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A multi-objective genetic algorithm (MOGA) is a powerful global optimization

tool, but its results are considerably affected by the crossover parameter �c.

Finding an appropriate �c demands too much computing time because MOGA

needs be run several times in order to find a good �c. In this paper, a self-

adaptive crossover parameter is introduced in a strategy to adopt a new �c for

every generation while running MOGA. This new scheme has also been adopted

for a multi-generation Gaussian process optimization (MGGPO) when produ-

cing trial solutions. Compared with the existing MGGPO and MOGA, the

MGGPO and MOGA with the new strategy show better performance in

nonlinear optimization for the design of low-emittance storage rings.

1. Introduction

In the design of an accelerator complex, nonlinear beam

dynamics optimization is often repeatedly conducted to

ensure the accelerator meets the required performance. A

larger dynamic aperture (DA) secures a high injection effi-

ciency as it helps to capture the injected beam of large

amplitude. A longer Touschek lifetime implies that the loss of

stored beam due to energy transfer between electrons in the

beam is minimized. The DA area and Touschek lifetime can be

increased by imposing appropriate sextupole strengths. Opti-

mization algorithms can help to find suitable sextupole

strengths.

Several stochastic global optimization schemes such as the

multi-objective genetic algorithm (MOGA) (Deb et al., 2002;

Yang et al., 2009), multi-objective particle swarm optimization

(MOPSO) (Pang & Rybarcyk, 2014; Lin et al., 2015) and multi-

generation Gaussian process optimization (MGGPO) (Song et

al., 2020) have been successfully adopted in optimizing the

lattice design.

MOGA exploits survival of the fittest by analogy with

biological evolution. First, N candidate solutions are produced

randomly. These parent solutions are combined to yield child

solutions by crossover, and some variables of child solutions

are changed by mutation. The N best, i.e. fittest, solutions are

retained and others are abandoned so that a population of

solutions is maintained. These solutions become parents of the

next generation. This process is carried out iteratively until the

N solutions converge sufficiently (Pareto front).

In contrast, MGGPO generates more solutions (trial solu-

tions) than the population by utilizing crossover and mutation

of MOGA and random movement using the MOPSO

mechanism which mimics animals’ organized movement such
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as flocking behavior to find food. MGGPO uses Gaussian

process (GP) regression, a kind of supervised machine

learning, to predict objectives of trial solutions because this

prediction requires negligible computing time. The N best

solutions are retained and others are discarded. Objectives of

selected solutions are evaluated to establish a GP model for

GP regression in the subsequent generation.

In MOGAs, crossover, i.e. simulated binary crossover

(SBX), and mutation are quantified using the crossover

parameter �c and the mutation parameter �m; these para-

meters affect the Pareto front and the convergence speed. In

existing MOGAs, �c is fixed at every generation. In this paper,

we introduce the self-adaptive crossover parameter (SAXP)

scheme, which uses a new �c at each generation (Deb et al.,

2007). A SAXP strategy was also adopted to a MOGA

crossover for manufacturing trial solutions in MGGPO.

Section 2 introduces the SAXP strategy. Section 3 compares

the results of MGGPO and MOGA in optimizing nonlinear

dynamics of low emittance storage rings, each using either a

fixed crossover parameter (FXP) or SAXP scheme. Section 4

presents conclusions.

2. Self-adaptive crossover parameter strategy

We used a real-coded genetic algorithm (GA) for nonlinear

beam dynamics optimization and, therefore, for crossover we

used an SBX formula,

c1;i ¼
1

2
1þ �ið Þp1;i þ 1 � �ið Þp2;i

� �
; ð1Þ

c2;i ¼
1

2
1 � �ið Þp1;i þ 1þ �ið Þp2;i

� �
; ð2Þ

where i is the decision-variable index, p1, i and p2, i are decision

variables of the parent solutions, c1, i and c2, i are decision

variables of child solutions, and

�i ¼
2uð Þ

1=ð�cþ1Þ
if 0 � u � 0:5;

1= 2 1 � uð Þ½ �
� �1=ð�cþ1Þ

if 0:5< u< 1;

(

ð3Þ

where 0 � u � 1 is a uniformly distributed random number. In

MOGA, �c is set by the user and generally remains constant

during the whole MOGA process.

Equations (1) and (2) demonstrate that two child solutions

c1, i, c2, i lie on a line between two parent solutions p1, i, p2, i in

decision-variable space, and that the children are located

inside a region bounded by parents if 0 � �i � 1 (i.e. 0 � u �

0.5), and outside of that region if �i > 1 (i.e. 0.5 < u < 1).

�c in equation (3) determines the probability distribution of

offspring. As �c increases, the probability distribution of

offspring around the parents narrows in the variable space

(Fig. 1); i.e. when random number u is fixed, the child solution

nears the parent as �c increases. For example, when p1 = 5, p2 =

10 and u = 0.1, the first child c1 created with �c = 15 is 5.24 and

the second child c 01 created with � 0c = 5 is 5.59 (Fig. 2). This

characteristic can be exploited using the principle of Nelder

and Meade’s simplex (Press et al., 1992) to improve the child

solutions. Firstly, offspring are produced by crossover using a

fixed �c that is pre-defined by the user. Objectives of each

child and two parents are compared. If a child solution is

better than both parent solutions, then a better solution than

this child can probably be found at a farther position from the

nearest parent than this child. This principle was created by

exploiting the expansion concept of the simplex. To obtain this

‘farther’ solution, �c is replaced with a new parameter � 0c < �c

and another crossover is conducted. If the resulting child is

inferior to the parents, then another crossover is conducted

using � 0c > �c by exploiting contraction of the simplex. Other-

wise, the crossover uses � 0c = �c. The same u must be used for

the first and second crossovers.

The new � 0c is chosen using a protocol. The relationship

between �c and �i differs [equation (3)] according to whether

0 � u � 0.5 (0 � �i � 1) or 0.5 < u < 1 (�i > 1). The formula

for � 0c also differs according to whether the child solution is

superior or inferior to the parent solutions. Therefore, four � 0c
formulae will be listed.

When child c1 is superior to both parents p1 and p2, it must

be that jc 01 � p1| > |c1 � p1|. If �i > 1, the child is located outside
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Figure 1
Distribution of two offspring according to the crossover parameter �c.

Figure 2
Locations of c1 and c 01 with �c = 5 and � 0c = 10 and the same random
number u = 0.1.



of the two parents by external division from equation (2).

From equation (2), �i can be written as

�i ¼ 1þ
2 c1;i � p1;i

� �

p1;i � p2;i

: ð4Þ

When �i > 1, equation (3) can be rearranged to

�c ¼ � 1þ
log 2 1 � uð Þ½ �

log �i

� �

: ð5Þ

We introduce parameter

� ¼
c 01;i � p1;i

c1;i � p1;i

ð6Þ

to quantify how much changing the crossover parameter

affects the difference between c 0 and c.

Here, jc 01 � p1| > |c1 � p1|, so � > 1. As � increases, c 01;i moves

away from p1. From equation (4), � 0i can be calculated by

replacing c1, i with c 01;i,

� 0i ¼ 1þ
2 c 01;i � p1;i

� �

p1;i � p2;i

c1;i � p1;i

c1;i � p1;i

¼ 1þ � �i � 1ð Þ: ð7Þ

Using equation (5), the new � 0c can be written as

� 0c ¼ � 1þ
log 2 1 � uð Þ½ �

log � 0i

log �i

log �i

� �

¼ � 1 � �c þ 1ð Þ
log �i

log � 0i

� �

¼ � 1þ
�c þ 1ð Þ log �i

log 1þ � �i � 1ð Þ
� � : ð8Þ

In equation (8), � 0c < �c if � > 1 and �i > 1. The right-hand side

of equation (8) includes �i, which has decision variable index i;

this condition means that � 0c is determined differently

according to all variables of all solutions. Strictly speaking, � 0c
should be denoted as � 0c;i . If child c1 is inferior to both parents

p1 and p2, then � can be replaced with 1/� in equation (8) to

make c 01 be created closer than c1 to p1. Therefore, � 0c can be

presented as

� 0c ¼ � 1þ
�c þ 1ð Þ log �i

log 1þ �i � 1ð Þ=�
� �� � : ð9Þ

If 0� �i < 1, offspring are between the two parents by internal

division from equation (2). When �i < 1, from equation (3),

�c ¼ � 1þ
log 2uð Þ

log �i

: ð10Þ

From equation (3), � 0i must not be negative. If we define � 0i as

equation (7), then � 0i may be negative, when �i < 1, because �

can be any value > 1. We need a new � formula to assure that

0 � � 0i � 1 when 0 � �i � 1. When c1 is superior to p1 and p2,

increased � must move c 01 farther away from p1 than c1. Here,

when 0 � �i � 1 and c1 is superior to p1 and p2, then we can

introduce � with the relationship

� 0i ¼ �ið Þ
�
: ð11Þ

With equation (11), if 0 � �i � 1, then 0 � � 0i � 1.

If � � 1, then � 0i � �i and, as � increases, � 0i decreases.

From equation (4), when 0 � � 0i � 1, a decreased � 0i
increases 2 c 01;i � p1;i

� �
=p1;i � p2;i

�
�

�
� because � 0i � 1 =

2 c 01;i � p1;i

� �
=p1;i � p2;i � 0; i.e. when � � 1, c 01;i is produced

at a farther position from p1, i than c1, i, and when � increases,

c 01;i moves away from p1, i. Using equations (10) and (11),

� 0c is calculated as

� 0c ¼ � 1þ
log 2uð Þ

log � 0i

log �i

log �i

¼ � 1þ �c þ 1ð Þ
log �i

log � 0i

¼ � 1þ
�c þ 1ð Þ

�
: ð12Þ

In equation (12), � > 1, so � 0c < �c. If c1 is inferior to p1 and p2,

then we replace � with 1/�, so � 0c becomes

� 0c ¼ � 1þ � �c þ 1ð Þ: ð13Þ

Otherwise, if a child solution is not inferior to and superior to

both two parents, then we set � 0c = �c: If � 0c calculated using

equations (8), (9), (12) and (13) is negative then we set � 0c = 0.

If � = 1, the scheme of SAXP is the same as that of FXP

because � 0c will always be the same as �c. Different � 0c deter-

mined by equations (8), (9), (12) and (13) are adopted to each

variable of each solution. This means that all variables of new

child solutions are determined by the same crossover formulas

equations (1)–(3) and different crossover parameter � 0c.

3. Comparison of results of fixed and self-adaptive

strategy

The SAXP scheme was first applied to MGGPO. MGGPO

produces as many as 10N trial solutions by using random

movement and 10N solutions by using crossover and mutation,

where N is the population. Crossover can use the SAXP or the

FXP scheme. To fulfill the SAXP strategy, objectives of child

solutions must be calculated twice. This means that MGGPO

using SAXP consumes double the computing time compared

with MGGPO using FXP. However, first objectives investi-

gation of the child solution to determine � 0c was not conducted

using particle tracking but GP regression, meaning that not

the calculation values but the expectation values of objectives

were used to determine � 0c. GP regression demands insignif-

icant computing time, so MGGPO takes similar times when

using SAXP and FXP.

MGGPO exploiting both SAXP and FXP was used to

simultaneously increase the on and off momentum dynamic

apertures (DAs) of the Korea-4GSR lattice. Korea-4GSR is a

28-cell low-emittance electron storage ring with hybrid seven-

bend achromat optics (Oh et al., 2021). The ring has six

sextupoles in each cell, and the ring is assumed to have a

periodicity of 14 in terms of sextupole configuration (i.e. 12

power supplies for sextupoles in the ring). In the simulation,

we used two of the 12 sextupoles to correct chromaticity and

the remaining 10 sextupoles as decision variables of MGGPO.
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On (� = 0%) momentum DA area and off (� = 4%) momentum

DA area were set as the two objectives. Population N was set

at 300 and DA area was calculated using 100-turn tracking to

reduce computing time. �m = 60 and �c = 60. For SAXP, � = 3

and � 0c was calculated using equations (8), (9), (12) and (13).

MGGPO with 100 generations was performed first using the

MOGA crossover in the FXP way [Fig. 3(a)] then in the SAXP

way [Fig. 3(b)], and the solutions were compared at the 100th

generation in each case [Fig. 3(c)]. MGGPO with SAXP

reveals better solutions than MGGPO with FXP [Fig. 3(c)].

MOGA using the SAXP and the FXP method was also

performed, with the same decision variables and objectives

that were used for MGGPO. Other values were N = 300, �m =

25 and �c = 10. The algorithm was run for 100 generations.

When MOGA using SAXP is conducted, the objectives of

both child solutions c and c 0 were estimated using particle

tracking, unlike in MGGPO, in which they were estimated by

using expectation values of GP regression. For this reason,

MOGA that used SAXP required twice as much computing

time as MOGA that used FXP.

First, to find an appropriate � value, MOGA with SAXP

was conducted using a range of � [Figs. 4(a)–( f)]. Results

indicated that � = 5 is a good choice for the SAXP scheme, and

provides better solutions than MOGA using FXP. When � = 5,

the results of MOGA using SAXP at N generations and FXP

at 2N generations were compared with, N from 20 to 100,

considering doubled computing time in the SAXP strategy

compared with the FXP strategy (Figs. 5 and 6). Compared

with the FXP scheme, the SAXP scheme gave inferior solu-

tions at N = 20, 40 and similar solutions at N = 60, but superior

solutions at N = 80, 100. The distribution of � 0c for all variables

of all solutions obtained by the SAXP scheme with � = 5 at

generation 100 is shown in Fig. 7.

4. Conclusion

Previous studies that have applied MOGA have usually used a

constant crossover parameter for SBX, i.e. the FXP strategy.

We tried another way for SBX by changing the crossover

parameter at each generation, i.e. the SAXP strategy. We

compared results of the MOGA optimization with the two

schemes to simultaneously optimize the on- and off-

momentum DA areas for the Korea-4GSR lattice. We verified

that MOGA using SAXP certainly presents a better Pareto

front than MOGA using FXP when an appropriate � value

is adopted
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Figure 3
Comparison of objectives by MGGPO using FXP and SAXP with � = 3 at generation (a) 10, (b) 50, (c) 100 and (d) 150.
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Figure 5
Results of MOGA with FXP strategy at 2N generations and SAXP strategy at N generations where N is (a) 20, (b) 40, (c) 60, (d) 80 and (e) 100.

Figure 4
Comparison of objectives by MOGA using FXP and SAXP with (a) � = 2, (b) � = 3, (c) � = 4, (d) � = 5, (e) � = 6 and ( f ) � = 7.
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Figure 6
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