1( f). Several iterative algorithms have been

developed to improve the quality of SVCT, such as methods

based on total variation (Sidky & Pan, 2008), non-local means

(Chen et al., 2009) and dictionary learning (Xu et al., 2012; Li

et al., 2014). Although iterative algorithms can significantly

reduce the artefacts and noise in SVCT, they may have an

overly high computational cost. SVCT can also be used with

interpolation-based methods to synthesize sinograms (Brooks

et al., 1978). Improved interpolation-based methods based on

partial differential equations (Kostler et al., 2006) or principal

component analysis (Chen et al., 2004) have also been

proposed.

Moreover, deep-learning methods for SVCT with parallel

and fan-beam projection geometries have been recently

developed. Fu et al. (2020) proposed a convolutional neural

network (CNN) for completing fragmentary differential

phase-contrast sinograms. Chen et al. (2017) proposed a resi-

dual encoder–decoder CNN for removing artefacts in tomo-

graphic images. Jin et al. (2017) developed a network

combining U-Net (Ronneberger et al., 2015) with a residual

network to remove artefacts while preserving the image

structure. Lee et al. (2019) used a residual-based U-Net (RU-

Net) to synthesize sinograms from sparse-view projections.

In cone-beam projection (Kak & Slaney, 2001; Scarfe et

al., 2006; Kumar et al., 2015), which is a three-dimensional

tomography technique, a point light source is used to acquire

a series of two-dimensional X-ray projections of a detection

plane from various views; these images can be used to

synthesize three-dimensional tomographic volume data. Two

deep-learning approaches have been proposed for SVCT

with cone-beam projection. Hu et al. (2021) used two U-Nets

to separately enhance interpolated projections and denoise

reconstructed images, and Chao et al. (2022) proposed two

encoder–decoder CNNs for separately interpolating projec-

tions and improving the quality of reconstructed images.

Although the X-rays are emitted from a point light source

in SXCT, the emission of these X-rays can be considered an

instance of parallel-beam projection because the object is

typically on the millimetre or nanometre scale whereas the

light source is several metres from the detector (Cheng et al.,

2014). Therefore, aliasing artefacts caused by beam divergence

(Schulze et al., 2011) are negligible. In this work, we propose a

deep-learning method for SXCT with sparse-view projections.

First, the sparse data were augmented by synthesizing a

sequence of two-dimensional X-ray projections for the missing

view angles with a CNN-based video-frame interpolation

method. Subsequently, the synthesized images were trans-

formed to sinograms and the method proposed by Lee et al.

(2019) was employed to correct errors. Data sets from mice

and Drosophila were collected to train and validate the

proposed model.

2. Methods

Figure 2 presents the steps of the proposed method. First, the

input projections are used to synthesize the missing view

angles. Sinogram synthesis then corrects the errors of sino-

grams transformed from the synthesized projections. The
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Figure 1
FBP results for (a) 180, (b) 90 and (c) 75 projection views. (d), (e) and ( f ) Magnifications of the boxed region in (a) for (a), (b) and (c), respectively.



horizontal and vertical axes of each sinogram represent the

X-ray detector locations and the projection angles, respec-

tively. For all image sets, the projection-angle range was at

least 180�. The following two subsections describe the details

of the projection- and sinogram-synthesis methods.

2.1. Projection synthesis

For projection synthesis, we adopted a CNN-based video-

frame interpolation method to produce two-dimensional

projection data for the missing view angles. Video-frame

interpolation is a technique of increasing video frame rates

by smoothing the transitions between two video frames.

Numerous methods of video-frame interpolation have been

proposed, such as a method of smoothing the interpolated

frame with pixel-domain distributed video coding (Ascenso

et al., 2005) and a phase-based method in which motion is

expressed as the phase shift of corresponding video-frame

pixels (Meyer et al., 2015). However, the interpolated frames

produced by these methods are blurry and have artefacts. In

recent years, several CNN-based video-frame interpolation

methods have been proposed. Liu et al. (2017) proposed deep

voxel flow (DVF), an end-to-end fully differentiable network

for video-frame interpolation. They designed a convolutional

encoder–decoder network to estimate the optical flow

between input frames and used it to warp the input frames,

producing interpolated frames. Although DVF does not

produce blurry images, artefacts still remain. To improve the

performance of DVF, Liu et al. (2019) proposed CyclicGen.

CyclicGen uses a cycle-consistency loss function to ensure that

the interpolated frames can be used to reconstruct the input

frames without large errors.

Figure 3 depicts the architecture of CyclicGen. Each base-

line model is a pretrained CNN model that produces a flow

map Fa,b of the input frames Ia and Ib. This flow map can then

be used to generate an warped frame I 00:5ðaþbÞ. Let It be the

video frame taken for time t. CyclicGen first combines three

video frames, I0, I1 and I2, to synthesize frames I 00:5 and I 01:5.

Subsequently, CyclicGen combines I 00:5 and I 01:5 to synthesize

I 001 such that the difference between I1 and I 001 is minimized. In

the figure, Lr, Lc and Lm indicate the the loss functions of

CyclicGen; these are the reconstruction loss, cycle-consistency

loss and motion-linearity loss, respectively. CyclicGen also

implements edge-guided training (Xie & Tu, 2015), which

preserves the edge structure for better results.

We used CyclicGen to synthesize a series of two-dimen-

sional projections instead of directly interpolating a sinogram.

Because the projection-angle intervals for a series of two-

dimensional X-ray projections for tomography are uniform,

they can be considered to be a series of video frames;

CyclicGen can then be used to increase the frame rate. For

training, three consecutive two-dimensional projection frames

composed a single training instance; the first and third

projection frames were the input, and the second projection

was the target.

2.2. Sinogram synthesis

Lee et al. (2019) proposed RU-Net to enhance the perfor-

mance of U-Net and used it to correct errors in sinograms
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Figure 3
The structure of CyclicGen. First, I0, I1 and I2 are used to produce I 00:5 and I 01:5; these are then used to produce I 001 with minimal difference from I1.

Figure 2
An overview of our synthesis method. First, the input sparse projections are interpolated to synthesize new images for the missing views. This mixed data
set is then used to produce a sinogram. Finally, an error-correction method is applied to this sinogram.



synthesized from scarce data. Figure 4 displays the structure

of RU-Net. The U-Net structure is based on the encoder–

decoder model (Cho et al., 2014). Each level of the encoder

and decoder comprises a series of convolutional (conv) blocks

and rectified linear units (ReLU). At each encoder level from

top to bottom, the data size is halved by a convolutional block

with a stride-2 kernel; these data are then input for the next

level. Similarly, at each decoder level from bottom to top, a

deconvolutional block (deconv) with a stride-2 kernal doubles

the size of the output from the previous level. Skip connec-

tions provide the output of each encoder as input for the

decoder on the same level. The technique of residual learning

(He et al., 2016) is applied in RU-Net. In Fig. 4, the final output

is the sum of the original input and the output data of the last

decoder level.

Lee et al. (2019) used simple linear interpolation to

compensate for missing views in sparse input data; this could

cause the details and edges to be blurred. To overcome this

problem, we used CyclicGen to compensate for the missing

projections before synthesizing the sinogram. The results

presented in Section 3 demonstrate that the reconstruction

quality of the proposed method is superior to that of the

method formulated by Lee et al. (2019).

2.3. Training

We trained the learning models for the projection synthesis

and sinogram synthesis with an ‘1 norm loss function defined

as follows:

L ¼
PN

i¼ 1

PM

j¼ 1

kxij � yijk1; ð1Þ

where N is the number of data instances, M is the number of

patches, and xi,j and yi,j are the jth patches cropped from the

ith input and target, respectively. For the projection-synthesis

model (CyclicGen), the input and target were selected from

a set of two-dimensional projection images with sufficient

projection views. For the sinogram-synthesis model, the input

was a sinogram produced by CyclicGen and the target was the

ground-truth sinogram. We averaged the overlapping regions

to stitch any two adjacent patches; the size of the overlap was

half a patch.

3. Results

The proposed method was implemented in Python 3.7 and

TensorFlow 2.5. A computer equipped with an Intel i7-12700

CPU, 64 GB of RAM and a NVIDIA RTX 4090 GPU was

used to train the learning models. Two data sets obtained from

biological experiments on Drosophila and mice were used to

verify the proposed method (Stampfl et al., 2023). The data

sets were provided by the NanoX Laboratory, Institute of

Physics, Academia Sinica (https://www.nanoxlab.org). All

X-ray images were acquired with a light source from the

Pohang Accelerator Laboratory. The beam flux and peak

energy were within 107–109 photons s�1 mm�2 (150 mA) and

23–50 keV, respectively. The exposure time was 1 s per frame.

The detector array had 512 � 512 elements and the pixel size

was 1.875 mm. The Drosophila data set comprised 57 X-ray

image sets of Drosophila brains and the mouse data set

comprised 17 X-ray image sets of mouse brains. Each X-ray

image set comprised 600 X-ray images with a projection-angle

interval of 0.3�; the sizes of each X-ray image and sinogram

were 512 � 512 and 600 � 512 pixels for the Drosophila and

mouse sets, respectively. Each X-ray image and sinogram was

sliced into 225 and 375 overlapping patches with sizes of

64 � 64 and 48 � 64 pixels, respectively. For model training,

we randomly chose 49 and 13 image sets from the Drosophila
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Figure 4
The structure of RU-Net in the sinogram-synthesis method. Each maximum pooling layer in U-Net was replaced by a convolutional block, and residual
learning was added.



and mouse sets, respectively. The remaining images composed

the test data sets.

To simulate a sparse-view projection, we uniformly selected

75 X-ray images from each X-ray image, effectively increasing

the projection-angle interval for each input to 2.4�.

The following subsections detail the experiments and

results.

3.1. Drosophila data set

We first trained CyclicGen on the Drosophila data set for

37 h. Figure 5 presents the tomographic images reconstructed

by FBP using the Drosophila X-ray projections; the second

row displays enlargements of the region indicated by a yellow

arrow in Fig. 5(a) for the corresponding image above it.

Figure 5(a) presents the ground truth reconstructed from 600

real projections; each dark spot represents the cross section of

a brain neuron stained with Golgi’s method (Chen et al., 2021).

Figure 5(b) presents the image directly reconstructed from

75 projections, and Figs. 5(c) and 5(d) present the images

reconstructed from the projections synthesized by using

bicubic interpolation and CyclicGen, respectively, to increase

the number of projection views from 75 to 600. The CyclicGen

image still had numerous artefacts and noise because the

characteristics of the compositing sine waves were not

considered for the CyclicGen synthesis.

Figures 6(a), 6(b), 6(c), 6(d) and 6(e) display the sinograms

for Figs. 5(a), 5(c), 5(d), 5(e) and 5( f), respectively; the

vertical and horizontal axes represent the projection angles

and location of the X-ray detectors, respectively. The second

row of Fig. 6 displays enlargements of the region indicated by

a yellow arrow in Fig. 6(a) for the corresponding first-row

images. The absolute differences between the ground-truth

sinogram, Fig. 6( f), and the sinograms in Figs. 6(g)–6( j) are
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Figure 5
Tomographic images of Drosophila. (a) The ground-truth image and images reconstructed from 75 X-ray projection views (b) directly or with synthesis
by (c) bicubic interpolation, (d) CyclicGen, (e) bicubic interpolation with RU-Net, or ( f ) CyclicGen with RU-Net. (g)–(l) Magnifications of the region
indicated by a yellow arrow in (a) for the corresponding figures in the first row.

Figure 6
Drosophila sinograms. (a), (b), (c), (d) and (e) Sinograms corresponding to the images in Figs. 5(a), 5(c), 5(d), 5(e) and 5( f ), respectively.
( f )–( j) Magnifications of the region indicated by a yellow arrow in (a) for the corresponding figures in the first row. (k)–(n) Absolute differences
between the ground truth ( f ) and the corresponding images on the second row. Pixels with higher brightness indicate larger errors.



displayed in Figs. 6(k)–6(n). Brighter pixels indicate larger

errors. As indicated in Fig. 6(a), each significant object

projected a sine-wave locus in the sinogram. However, the key

projection loci in both Figs. 6(b) and 6(c) were interfered by

artefacts generated during the synthesis.

RU-Net was then applied to correct the artefacts of the

synthesized sinograms; training the network on the Droso-

phila data set took 7 h. The sinograms synthesized by bicubic

interpolation and CyclicGen were then input to the trained

RU-Net model. Figures 6(d) and 6(e) present the sinograms

synthesized by bicubic interpolation and CyclicGen, respec-

tively, after artefact removal with RU-Net, and Figs. 5(e) and

5( f) present the corresponding reconstructed images. As

indicated in Figs. 6(m) and 6(n), the incorporation of RU-Net

yielded a clear decrease in the severity of errors in sinogram

synthesis. As shown in Fig. 6(n), the sinograms synthesized

by the proposed method had less severe errors than those

synthesized by other methods.

The images produced with bicubic interpolation had the

most severe streak and arc artefacts; by contrast, the results of

the proposed method were similar to the ground-truth images.

We quantitatively compared the quality of the reconstructed

tomographic images using the metrics of peak signal-to-noise

ratio (PSNR) and structural-similarity index measure (SSIM).

Tables 1 and 2 present the comparison results and the

computation time required for reconstructing each image set,

respectively. Although the proposed method required the

longest computation time, its reconstructed tomographic

images had superior PSNR and SSIM to those of the other

methods.

3.2. Mouse data set

Several studies on learning-based methods for SVCT have

suggested that at least 25000 X-ray images should be used for

training (Hu et al., 2021; Chao et al., 2022). However, collecting

training data may be challenging, particularly for biological

experiments for which sample preparation may take several

days. In this experiment, we only collected 7800 X-ray images

for the mouse data set. Golgi’s method was also applied for

imaging the brain neurons of mice (Chin et al., 2020). Fig. 7(a)

displays a tomographic image in the mouse data set recon-

structed from 600 projection views (the ground truth) and a

magnification of the image is presented below in Fig. 7( f);

images reconstructed with other methods are presented in

the subfigures.

The proposed method was trained on the mouse training

data set; however, CyclicGen produced results with SVCT

noise and numerous artefacts [Fig. 7(c)].

We then applied the model trained on the larger Drosophila

data set to reconstruct the mouse images. As shown in

Fig. 7(d), the sinogram-synthesis artefacts were removed but

the SVCT noise was still present. These results indicate that

artefacts and noise may be generated by a model if the

quantity of training data is insufficient. Therefore, we applied

transfer learning (TL) (Pan & Yang, 2010) to reconstruct the

mouse images. TL is performed as follows: for two data sets in

two domains, D1 and D2 with D1 larger than D2, a learning

model is first trained on D1; this model is called the pretrained

model. The pretrained model can be further trained on D2 to

refine its performance for the smaller domain. Hence, the

proposed model trained on Drosophila (the pretrained model)

was trained on the mouse data set. The tomographic image

reconstructed through the proposed model after TL is
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Figure 7
Tomographic images in the mouse data set. (a) The ground-truth image and images reconstructed from 75 projection views (b) directly and with the
proposed method trained (c) on the mouse data set, (d) on the Drosophila data set or (e) with TL. ( f )–( j) Magnifications of the region indicated by a
yellow arrow in (a) for the corresponding figures in the first row.

Table 1
PSNR and SSIM for the reconstructed Drosophila images.

Bicubic CyclicGen Bicubic + RU-Net
CyclicGen +
RU-Net

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

48.61 0.990 50.28 0.993 49.40 0.993 54.64 0.997

Table 2
Time taken for image-set reconstruction.

Bicubic CyclicGen Bicubic + RU-Net CyclicGen + RU-Net

182 s 793 s 310 s 921 s



presented in Fig. 7(e); Fig. 7( j) displays a magnified version

of the image. Table 3 presents the average PSNR and SSIM

of the reconstructed images; the columns FBP, +Mouse,

+Drosophila and TL indicate the results for FBP without any

correction, for the proposed method trained on the mouse

data set, for the proposed method trained on the Drosophila

data set and for the proposed method with TL, respectively.

The experimental results reveal that the proposed model with

TL had superior performance than the other models for the

domain with insufficient training data.

4. Conclusions

We have developed a CNN approach based on CyclicGen

and RU-Net for SXCT with sparse-view projections. In SVCT,

streak artefacts and noise are often produced during sinogram

reconstruction because the number of X-ray projections is

insufficient – at fewer than 100 views. To address this problem,

we employed CyclicGen to augment the X-ray projections,

synthesized sinograms, and then applied RU-Net to correct

synthesis errors in the produced sinograms. We validated the

method on two data sets and demonstrated that it was effec-

tive for SXCT with sparse-view projections.

Specifically, the results indicate that tomographic images of

512 � 512 pixels can be reconstructed from 75 X-ray projec-

tions without visible streak artefacts or noise.

The proposed method can be used for a wide variety of

applications in three-dimensional tomography. The artefacts

and noise of sparse-view projections can be suppressed while

preserving the main features if a sufficient amount of training

data can be collected. Typically, training a model to recon-

struct a volume of 5123 volumetric pixels requires �25000

training projection images. The process of obtaining training

data for SXCT may also cause sample damage due to exposure

to a high dose of radiation. However, TL can be used to first

allow the model to learn artefact and noise patterns with

sufficient training data collected from non-vulnerable objects

or phantoms before being applied to the target domain. The

proposed method can then effectively remove the streak

artefacts and noise of sparse-view projections while preserving

the appearance of the key objects in the images.

In further studies, we plan to improve the performance of

the proposed model to a level where it is effective for fewer

than 50 X-ray projections. Moreover, we intend to improve

the model’s efficiency – specifically, to improve its ability to

compensate for missing projections at a lower computational

cost. We also intend to modify the proposed model to recon-

struct only regions of interest from sparse-view projections.

For example, a sparse-view projection reconstruction model

could be used to reconstruct only the brain-neuron regions for

the Drosophlia and mouse data sets.
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Table 3
Average PSNR and SSIM for the reconstructed mouse images.

FBP + Mouse + Drosophila TL

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

21.07 0.493 22.45 0.747 39.89 0.934 42.85 0.949
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