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Signal-to-noise ratio and spatial resolution are quantitatively analysed in the

context of in-line (propagation based) X-ray phase-contrast imaging. It is known

that free-space propagation of a coherent X-ray beam from the imaged object to

the detector plane, followed by phase retrieval in accordance with Paganin’s

method, can increase the signal-to-noise in the resultant images without dete-

riorating the spatial resolution. This results in violation of the noise-resolution

uncertainty principle and demonstrates ‘unreasonable’ effectiveness of the

method. On the other hand, when the process of free-space propagation is

performed in software, using the detected intensity distribution in the object

plane, it cannot reproduce the same effectiveness, due to the amplification of

photon shot noise. Here, it is shown that the performance of Paganin’s method is

determined by just two dimensionless parameters: the Fresnel number and the

ratio of the real decrement to the imaginary part of the refractive index of the

imaged object. The relevant theoretical analysis is performed first, followed by

computer simulations and then by a brief test using experimental images

collected at a synchrotron beamline. More extensive experimental tests will be

presented in the second part of this paper.

1. Introduction

X-ray phase-contrast imaging (PCI) is a class of powerful

techniques for analysing the internal structure of non-crys-

talline samples (Paganin, 2006; Wilkins et al., 2014; Endrizzi,

2018; Quenot et al., 2022). Seminal results in this field were

obtained in the 1990s, using coherent beams generated by

synchrotrons (Snigirev et al., 1995; Momose, 1995) and

laboratory sources (Ingal & Beliaevskaya, 1995; Davis et al.,

1995; Wilkins et al., 1996), although some closely related

experiments were demonstrated earlier (Bonse & Hart, 1965;

Ando & Hosoya, 1972; Förster et al., 1980). X-ray PCI has a

significant potential for increasing image contrast of biological

soft tissues, compared with conventional absorption-based

X-ray imaging. Various forms of X-ray PCI of biological

samples have been demonstrated over the years (Wilkins et al.,

2014; Taba et al., 2019; Endrizzi, 2018). In this work, however,

we focus on just one method, known as in-line or propagation-

based imaging (PBI) (Snigirev et al., 1995; Wilkins et al., 1996;

Nugent et al., 1996; Cloetens et al., 1996). For a detailed history

of the development of X-ray PCI technology and the current

state of the art, see, for example, Paganin (2006), Wilkins et al.

(2014), Endrizzi (2018) and Quenot et al. (2022).

PBI represents the simplest X-ray phase-contrast imaging

technique, at least in principle. It does not require any optical

elements in order to render phase contrast visible, relying

https://doi.org/10.1107/S1600577524003886
https://journals.iucr.org/s
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20imaging&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=computed%20tomography&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=computed%20tomography&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=phase%20contrast&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=spatial%20resolution&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:timur.gureyev@unimelb.edu.au
mailto:quiney@unimelb.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577524003886&domain=pdf&date_stamp=2024-06-06


instead on the free-space propagation of the beam transmitted

through the sample before it is registered by a position-

sensitive detector. The key requirement for PBI is a suffi-

ciently high degree of spatial coherence of the illuminating

beam (Wilkins et al., 1996; Cloetens et al., 1996; Paganin,

2006), which is typically achieved by using either highly

collimated synchrotron radiation or micro-focus X-ray

sources.

X-ray PCI was developed as a quantitative technique

almost from the start, due to the use of associated phase

retrieval methods (Momose, 1995; Nugent et al., 1996;

Gureyev & Wilkins, 1997; Paganin, 2006). This allowed, in

particular, for development of phase-contrast computed

tomography (PCT) (Momose, 1995; Raven et al., 1996; Cloe-

tens et al., 1997). In the context of X-ray PBI, the most

successful and widespread phase retrieval technique is Paga-

nin’s method (Paganin et al., 2002; Paganin, 2006), which is

based on the homogeneous variant of the Transport of

Intensity Equation (TIE) (Teague, 1983; Nugent et al., 1996;

Paganin et al., 2002). Even though this method enables

recovery of the phase from the registered intensity distribu-

tion in a single transverse plane, its main strength and the key

reason for its popularity is its ability to significantly increase

the signal-to-noise ratio (SNR) in an image, without dete-

riorating the spatial resolution (Paganin et al., 2002; Gureyev

et al., 2014; Nesterets & Gureyev, 2014; Kitchen et al., 2017).

Although it may not be immediately obvious, the latter

property is quite remarkable and even counter-intuitive, in

view of the generic noise-resolution uncertainty (NRU)

principle (Gureyev et al., 2014, 2016, 2020; De Hoog et al.,

2014). Consider an imaging setup with a certain illumination

area and a fixed total number of photons, which can be

determined, for example, by the object to be imaged and the

allowed radiation dose. The NRU is a generalization of the

simple observation that a given allocation of photons can be

either distributed in a smaller number of larger detector pixels,

creating high SNR but low resolution, or in a larger number of

smaller pixels, leading to higher resolution, but lower SNR.

This trade-off has been shown to be quite fundamental: it is

closely related to Shannon’s information capacity in imaging

and can even be used to refine the Heisenberg Uncertainty

Principle in some cases (Sakurai, 1967; Gureyev et al., 2015,

2020). It was shown only relatively recently (Gureyev et al.,

2017a) that the NRU is actually violated in Paganin’s method,

not at the ‘phase retrieval’ stage but rather during the forward

free-space propagation of the X-ray beam from the imaged

object to the detector. The NRU states that the ratio of SNR

to resolution cannot exceed the total number of photons

divided by the imaged area. However, this is only true with

respect to statistically independent photons, and the statistical

independence can increase, in the sense that intensity corre-

lations can decrease, upon free-space propagation. This fact is

demonstrated, for example, in the van Cittert–Zernike

theorem for intensity correlations (Goodman, 2000; Gureyev

et al., 2017b). From the point of view of classical optics, it is

easy to appreciate that the effective (angular) size of an

incoherent X-ray source, which typically determines the

degree of spatial coherence of an X-ray beam, becomes

smaller with the increase of the propagation distance. The

quantitative behaviour of the SNR and spatial resolution in

synchrotron-based PBI experiments, and the details of the

mechanism of the (beneficial) violation of the NRU in these

experiments, is the main subject of the present study.

The physics of Paganin’s method can be understood on the

basis of general signal transmission theory. As a wavefield

propagates from the exit surface of a sample to the detector

entrance surface, free-space diffraction amplifies the high-

spatial-frequency part of the signal. This PBI ‘encoding’ step

occurs before the addition of noise at the detector plane and

the subsequent phase-retrieval ‘decoding’ step. Such a process

can be viewed as a particular instance of signal transmission

through a noisy channel (MacKay, 2003), for which the ‘noisy-

channel coding theorem’ (Shannon, 1948a,b; MacKay, 2003)

opens the logical possibility that an indirect three-step strategy

– signal encoding, transmission through the noisy channel,

signal decoding – may lead to SNR improvement without an

increase in the total power of the signal or a decrease in its

bandwidth. Letting C be the invertible operator that denotes

the coding process, Nu be the operator via which uncorrelated

noise is added to each pixel after the coding process, and Nc be

the correlated-noise-addition operator induced by reversing

the order in which the coding and noise addition are

performed, Nc by definition obeys NuC = CNc, thus the

similarity transformation Nc = C� 1NuC maps uncorrelated to

correlated noise. This transformation leaves the total power of

the signal and its bandwidth unchanged. However, when the

phase-retrieval decoding step (C� 1) is applied to the noise in

the detected image, uncorrelated (delta correlated) noise

becomes correlated, decreasing the noise variance and leading

to the beneficial violation of the NRU mentioned near the end

of the previous paragraph.

A clarifying analogy is the Dolby noise reduction system

introduced originally for compact music cassettes (Dolby,

1968). In Dolby noise reduction, the high temporal frequen-

cies of an audio signal are amplified relative to their true value,

before being transmitted through the noisy channel associated

with recording onto magnetic audio tape, and then decoded by

having the high temporal frequencies suppressed during

playback via the Dolby filter. Crucially, this SNR-boosting

process makes use of the prior knowledge that the high-

frequency part of the target power spectrum decays more

rapidly than the noise power spectrum, together with the

assumption (for the purposes of our analogy) that the total

power remains unchanged by the coding process. Similarly in

PBI, the high-spatial-frequency components of a transmitted

attenuated intensity map are amplified (in a total-power-

preserving manner) relative to their true values. This ampli-

fication is enabled by the unitary-operator physics of paraxial

free-space propagation from the exit surface of the sample to

the entrance of the detector. The signal is then ‘transmitted’

through the continuous-to-discrete (Barrett & Myers, 2004)

noisy channel of intensity registration via each pixel in the

digital camera, and then decoded by having the high spatial

frequencies suppressed during phase retrieval via the Paganin
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filter. This coding–transmission–decoding process results in a

suppression of noise, without a loss of the high-spatial-

frequency components, i.e. without a loss of spatial resolution.

We close this introduction with a brief overview of the

remainder of the paper. Section 2 reviews some basics of in-

line imaging using paraxial coherent scalar waves, including

how to transition from the paraxial (wave) equation to the

corresponding TIE and eikonal equations, together with a

description of the form taken by the latter two equations for

the case of plane waves passing through a homogeneous

sample. Section 3 considers signal-to-noise ratio, spatial

resolution and noise-resolution uncertainty in the context

relevant to in-line imaging in both two and three spatial

dimensions. The beneficial violation of the NRU in PBI is the

topic of Section 4, with particular emphasis given to use of the

homogeneous-sample version of the TIE in this setting. The

key ideas of the preceding sections are illustrated with

numerical and experimental examples, in Section 5. Section 6

contains concluding remarks.

2. In-line imaging

The propagation process of a scalar monochromatic electro-

magnetic beam in vacuum is described by the paraxial equa-

tion (Mandel & Wolf, 1995),

2ik@z�ðr?; zÞ ¼ � r 2
?�ðr?; zÞ; ð1Þ

where �ðrÞ expðikzÞ is the complex amplitude of the beam,

r = ðr?; zÞ are Cartesian coordinates in the three-dimensional

(3D) space, with z being the beam propagation direction and

r? = ðx; yÞ the position vector in transverse planes, r 2
? =

@ 2
x þ @

2
y is the transverse two-dimensional (2D) Laplacian, k =

2�/� is the wavenumber and � is the wavelength. Equation (1)

has the form of a 2D Schrödinger equation in free space, with

z in the place of the time variable, the reduced Planck constant

set to one and the mass replaced by the wavenumber. The

paraxial equation represents the same kind of approximation

to the Helmholtz equation as the Schrödinger equation does

with respect to the Klein–Gordon equation (Sakurai, 1967).

Substituting �ðrÞ = I 1=2ðrÞ exp½i’ðrÞ�, where I(r) is the intensity

and ’(r) is the phase, into the Schrödinger or, more generally,

into the Klein–Gordon equation leads to the de Broglie–

Bohm formalism of quantum mechanics (pilot wave theory)

(Bohm, 1952a,b; Nicolic, 2005). The same substitution in

equation (1) leads to the following pair of equations for the

intensity and phase of a monochromatic scalar electro-

magnetic beam (Teague, 1983),

k@zIðr?; zÞ ¼ � r? � ½Iðr?; zÞr?’ðr?; zÞ�; ð2aÞ

2k@z’ðr?; zÞ ¼ � jr?’j
2 þ I � 1=2 r 2

?I 1=2ðr?; zÞ; ð2bÞ

where r? � f = @xfx + @yfy is the transverse divergence

operator. Equation (2a) is the TIE; in the pilot-wave theory, it

describes the propagation of particles along the field gradients.

Equation (2b) is the eikonal (Hamilton–Jacobi) equation

which, unlike the case of ray optics in free space, has an

additional ‘diffraction’ term, I � 1=2r 2
?I 1=2ðr?; zÞ. The diffrac-

tion term plays a role similar to the square of the refractive

index in ray optics, both leading to bending of rays on

propagation. In this sense, the diffraction term modifies the

properties of space through which the rays propagate. In focal

regions, the diffraction term also gives rise to the Gouy phase

anomaly (Born & Wolf, 1999; Petersen et al., 2014). In the

pilot-wave theory, the diffraction term is associated with the

‘quantum potential’, which is responsible for the reciprocal

effect of particles onto the field and makes the theory non-

local in nature.

A complex amplitude �ðrÞ = I 1=2ðrÞ exp½i’ðrÞ� is called

‘monomorphous’ if the ratio of the phase and the logarithm of

intensity, ’ðrÞ= ln IðrÞ, is the same at any position r (Paganin et

al., 2002). Monomorphous amplitudes arise, for example, in

the object plane after transmission of an incident plane

monochromatic X-ray wave through a ‘homogeneous’ object,

i.e. an object consisting predominantly of a single material

(Paganin et al., 2002). Let n(r) = 1 � �(r) + i�(r) denote the

distribution of the complex refractive index inside such an

object, where we omit dependence of all quantities on the

wavelength for brevity. If an object consists of a single mate-

rial, possibly with spatially varying density, the ratio �(r) �

�(r)/�(r) of the real decrement to the imaginary part of the

refractive index has the same value at any point r inside the

object (Paganin, 2006). The phase and the logarithm of

intensity of a transmitted X-ray wave can typically be

expressed as line integrals, ’ðr?; 0Þ = � k
R
�ðr?; zÞ dz and

ln Iðr?; 0Þ = � 2k
R
�ðr?; zÞ dz, respectively, where we impli-

citly assume a plane monochromatic incident wave with unit

amplitude (Paganin, 2006). It then follows that for a homo-

geneous object the transmitted complex amplitude is mono-

morphous with ’ðr?; 0Þ= ln Iðr?; 0Þ = �=2. For such

monomorphous complex amplitudes equations (2a) and (2b)

decouple,

2k@zIðr?; zÞ ¼ � � r 2
?Iðr?; zÞ; ð3aÞ

2k@z’ðr?; zÞ ¼ ð� 1þ � � 2Þjr?’j
2ðr?; zÞ

þ � � 1r 2
?’ðr?; zÞ: ð3bÞ

When � � 1, as is typically the case in hard X-ray PBI,

equation (3b) has the form of a perturbation of the ray-optical

eikonal equation (which formally corresponds to the case � =

1). The perturbation leads to weak bending of ray trajec-

tories, which, in the first order of the small parameter � � 1, is

proportional to the curvature of the wavefront.

In the present work, we are mostly interested in the linear

finite-difference approximation to equation (3a), @zIðr?; zÞ ffi

½Iðr?; zþ dzÞ � Iðr?; zÞ�=dz, which corresponds to sufficiently

short propagation distances dz and converts equation (3a) into

the so-called homogeneous finite-difference TIE (TIE-Hom)

(Paganin et al., 2002),

Iðr?;RÞ ¼ 1 � a2r 2
?

� �
Iðr?; 0Þ; ð4Þ

where a2 = �R�/(4�). Equation (4) provides a good approx-

imation for the intensity distribution in in-line (propagation-

based) images of monomorphous objects, if the object-plane
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intensity varies sufficiently slowly, so that ja2r 2
?Iðr?; 0Þj �

Iðr?; 0Þ (Paganin et al., 2002).

3. Signal-to-noise ratio, spatial resolution and noise-

resolution uncertainty

Consider first a very simple imaging system, in which a photon

fluence, Sin(r), radiated from a distant source and possibly

scattered by an imaged object, is incident on a position-

sensitive detector. The fluence is assumed to be expressed as

the number of photons per area in 2D or per volume in 3D.

The former case corresponds to conventional 2D images, while

the latter case may correspond, for example, to computed

tomography (CT), where the 3D ‘images’ can be the result of

processing of the 2D projection images collected at different

rotational positions of the imaged object.

It will be convenient to define the SNR and the spatial

resolution via general expressions which are valid in any n-

dimensional space. In particular, the SNR is defined as

SNRðrÞ �
�SðrÞ

�ðrÞ
; ð5Þ

where �SðrÞ is the mean and �2ðrÞ = ½SðrÞ � �SðrÞ�
2

is the variance

of the fluence S(r), with the overhead bar denoting the

statistical average.

The spatial resolution can be expressed in terms of the

width, defined via the second spatial integral moment, of the

point-spread function (PSF), P(r),

�½P� �
4�

n

R
jr � �rj2 PðrÞ dr
R

PðrÞ dr

� �1=2

; ð6Þ

where �r �
R

r PðrÞ dr. Note that �r = 0 in the case of symme-

trical PSFs. For non-negative functions P(r), �½P� =

½ð4�=nÞjjðr � �rÞ2Pjj1=jjPjj1�
1=2, where ||P||1 is the first integral

norm, corresponding to n = 1 in the expression jjPjjn �

½
R
jPðrÞjn dr�1=n. In the following, all the considered PSFs will

be non-negative and normalized, such that ||P||1 = 1, unless

specifically mentioned.

One popular practical approach to measuring SNR and

spatial resolution is based on the assumption of ‘local spatial

ergodicity’ of the intensity distribution in an image. The latter

means that, in a flat region of an image, where the spatial

variation of intensity can be attributed to noise only (i.e.

where the signal �SðrÞ is approximately constant), a set of

intensity measurements in adjacent locations can be consid-

ered as a representative sample of the statistical ensemble of

intensity values at a given point of the image. In this case, the

statistical mean and variance of intensity at a point r can be

evaluated via spatial integrals over a vicinity � of that point,

�SðrÞ ¼
1

j�j

Z

�

Sðr0Þ dr0; ð7aÞ

�2ðrÞ ¼
1

j�j

Z

�

�
Sðr0Þ � �SðrÞ

�2
dr0; ð7bÞ

where |�| denotes the n-dimensional volume of �.

Note also the following parallel between the definitions of

variance of a fluence and the spatial resolution expressed by

equation (6). Let Hr(s) be the probability distribution function

(PDF) of fluence S(r). Then
R

sHrðsÞ ds = �S andR
ðs � �SÞ

2
HrðsÞ ds = �2ðrÞ, and hence �2(r) = [1/(4�)]�2[H]. In

other words, the variance of a fluence is proportional to the

square of the width of its PDF, which is a rather straightfor-

ward observation. The link between the variance of image

intensity and the spatial resolution is exploited in the NRU

principle (Gureyev et al., 2014, 2016; De Hoog et al., 2014),

which is described next. The NRU states that, for any function,

its spatial width and the width of its PDF cannot be made

arbitrarily small at the same time (Gureyev et al., 2020). This

accords with the simple idea that blurring a normalized image

with a unit-strength low-pass filter will narrow the intensity’s

PDF by reducing noise, at the cost of broadening the width of

the PSF. For an intuitive pictorial representation of this key

trade-off that underpins the NRU, we refer the reader to Fig. 1

of Gureyev et al. (2020).

As hinted at towards the end of the previous paragraph, the

detected fluence, SD(r), can be often expressed in the form

of a convolution, SD = Sin*D, of the fluence incident on the

detector, Sin(r), with the non-negative PSF of the detector,

D(r),

SDðrÞ ¼

Z

Sinðr
0ÞDðr � r0Þ dr0: ð8Þ

We assume for now that the incident fluence is almost

uncorrelated and uniform over length scales comparable with

the width of D(r). In other words, we assume that the corre-

lation length, h, of the incident fluence is much smaller than

the width of the PSF, while �SinðrÞ and �2
inðrÞ are both almost

constant over distances comparable with the width of D(r). In

that case, the effect of the detector PSF on the SNR can be

described as follows (Gureyev et al., 2016),

SNRDðrÞ ¼ SNRinðrÞ jjDjj1=
�
hn=2jjDjj2

�
: ð9Þ

We note that the quantity

~�½P� ¼
�
jjPjj1=jjPjj2

�2=n
; ð10Þ

which appears in the right-hand side of equation (9), can be

used as a measure of the width of the function P(r) (Mandel &

Wolf, 1962; Gureyev et al., 2016). When P represents the PSF

of an imaging system, equation (10) provides an alternative

definition of spatial resolution, which has a different mathe-

matical form from equation (6), but often produces compar-

able results. For example, for Gaussian PSFs, PGaussðrÞ =

ð2�Þ� n=2b� n exp½� jrj2=ð2b2Þ�, we obtain �½PGauss� =
~�½PGauss� = 2b

ffiffiffi
�
p

for any n. In the case of a top-hat function

with width 2b, PtopðrÞ = ð2bÞn�½� b; b�nðrÞ, where �½� b; b�n ðrÞ is

equal to 1 inside the n-dimensional cube [� b, b]n and is equal

to 0 everywhere else, we get �[Ptop] = 2b(�/3)1/2 ffi 2.05b and
~�½Ptop� = 2b. If PexpðrÞ = ð�=bÞ expð� 2�r=bÞ is an exponential

distribution, then �½Pexp� = b 2=�ð Þ1=2 and ~�½Pexp� = 2b=�.

Note, however, that in the case of 1D Cauchy (Lorentzian)
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distributions, PCauchy(x) = (b/�)/(b2 + x2), we get �[PCauchy] =

1, while ~�½PCauchy� = 2�b.

Using the definition from equation (10), equation (9) can be

re-written as

SNR2
DðrÞ

~�
n
½D�
¼

SNR2
inðrÞ

~�
n
½Pin�

; ð11Þ

where ~�½Pin� = h. Note that the noise correlation length, h, can

be associated with the width of a function, Pin, whose auto-

correlation is equal to the degree of spatial coherence of the

incident fluence (Gureyev et al., 2016).

Now consider the case of linear filtering of the registered

image, which can be described by the convolution SD*F,

i.e. by equation (8) with the detected fluence SD(r) instead of

the incident fluence and a non-negative filter function F(r)

instead of the PSF D(r). According to the associativity and

commutativity of the convolution operation, SD*F =

(Sin*D)*F = Sin *(D*F) = Sin *(F*D). Therefore, if

(F*D)(r) is almost constant over distances of the order of h,

but varies much faster than �SinðrÞ and �2
inðrÞ, then, arguing

exactly as above, we find that after such filtering the ratio of

SNR2 to the effective ‘resolution volume’ ~�n
r ½F �D� must

remain unchanged (Gureyev et al., 2016),

SNR2
F�DðrÞ

~�
n
½F �D�

¼
SNR2

DðrÞ

~�
n
½D�
¼

SNR2
inðrÞ

~�
n
½Pin�

: ð12Þ

Equation (12) shows that the ratio of SNR2 to the corre-

sponding resolution volume is constant in linear shift-invariant

transformations. In the case of Poisson photon statistics, SNR2

is equal to the number of photons. Therefore, in this case

equation (12) is just a restatement of the simple fact that larger

effective voxels, created as a result of image filtering or

binning, contain more registered photons, leading to the

proportionally larger SNR2. Equation (12) can be alter-

natively understood as a statement that an increase in the

photon correlation length leads to a proportional increase in

the SNR, which is a well known effect of conventional low-

pass filtering of images.

The trade-off between the SNR and spatial resolution is

captured in a more general context by the NRU principle

(Gureyev et al., 2016, 2020) which states that, for a fixed

photon fluence, any gain in the SNR is equal to or less than the

corresponding increase of the minimal spatially resolvable

volume. Mathematically, the NRU can be expressed as

Q2
S �

SNR2
P

�Sin �n½P�
¼

~�
n
½P�

�n½P�
� C � 1

n ; ð13Þ

where QS is called the ‘intrinsic imaging quality’ characteristic

and Cn is the Epanechnikov constant: C1 = (6/5)(�/5)1/2 ffi

19/20, C2 = 8/9 and C3 = 60(�/75)1/2ffi 4/5 (Gureyev et al., 2014,

2016; De Hoog et al., 2014). The upper limit (equal to C � 1
n ) in

equation (13) is achieved for Epanechnikov PSFs, PEpan(r) =

An(1 � |r|2/ b2)+, where An and b are constants, and the

subscript ‘+’ means that all negative values inside the brackets

are replaced by zero (De Hoog et al., 2014). It follows from

equation (13) that ~�½P� � C � 1=n
n �½P�, i.e. ~�½P� generally

provides a more ‘optimistic’ estimate of the spatial resolution

compared with �[P], which can be observed in the examples

given above. Equation (13) can be extended to the cases of

linear filtering of detected images, in the same way as equation

(12) extends equation (11), showing, in particular, that the

intrinsic imaging quality QS remains unchanged after linear

filtering (such as, for example, convolution or deconvolution

with a non-negative function) of images (Gureyev et al., 2016).

A related result is represented by the mathematical form

of the classical Heisenberg Uncertainty Principle (HUP)

(Sakurai, 1967; Folland & Sitaram, 1997),

�
�
jUj2

�
�
�
jÛj2

�
� 1; ð14Þ

where U(r) is an arbitrary complex-valued square-integrable

function and the overhead hat symbol denotes the Fourier

transform, f̂ ðkÞ =
RR

expð� 2�k � rÞ f ðrÞ dr. This inequality

implies that the minimal phase-space volume is bounded from

below for any square-integrable function. The lower limit in

the HUP is equal to one and is achieved for Gaussian func-

tions UðrÞ = P
1=2
GaussðrÞ, for which one obtains �½PGauss� = 2b

ffiffiffi
�
p

and

�½j
d

P
1=2
Gauss j

2� ¼ 1=ð2b
ffiffiffi
�
p
Þ:

It has been shown (Gureyev et al., 2015) that the NRU can be

used to refine the HUP, replacing the right-hand side in

equation (14) by the maximum of 1 and C 2=n
n

~�½jUj2� ~�½jÛj2�.

The latter functional can be either larger or smaller than one

for different functions U(r) (Gureyev et al., 2015).

We are going to apply the above results to measurements of

SNR and spatial resolution in 2D and 3D images. Assuming

that spatial ergodicity is satisfied in a sufficiently large area of

the relevant images, we will use discrete analogues of equa-

tions (7a) and (7b), for estimation of the mean and variance of

intensity in a pixel located in a flat area of the image, via the

mean and variance calculated over a set of adjacent pixels.

This will allow us to evaluate the SNR via equation (5). For

estimations of the spatial resolution, we will use a method

based on the Fourier transform of equation (8),

ŜDðkÞ ¼ ŜinðkÞ D̂ðkÞ: ð15Þ

If, as assumed after equation (8), the noisy incident fluence is

uncorrelated and is almost flat within a given region of the

image, then the Fourier transform of the fluence is also a flat

noisy distribution. Therefore, the width of the product of the

two functions in the right-hand side of equation (15) is

determined primarily by the width of the modulation transfer

function (MTF), jD̂ðkÞj. Assuming that the PSF is Gaussian,

and hence the MTF is also Gaussian, we can use the known

relationship between the widths of a Gaussian distribution and

its Fourier transform to evaluate the width of the PSF from the

measured width of the MTF,

~�½PGauss� ¼ �½PGauss� ¼ 2=�½P̂Gauss�: ð16Þ

Note, however, that the relationship between the width of a

function and the width of its Fourier transform, being always

reciprocal in nature, does not have the same proportionality
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constant for all functions. In this respect, the relevant result is

represented not by the HUP, equation (14), but by the Laue

inequality (Dreier et al., 2001),

�½P��½P̂� � �1=2
n : ð17Þ

Equation (17) can only guarantee that the product of the

width of a function and the width of its Fourier transform is

always larger than a certain absolute constant. The maximum

possible value on the right-hand side of equation (17) is

called the Laue constant, and it is known to be in the range

0.54 < �n < 0.85. Unlike the case of the NRU, equation (13), or

the HUP, equation (14), neither the exact value of �n nor the

functional form of the ‘minimizer’, corresponding to a func-

tion P(r) for which the left-hand side of equation (17) reaches

its minimal possible value, are known. A method for

measuring spatial resolution which is closely related to equa-

tions (15)–(17) was also developed and used previously

(Mizutani et al., 2016; Brombal et al., 2018, 2019).

4. Violation of NRU in propagation-based imaging

Equations (11)–(13) demonstrate that NRU is satisfied in

detection and linear filtering of images. On the other hand, it is

known that propagation-based (also known as in-line)

imaging, which is described by equation (4), exhibits an

‘unreasonable’ effectiveness and can violate the NRU prin-

ciple (Gureyev et al., 2017a). This means that PBI can produce

a gain in SNR without a loss of spatial resolution or improve

the spatial resolution without a loss of SNR.

Consider the case of PBI of monomorphous complex wave

amplitudes, as described by TIE-Hom. Equation (4) can be

trivially re-written as a convolution,

Iðr?;RÞ ¼ Iðr?; 0Þ � Tðr?;RÞ; ð18Þ

where Tðr?;RÞ = ð1 � a2r 2
?Þ �ðr?Þ and �ðr?Þ is the Dirac delta-

function. It can be verified by direct calculations that the

second integral moment of Tðr?;RÞ is equal to � 4a2. The fact

that this second integral moment is negative means that

equation (18) acts as a deconvolution (Gureyev et al., 2003,

2004, 2017a), effectively improving the spatial resolution in

PBI images, Iðr?;RÞ, in comparison with the corresponding

object-plane images, Iðr?; 0Þ.

In a real experiment, the detected intensity distribution in

the object plane can often be represented as a convolution,

Iðr?; 0Þ = Iidðr?; 0Þ �Dðr?Þ. Here Iidðr?; 0Þ is the ‘ideal’ object-

plane intensity distribution corresponding to a delta-function

detector PSF and Dðr?Þ is the real detector PSF. In a more

general setting, with incident illumination other than a plane

wave, the image blurring can also include a contribution from

the spatial distribution of the source intensity (Gureyev et al.,

2008). After the substitution Iðr?; 0Þ = Iidðr?; 0Þ �Dðr?Þ,

equation (18) becomes

Iidðr?;RÞ �Dðr?Þ ¼ Iidðr?; 0Þ �Dðr?Þ � Tðr?;RÞ: ð19Þ

While the filter function Tðr?;RÞ is singular, its convolution

with Dðr?Þ can be a smooth function. For example, in the

case of a 2D Gaussian PSF, Dðr?Þ = PGaussðr?Þ, with variance

equal to b2
0 = 2b2, we obtain PGaussðr?Þ � Tðr?;RÞ =

ð�b0Þ
� 2ð1þ 4a2b� 2

0 � 4a2b� 4
0 jr?j

2Þ exp½� jr?j
2=b2

0�, which is a

smooth function. The second integral moment of this function

is equal to b2
0 � 4a2, which can still be negative, in principle, if

b0 < 2a. However, since the second moments of the left-hand

and the right-hand sides of equation (19) must be equal, and

the intensity distribution in the object plane is obviously non-

negative, it implies that b2
0 � 4a2 � � b2

id, where b2
id is the

second integral moment of the function Iidðr?; 0Þ.

The fact that the filter function Tðr?;RÞ has negative as well

as positive values may be presumed to be a reason why the

NRU, which has been only proven for non-negative filter

functions (De Hoog et al., 2014), does not apply to it. Let us

show, however, that in fact equation (18), and hence equation

(4), still preserve the ratio of SNR2 to the spatial resolution

volume.

Equation (4) has an exact inverse (Paganin et al., 2002;

Paganin, 2006), e.g. in the space of tempered distributions

(Vladimirov, 2002),

Iðr?; 0Þ ¼ ð1 � a2r 2
?Þ
� 1

Iðr?;RÞ: ð20Þ

The inverse operator in the right-hand side of equation (20)

can be expressed with the help of the Fourier transform,

Îðk?; 0Þ ¼ Îðk?;RÞ=ð1þ 4�2a2k2
?Þ: ð21Þ

Equation (21) is known as the TIE-Hom retrieval equation or

Paganin’s method (Paganin et al., 2002). Due to its noise

robustness and ease of practical application, it has been

successfully employed in a large variety of phase-contrast

imaging scenarios using different forms of radiation and

matter waves. As particular examples of this noise robustness,

dose reductions by a factor of thousands or more are

achievable for in-line imaging in CT (Kitchen et al., 2017),

thereby enabling synchrotron-based X-ray PCT at the rate of

1000 tomograms per second (Garcı́a-Moreno et al., 2019,

2021).

Taking the inverse Fourier transform of equation (21), it is

possible to re-write equation (20) in the form of a convolution,

Iðr?; 0Þ ¼ Iðr?;RÞ � Tinvðr?;RÞ; ð22Þ

where Tinvðr?;RÞ � K0ðr?=aÞ=ð2�a2Þ is the inverse Fourier

transform of the MTF T̂ invðk?Þ = 1=ð1þ 4�2a2k2
?Þ from

equation (21) and K0 is the zero-order modified Bessel func-

tion of the second kind (Abramowitz & Stegun, 1972;

Nesterets & Gureyev, 2014). The second integral moment of

the TIE-Hom retrieval filter function, Tinvðr?;RÞ, is equal to

4a2, and thus, as expected, it is equal to minus the second

moment of Tðr?;RÞ. As the function K0(�) is positive for any

positive �, the convolution with Tinvðr?;RÞ satisfies the NRU

conditions. Accordingly, the transformation represented by

equation (22) increases the SNR in the exact proportion to the

deterioration of the spatial resolution, so that equation (12)

holds for it (with n = 2). This allows us to conclude that, if

equation (4) violated the NRU, e.g. increased SNR by a factor

A � SNRT�D=SNRD > ~�½T �D�= ~�½D�, then by applying

equation (4) and its inverse, equation (20), in sequence it
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would have been possible to increase the SNR, while leaving

the intensity distribution unchanged,

1 ¼
SNRD

SNRD

¼
SNRTinv�T�D

SNRD

¼
SNRTinv�T�D

SNRT�D

SNRT�D

SNRD

¼
~�½Tinv � T �D�

~�½T �D�

SNRT�D

SNRD

ð23Þ

>
~�½Tinv � T �D�

~�½T �D�

~�½T �D�

~�½D�
¼

~�½Tinv � T �D�

~�½D�
¼

~�½D�

~�½D�
¼ 1:

The fourth equality in equation (23) is the NRU applied to

equation (22), while the subsequent inequality in equation

(23) is the result of the substitution of the above assumption

about the factor A. The obvious contradiction, 1 > 1, obtained

in equation (23) as a result of the latter assumption, means

that, in fact, the filter function Tðr?;RÞ = ð1 � a2r 2
?Þ �ðr?Þ

must obey the NRU, despite not being positive everywhere.

The same logic can be used to prove that any filter function

F(r), whose ‘inverse’ function, Finv(r), such that F̂ invðkÞ �

1=F̂ ðkÞ, exists (e.g. in the space of tempered distributions), is

non-negative and satisfies the conditions for ‘well behaved’

point-spread functions described above, must also satisfy the

NRU.

However, the fact that equation (4), which is typically used

to describe PBI imaging of monomorphous objects (Paganin et

al., 2002), satisfies the NRU still does not actually prohibit the

violation of NRU in PBI. Let us recall that equation (4) is

valid only for sufficiently slowly varying intensity distributions.

In PBI experiments, the average phase function, ’ðrÞ =

ð�=2Þ ln �SðrÞ, often varies sufficiently slowly for the latter

condition to be satisfied and, hence, for equation (4) to be

applicable. However, the noise component, SðrÞ � �SðrÞ, typi-

cally varies very rapidly from pixel to pixel. Therefore, the

free-space propagation of the detected photon fluence, S(r),

cannot be correctly described by equation (4), allowing for the

possibility of violation of the NRU in PBI.

An equation generalizing equation (4) to rapidly varying

functions is also known (Gureyev et al., 2006),

Iðr?;RÞ ¼ 1þ �2
� �1=2

sinð! � � � 1a2r 2
?Þ Iðr?; 0Þ; ð24Þ

where ! � arctan � � 1. It is not known to us if equation (24)

has an inverse in the space of tempered distributions, which

could be represented as a convolution with a positive

function, as was the case with equation (22). The Fourier

transform of the convolution kernel Fðr?;RÞ =

1þ �2
� �1=2

sinð! � � � 1a2r 2
?Þ �ðr?Þ in equation (24) is equal to

F̂ ðk?;RÞ = 1þ �2
� �1=2

sinð!þ 4�2� � 1a2k2
?Þ. Unlike the case

of equation (21), the latter function becomes zero at certain

values of k?. Thus, the arguments used above to prove that

equation (4) satisfies the NRU may not apply to equation (24).

On the other hand, an inverse of a function with isolated zero

values may still belong to the space of tempered distributions

and may be positive, in principle (Vladimirov, 2002). Never-

theless, as demonstrated by a numerical example in the next

section, for some input functions Iðr?; 0Þ, equation (24)

amplifies noise in proportion to, or even stronger than, the

corresponding gain in the spatial resolution. Therefore, in such

cases, equation (24) also cannot explain the observed violation

of the NRU in PBI.

A solution to the above ‘paradox’, which suggests an

explanation for the violation of NRU in PBI, can be obtained

in the following way. As shown by Gureyev et al. (2017a), the

violation of NRU in PBI can take place when the image noise

is dominated by the shot noise of the photodetection process.

In that case, since the paraxial free-space propagation

preserves the number of photons, the SNR is the same in flat

areas of the ‘contact’ object-plane and the propagated image-

plane images. At the same time, the spatial resolution is

improved upon free-space propagation, as explained after

equation (18) above. Therefore, the SNR to resolution ratio is

improved upon free-space propagation, thus seemingly

violating the NRU. Subsequently, the SNR is improved upon

the TIE-Hom retrieval, as this process corresponds to a low-

pass filtering of the image fluence, according to equation (22).

As equation (22) conforms to the NRU, the spatial resolution

deteriorates after its application. If the TIE-Hom retrieval is

performed with the ‘true’ value of the parameter a2 = �R�/

(4�), it effectively inverts the effect of the forward free-space

propagation, which is well approximated by equation (18).

The spatial resolution is then returned to its original value in

the object plane, while the SNR is increased in comparison

with the image plane, the latter being equal to SNR in the

‘contact’ images in the object plane at the same incident

fluence. Overall, after the free-space propagation, followed by

the TIE-Hom retrieval, the SNR is increased compared with

the ‘contact’ images of the same object at the same dose, while

the spatial resolution remains unchanged. This qualitatively

explains the mechanism behind the beneficial violation of the

NRU in PBI. Now, let us study the corresponding phenomena

quantitatively.

Consider first the effect of the TIE-Hom retrieval on the

SNR (Nesterets & Gureyev, 2014). For simplicity, assume that

the PSF in the image plane z = R is equal to the PSF of the

detector, Dðr?Þ, which is much narrower than the TIE-Hom

retrieval filter function, i.e. ~�½D� � ~�½Tinv�. In this case, the

spatial resolution after the TIE-Hom retrieval is approxi-

mately equal to the width of the filter function: ~�½Tinv �D� ffi
~�½Tinv�. It can also be verified directly that jjTinvjj1 = T̂ invð0Þ =

1, jjTinvjj
2
2 = jjT̂ invjj

2
2 = 1=ð4�a2Þ = 1=ð�R�Þ and hence

~�2½Tinv� = �R�. It then follows from the invariance of the

SNR-to-resolution ratio, equation (12), that an application of

equation (22) increases SNR by the factor equal to the ratio of

the corresponding spatial resolutions, ~�½Tinv�= ~�½D�,

SNR2
0;retr

SNR2
R

¼
�

NF

; ð25Þ

where NF � ~�2½D�=ðR�Þ is the Fresnel number equal to the

square of the ratio of the detector resolution and the width of

the first Fresnel zone (Gureyev et al., 2009), SNR0,retr is the

SNR in the object plane, z = 0, after TIE-Hom retrieval and

SNRR is the SNR in the image plane, z = R. Since the number

of photons is preserved in free-space propagation, we have
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SNR2
R = SNR2

0, where SNR0 is the SNR in the contact images

in the object plane. Equation (25) then implies

SNR2
0;retr

SNR2
0

¼
�

NF

: ð26Þ

As mentioned above, the width of the PSF is increased upon

the TIE-Hom retrieval by the same amount as it is reduced

upon the free-space propagation. Therefore, after the free-

space propagation followed by the TIE-Hom retrieval with

a2 = �R�/(4�), the spatial resolution remains unchanged. In

particular, �[P0, retr] = �[P0], where P0, retr is the effective PSF

after the free-space propagation followed by TIE-Hom

retrieval and P0 is the original PSF in the object plane.

Combining this with the increase in the SNR in accordance

with equation (26) and dividing the ratios of the SNR to

resolution by the square root of the corresponding incident

fluence, we obtain the following expression for the ‘gain

factor’ (Nesterets & Gureyev, 2014; Gureyev et al., 2017a),

G2 �
QS;PBI

QS;0

¼
SNR0;retr

�S
1=2
in;R �½P0;retr�

 !,
SNR0

�S
1=2
in;0 �½P0�

 !

¼
�

NF

� �1=2

; ð27Þ

where QS, PBI and QS, 0 are the intrinsic quality characteristics

of the PBI and ‘contact’ imaging, respectively, with �Sin;R and
�Sin;0 being the corresponding incident fluences. Note that it

was implicitly assumed in equation (27) that SNR is propor-

tional to the square root of the incident fluence, as is the case

for Poisson statistics. Since, for any given object, the absorbed

radiation dose is proportional to the incident fluence, it is also

possible to replace the incident fluence by the dose in equation

(27). We will use the latter fact in our analysis of experimental

images below.

Recall that in the derivation of equation (25) we assumed

that NF = ~�2½D�=ðR�Þ � �. Under such conditions, the gain

factor G2 can be large. In a PBI experiment involving hard

X-ray imaging of biological samples, � can typically be of the

order of 103 and NF can be of the order of 10. According to

equation (27), this can lead to gain factors of the order of 10 in

2D. Furthermore, as shown by Nesterets & Gureyev (2014)

(see also the second part of the present paper), the gain factor

in 3D, i.e. in PBI CT, is equal to G3ffi �/NF, which can be of the

order of 102. The latter values of the 3D gain factor corre-

spond to dose reduction of the order of 104, compared with

conventional CT at the same dose, without any loss of spatial

resolution – see details given by Kitchen et al. (2017) and in

the second part of the present paper.

Another interesting feature of equation (27) is that the gain

factor remains the same regardless of the value of � 0 that is

used at the TIE-Hom retrieval stage of PBI. In other words,

the gain factor remains the same if one chooses to apply the

TIE-Hom retrieval operator ð1 � a02r 2
?Þ
� 1 with a02 = � 0R�/

(4�), where � 0 is different from the ‘true’ value of � = �/�

appearing in equation (27). This invariance is a simple

consequence of the fact, proved in Section 4 above, that the

TIE-Hom retrieval operator ð1 � a2r 2
?Þ
� 1 does not change

the SNR to spatial resolution ratio, regardless of the value of

the parameter a. The ‘magic’ of PBI imaging, which can lead to

beneficial violation of the NRU and gain factors larger than

one, happens at the forward free-space propagation stage of

the process, while the subsequent ‘phase retrieval’ stage does

not involve any ‘magic’, leaving the SNR-to-resolution ratio

unchanged.

5. Numerical simulations and an experimental example

5.1. Numerical simulations of PBI imaging

Here we consider the case of a plane monochromatic inci-

dent X-ray wave expðikzÞ, with k = 2�/� and � = 1 Å. The

incident wave illuminated a thin homogeneous sample, with

� = 100 at the chosen wavelength. The sample was located

immediately before the object plane z = 0. All images were

assumed to be collected by an X-ray detector with a sensitive

area of 10.24 cm � 10.24 cm occupied by 4096 � 4096 pixels.

The size of the detector pixels was 25 mm � 25 mm. The X-ray

transmission through the sample was modelled with the help

of a function tinðr?Þ, which had the values in the interval

(0, 0.1) and was spatially distributed as in Fig. 1(a). The

transmitted complex amplitude in the object plane was

Uinðr?; 0Þ = exp½� tinðr?Þ � i�tinðr?Þ�. The distribution tinðr?Þ

represented a low-pass filtered version of imaging test

patterns, which contained features with different contrasts and

details containing a wide range of spatial frequencies. Low-

pass filtering, using a Gaussian convolution kernel with

FWHM of 100 mm (4 pixels), was applied to the original test

patterns to create the function tinðr?Þ. This was done in order

to satisfy the requirement for the incident fluence to be slowly

varying compared with the detector resolution. We inserted a

square region with 1024 � 1024 pixels in the top right corner

of the image, with tinðr?Þ = 0 and, hence, Iðr?; 0Þ= 1, inside this

region. This flat region was used for accurate evaluation of the

SNR and spatial resolution. We also inserted another square

region with 1024 � 1024 pixels in the top left corner of the

image, this region containing a pseudo-random distribution

which was obtained by applying Poisson noise with standard

deviation equal to 0.1 to a uniform region of the same size,

with Iðr?; 0Þ = 1, and then low-pass filtering the result with a

Lorentzian filter with a FWHM of 1054 mm. The presence of

this pattern in the image allowed us to quantitatively evaluate

the improvement in the spatial resolution after the free-space

propagation.

In order to simulate the photon shot noise in the detected

intensity, we simulated pseudo-random Poisson noise with

standard deviation equal to 20% of the average transmitted

intensity, exp½� 2tinðr?Þ�. This corresponds to an average

fluence of 25 photons per pixel [since 1/(25)1/2 = 0.2]. We

subsequently convolved the noisy fluence with the detector

PSF, Dðr?Þ, which was modelled as a 2D circular Gaussian

distribution with � = 125 mm. The resultant noisy blurred

detected fluence, SDðr?; 0Þ, is shown in Fig. 1(b). We also

calculated the free-space propagation of the complex ampli-

tude Uinðr?Þ from the object plane z = 0 to the image plane z =
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R = 100 m by evaluating the corresponding Fresnel diffraction

integrals. We simulated 20% Poisson noise in the image-plane

fluence, as in the object plane, before convolving the noisy

fluence with the same detector PSF as in the object plane. The

resultant noisy blurred detected fluence in the image plane,

SDðr?;RÞ, is shown in Fig. 1(c). We then applied the TIE-Hom

phase retrieval, equation (20), to SDðr?;RÞ, with the result,

STIEðr?; 0Þ, shown in Fig. 1(d). We also calculated the free-

space propagation from the object plane z = 0 to the image

plane z = 100 m of the complex amplitude UD;simðr?; 0Þ =

S
1=2
D ðr?; 0Þ exp½� ið�=2Þ ln SDðr?; 0Þ�, produced from the noisy

blurred registered fluence in the detector plane. The resultant

intensity distribution in the image plane, SD;simðr?;RÞ, can be

seen in Fig. 1(e). Finally, we applied the TIE-Hom phase

retrieval, equation (20), to SD;simðr?;RÞ, with the result,

STIE;simðr?; 0Þ, shown in Fig. 1( f). Since parameters of this

simulation included a Gaussian detector PSF with b = 125 mm,

the propagation distance R = 100 m and the X-ray wavelength

� = 0.1 Å, the corresponding (minimal) Fresnel number was

NF = 4�b2/(R�) ffi 19.6.
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Figure 1
(a) Original transmission function, � tinðr?Þ. (b) Noisy blurred detected fluence in the object plane, SDðr?; 0Þ. (c) Noisy blurred detected fluence in the
image plane, SDðr?;RÞ. (d) Distribution STIEðr?; 0Þ, obtained by TIE-Hom phase retrieval from SDðr?;RÞ. (e) Distribution SD;simðr?;RÞ, obtained by
simulated free-space propagation of the homogeneous complex amplitude produced from SDðr?; 0Þ. ( f ) Distribution STIE;simðr?; 0Þ, obtained by TIE-
Hom retrieval from SD;simðr?;RÞ.



Examining Fig. 1(c), one can notice that, on a qualitative

level, the forward propagation of the complex amplitude

sharpened the image, without increasing noise. The improve-

ment in the spatial resolution can be observed by comparing

the following features of Figs. 1(b) and 1(c). Firstly, the

convergent straight lines in the circular ‘star’ pattern can be

discerned closer to the centre of the pattern in Fig. 1(c),

compared with Fig. 1(b). This is a known manifestation of a

visual effect of improved spatial resolution for which such

‘star’ patterns are included in various image resolution stan-

dards. Secondly, the sub-image in the top-left corner shows

noticeably higher spatial frequencies in Fig. 1(c), compared

with Fig. 1(b). Finally, one may also notice that the straight

horizontal and vertical edges between different image

components in Fig. 1(c) are sharper than in Fig. 1(b). The

noise level in the two images is the same by construction: the

same level of Poisson noise was added to both images before

applying the same Gaussian detector PSF with a standard

deviation of 5 pixels. The image in Fig. 1(c) is substantially less

noisy than that in Fig. 1(e), which contains the result of

numerical free-space propagation of a complex amplitude

created from the noisy detected fluence in Fig. 1(b) using the

homogeneous complex amplitude UD;simðr?; 0Þ. As a conse-

quence, after the application of TIE-Hom retrieval to Fig. 1(c),

the result in Fig. 1(d) looks less noisy than Fig. 1( f), which

contains the result of application of TIE-Hom retrieval to

Fig. 1(e). The fact that Fig. 1(d) is also less noisy than the

object-plane intensity distribution in Fig. 1(b), while being as

sharp as the latter, is consistent with the ‘unreasonable’

effectiveness of PBI imaging (Gureyev et al., 2017a). On the

other hand, the numerical free-space propagation of the

complex amplitude produced from the noisy detected fluence,

followed by the TIE-Hom retrieval, simply returned the noisy

detected image to its original state. This is confirmed by the

clear similarity of Fig. 1( f) with Fig. 1(b). The latter behaviour

can be considered ‘reasonable’, because equation (20) is an

exact inverse of equation (4) which approximates the

numerical Fresnel diffraction used to obtain Fig. 1(e) from

Fig. 1(b). These qualitative observations indicate that the

‘true’ PBI imaging (as typically implemented in experiments),

consisting of free-space propagation of a complex amplitude

with subsequent addition of noise and PSF blurring, followed

by the TIE-Hom retrieval, violates the NRU by reducing noise

without deterioration of the spatial resolution (cf. the remarks

on the noisy-channel coding theorem in Section 1). At the

same time, the ‘numerical’ PBI imaging, consisting of free-

space propagation of the monomorphous complex amplitude

constructed from the noisy detected fluence in the object

plane, followed by the TIE-Hom retrieval, conforms to the

NRU, by increasing the SNR and spoiling the spatial resolu-

tion at the retrieval stage by the same amounts as the decrease

in the SNR and improvement of the spatial resolution at the

forward propagation simulation stage. Therefore, these simu-

lations are qualitatively fully consistent with the theoretical

considerations presented in the previous section.

We now proceed with quantitative analysis of the SNR and

spatial resolution in the images shown in Fig. 1, using software

implementation of equations (5)–(7) and (15). The following

points explain our approach to this analysis and its results.

(1) All measurements of the SNR have been performed in

the ‘flat’ region located in the top-right corner of the images.

As expected, the SNR remained the same after the free-space

propagation and it increased upon the TIE-Hom phase

retrieval. The latter effect can be seen by comparing the

measured values in cells c2 and d2 of Table 1, and, similarly,

the values in cells e2 and f2.

(2) Regarding the measurements of spatial resolution, we

have found that, for practical applications, it is more conve-

nient to normalize the resolution slightly differently from the

normalization used in equation (6). The following normal-

ization leads to measured values of the spatial resolution

which are close to the ones naturally expected from a priori

knowledge about the imaging conditions, particularly in the

context of experimental images considered later in the paper,

Res½P� ¼ �½P�=
ffiffiffi
�
p

: ð28Þ

Note that equation (28) effectively corresponds to the width

of a function defined as twice the 1D standard deviation.

For example, for Gaussian PSFs, PGaussðrÞ =

ð2�Þ� n=2b� n exp½� jrj2=ð2b2Þ�, the variance is equal to b2 in 1D,

2b2 in 2D and 3b2 in 3D, and in all these cases equation (28)

gives Res[PGauss] = 2b. The corresponding resolution

measurements in images from Fig. 1 are given in Table 1, with

column 3 containing the measurements performed in the top-

right (flat) region and those in column 5 containing the

measurements performed in the top-left (patterned) region.

The results in column 3 reflect only the effect of the convo-

lution with the relevant filter functions in the ‘flat’ areas with

Poisson noise. For example, the measured values of 257 mm

and 261 mm in cells b3 and c3 of Table 1, respectively, agree

well with the known width of the Gaussian PSF of the

detector, with 2b = 250 mm. On the other hand, the values in

column 5 contain also the contribution from the ‘intrinsic’ PSF

of the pattern in the top-left corner, i.e. the Lorentzian filter

with the FWHM of approximately 1054 mm. Note that the

latter value is close to the measured value in cell b5 of Table 1.
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Table 1
SNR and spatial resolution [‘Res’, equation (28)) measured in images
shown in Figs. 1(b)–1( f ) (row indices in the table correspond to the panes
of Fig. 1).

Spatial resolution results given in columns 3 and 5 were based on the
measurement of the width of the central peak of the MTF. The results in
columns 2–4 were obtained in the flat area in the top-right corner of the

images, while the results in column 5 were obtained in the patterned top-left
corner of the images. The results in column 6 were obtained by dividing the
values in column 2 by the value in the same row of column 5.

1 2 3 4 5 6

Image SNR
Res
(mm)

SNR/Res
(mm� 1)

Res0

(mm)
SNR/Res0

(mm� 1)

b SDðr?; 0Þ 91 257 0.36 1066 0.09
c SDðr?;RÞ 93 261 0.36 716 0.13
d STIEðr?; 0Þ 248 513 0.48 1068 0.23
e SD;simðr?;RÞ 11 165 0.07 372 0.03

f STIE;simðr?; 0Þ 92 257 0.36 1066 0.09



(3) The TIE-Hom approximation to the free-space propa-

gation in the near-Fresnel region is described by equation (19)

with the filter function Tðr?;RÞ = ð1 � a2r 2
?Þ �ðr?Þ, whose

second integral moment is equal to � 4a2. The improvement of

the spatial resolution due to this filter function can be

expressed as �2[P1] ffi �2[P0] � 8�a2, where P0ðr?Þ and

P1ðr?Þ are the effective PSFs in the object and in the image

planes, respectively. This implies that Res[P1] ffi (Res2[P0] �

8a2)1/2. Under the conditions used in the present simulations,

we obtain 8a2 = (2/�)�R� ffi 636620 mm2. Accordingly, the

improvement in the spatial resolution in the pattern in the top

left corner of the image, as a result of free-space propagation,

is expected to be from Res[P0] = 1066 mm (cell b5 in Table 1)

to approximately Res[P1] = (10662 mm2 � 636620 mm2)1/2 ffi

707 mm. The latter number is close to the measured value of

716 mm in cell c5 of Table 1.

(4) Similarly to the previous point, the effect of the appli-

cation of TIE-Hom retrieval on spatial resolution can be

estimated via the addition of the second integral moment

of the corresponding filter function, Tinvðr?;RÞ �

K0ðr?=aÞ=ð2�a2Þ, which is equal to 4a2, to the second moment

of P1. The resultant resolution is then equal to Res[P0, retr] =

(Res2[P1] + Res2[Tinv])1/2, where P1ðr?Þ and P0;retrðr?Þ are the

effective PSFs in the image plane and in the object plane after

the TIE-Hom retrieval, respectively. Under the conditions of

our simulations, we have Res2[Tinv] = 8a2 ffi 636620 mm2 and

the measured value of Res[P1] = 716 mm is given in cell c5 of

Table 1. Hence, the expected value of Res[P0, retr] is (7162 mm2

+ 636620 mm2)1/2 ffi 1072 mm, which is close to the measured

value of 1068 mm in cell d5 of Table 1.

(5) For the parameters used in this simulation, we have � =

100, NF ffi 19.6, and hence, according to equation (27), the

expected gain factor G2 should be approximately G2 =

(100/19.6)1/2 ffi 2.26. This theoretically predicted gain factor

agrees reasonably well with the ratio of the measured values of

SNR in cells b2 and d2 of Table 1: 248/91 ’ 2.73, and with the

measured SNR/res ratios given in cells b6 and d6: 0.23/0.09 ’

2.56. These measured gain factor values can be compared

with the results obtained after the simulated free-space

propagation of the complex amplitude UD;simðr?; 0Þ =

S
1=2
D ðr?; 0Þ exp½� ið�=2Þ ln SDðr?; 0Þ�, produced from the noisy

blurred registered fluence in the detector plane, followed by

the TIE-Hom retrieval. As indicated by the measured values

in cells b2 and f2, as well as b6 and f6 of Table 1, we see that

the gain factor in these simulations was exactly 1. This result is

completely in line with the theoretical predictions given in the

previous section.

5.2. Experimental PBI imaging

We also measured SNR and spatial resolution in experi-

mental X-ray images collected at the Imaging and Medical

beamline (IMBL) of the Australian Synchrotron. In the

experiment, a plane monochromatic X-ray beam with energy

of 32 keV was used, and the propagation distances were R =

15 cm (approximating the ‘contact’ image) and R = 600 cm

(representing a typical PBI regime). Images were collected

with a Xineos 3030HR flat-panel detector which had a pixel

size of 99 mm � 99 mm and a PSF with Res ’ 150 mm

(Arhatari et al., 2021). As the propagation distance from the

‘object’ to the ‘image’ planes was R 0 = 585 cm and the wave-

length was � = 0.3875 Å, the corresponding minimal Fresnel

number was NF = �(Res)2/(R�) ffi 312. The imaged object was

an excised mastectomy sample with an intermediate grade

ductal carcinoma. This breast tissue sample could be consid-

ered approximately monomorphous with � � (�gland � �fat)/

(�gland � �fat) = 869 at the specified X-ray energy (Gureyev et

al., 2019). Consequently, according to equation (27), the gain

factor corresponding to PBI with R 0 = 585 cm, relative to the

‘contact’ images, was expected to be approximately G2 =

(�/NF)1/2 ffi 1.67.

Fig. 2(a) shows a CT-reconstructed central slice through the

mastectomy sample. This figure is included only to illustrate

the general internal structure of the sample, which cannot be

readily discerned in the subsequent 2D projection images.

Fig. 2(b) contains an experimental PBI projection at the

sample-to-detector distance of 19 cm and 3.33 mGy dose. Due

to the small propagation distance, this image represents a good

approximation for a conventional ‘contact’ CT projection.

Fig. 2(c) shows a PBI projection at the sample-to-detector

distance of 600 cm and 0.67 mGy dose, while Fig. 2(d) depicts a

PBI projection at the same propagation distance, but at a

higher dose of 4 mGy. The latter two figures demonstrate, in

particular, that the spatial resolution in the PBI projections is

noticeably higher than in the ‘contact’ projection shown in

Fig. 2(b). This is particularly easy to see by comparing the

image in Fig. 2(e) with that in Fig. 2( f), these images

containing the same zoomed sub-region from Figs. 2(b) and

2(c), respectively. Finally, Figs. 2(g) and 2(h) contain the same

zoomed sub-region after the TIE-Hom reconstruction from

the image shown in Fig.2(c), according to equation (20) with

� = 275 and � = 869, respectively. These last two figures clearly

show an improvement in the SNR, compared with Fig. 2( f), at

the expense of some deterioration in the spatial resolution,

both effects appearing due to the low-pass filtering in the form

of the TIE-Hom retrieval in accordance with equations

(20)–(22).

We now proceed with the results of quantitative measure-

ments of SNR and spatial resolution in the experimental

images shown in Fig. 2. The SNR was measured in accordance

with equations (7) and (16) within the uniform region of the

images corresponding to the dotted square shown in Fig. 2(b).

The spatial resolution was evaluated on the basis of estimation

of the edge-spread function (Cunningham & Fenster, 1987;

Gureyev et al., 2008) at the top edge of the sample. This edge-

based spatial resolution was denoted Res0 to distinguish it

from the MTF-based resolution measurements used in Section

5.1. We had to resort to the edge-based resolution measure-

ments here because, as explained in Section 5.1 above, it is

impossible to detect changes in the MTF-based spatial reso-

lution in PBI imaging without the presence of a suitable high-

resolution high-contrast structure in the sample, e.g. similar to

the one embedded in the top-left corner of the simulated

sample used in Section 5.1. The edge-based resolution

research papers

906 Timur E. Gureyev et al. � Signal-to-noise and spatial resolution in in-line imaging J. Synchrotron Rad. (2024). 31, 896–909



measured in the PBI projections collected at R = 19 cm and

R = 600 cm was, respectively, Res0600cm = 214 mm and Res019cm =

120 mm (see cells b3 and c3 in Table 2). These numbers were

generally consistent with the known detector resolution

Resdet’ 150 mm in view of: (i) an expected contribution of the

inherent width of the sample edge to the measured resolution,

and (ii) an expected improvement in the spatial resolution as a

result of the free-space propagation. The measured SNR was

essentially the same in the images collected at R = 19 cm and

R = 600 cm without the TIE-Hom retrieval, when the actual

radiation doses were taken into account. Indeed, for example,

the measured value SNR3.33mGy/SNR0.67mGy = 52/23 = 2.26

(see cells b2 and c2 in Table 2) was close to the known ratio of

the doses (3.33/0.67)1/2 = 2.23. Most importantly, the measured

values of the intrinsic imaging quality characteristic, QS, and

the gain factor, G2, were consistent with the theory presented
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Table 2
SNR and spatial resolution measured in the experimental PBI images of a
mastectomy sample collected with plane monochromatic X-rays with E =
32 keV.

1 2 3 4

Projection images SNR Res0 (mm)
SNR/Res0/Dose1/2

(mm� 1 mGy� 1/2)

b R = 19 cm, dose = 3.33 mGy 52 214 0.13
c R = 600 cm, dose = 0.67 mGy 23 120 0.23
d R = 600 cm, dose = 4.00 mGy 55 119 0.23
e TIE-Hom retrieval with � = 275,

R = 600 cm, dose = 0.67 mGy
34 193 0.22

f TIE-Hom retrieval with � = 275,
R = 600 cm, dose = 4.00 mGy

82 183 0.22

g TIE-Hom retrieval with � = 869,
R = 600 cm, dose = 0.67 mGy

47 231 0.25

h TIE-Hom retrieval with � = 869,
R = 600 cm, dose = 4.00 mGy

109 224 0.24

Figure 2
Images of a mastectomy sample collected using plane monochromatic X-rays with an energy of 32 keV. (a) Reconstructed axial CT slice through the
middle of the sample. (b) PBI projection at the sample-to-detector distance of 19 cm and 3.33 mGy dose. The dashed square in the lower left corner
outlines the region inside which the SNR measurements were performed in all the images. (c) PBI projection at the sample-to-detector distance of
600 cm and 0.67 mGy dose. (d) PBI projection at the sample-to-detector distance of 600 cm and 4 mGy dose. (e) Zoomed sub-image of (b). ( f ) Zoomed
sub-image of (c). (g) Zoomed sub-image of the TIE-Hom reconstruction with � = 275 from the image shown in (c). (h) Zoomed sub-image of the TIE-
Hom reconstruction with � = 869 from the image shown (c).



in Section 4 above. As explained after equation (27), for a

fixed sample the absorbed radiation dose is proportional to

the incident fluence. Therefore, the values in column 4 of

Table 2 are proportional to QS and their ratios are equal to the

gain factor. It is easy to see in cells c4–h4 of Table 2 that the

measured values of QS were basically the same for all the PBI

images at R = 600 cm, regardless of the dose or the application

of TIE-Hom retrieval with different values of the parameter �.

This confirms the theoretically predicted independence of the

intrinsic imaging quality of the dose and of the TIE-Hom

retrieval, since the latter is an example of linear filtering which

always leaves QS unchanged. On the other hand, the ratio of

the values in cells c4 and b4 of Table 2 is equal to 0.23/013 ’

1.77, which is close to the theoretical value of G2 = (�/NF)1/2ffi

1.67 calculated above.

More detailed and comprehensive analysis of the behaviour

of SNR and spatial resolution in 2D and 3D (CT) experi-

mental PBI images will be presented in the second part of this

work in a later publication.

6. Conclusions

It follows from previous publications (Paganin, 2006;

Nesterets & Gureyev, 2014; Gureyev et al., 2017a) and the

results presented above that the performance of Paganin’s

method for PBI of monomorphous objects is determined by

just two key dimensionless parameters: the Fresnel number,

NF = �2/(R�) (where � is the spatial resolution of the

detector, R is object-to-detector distance and � is the radiation

wavelength) and the ratio � = �/� of the real decrement to the

imaginary part of the refractive index of the imaged object. In

particular, the gain in SNR, or, equivalently, in the SNR-to-

resolution ratio, in 2D free-space propagation followed by the

TIE-Hom retrieval, is determined by the ratio of � and NF:

G2 = (�/NF)1/2, see equations (26) and (27). Note that this gain

factor depends on the dimensionality of the images: in 1D it

becomes G1 ffi (�/NF)1/4 and in 3D G3 ffi (�/NF)3/4 (see the

second part of the present paper) or G3 ffi �/NF (Nesterets &

Gureyev, 2014), depending on the exact definition of the

Fresnel number. The improvement of the spatial resolution

upon free-space propagation is determined by the second

integral moment, � 4a2 = � �R�/� = � �2�/(�NF), of the

forward TIE-Hom filter (deconvolution) function, Tðr?;RÞ =

ð1 � a2r 2
?Þ �ðr?Þ, see equation (19). This implies that the

improvement in the spatial resolution due to free-space

propagation is essentially determined by the same parameter

G2. More detailed and accurate theoretical estimates of the

gain factor is given by Nesterets & Gureyev (2014).

The gain factor Gn quantifies the ‘degree’ of violation of

NRU in PBI and, hence, the effectiveness of Paganin’s

method. In view of the arguments presented in Section 4

above, the latter effectiveness can be understood as the

advantage that a ‘hardware’ implementation of PBI can

achieve over ‘software’ implementations in the form of

computer processing of conventional absorption-based images

collected at the same radiation dose. Since the Fresnel number

in PBI typically has to be larger than unity in order to satisfy

the validity conditions of the method, � needs to be even

larger in order for the gain factor to be larger than one, i.e. for

the method to work effectively. Fortunately, � = �/� is typically

of the order of 103 to 104 for soft biological tissues (composed

of light chemical elements) when they are imaged using hard

X-rays with wavelengths shorter than 1 Å, which correspond

to X-ray energies higher than approximately 12 keV. Impor-

tantly, at such X-ray energies, many types of soft biological

tissues can be considered approximately monomorphous. For

this reason, hard X-ray PBI in general and Paganin’s method

in particular have become popular in biomedical applications

in recent years (Wilkins et al., 2014; Taba et al., 2018; Endrizzi,

2018; Quenot et al., 2022). Note that a popular practical

strategy associated with Paganin’s method is to use smaller

values, � 0 < �, in the TIE-Hom retrieval for processing of

experimental images (Gureyev et al., 2019). This typically

leads to sharper reconstructed images due to incomplete

compensation of the edge-enhancement effect of the coherent

free-space propagation. This improved spatial resolution tends

to lead to higher subjective radiological image quality scores

compared with images reconstructed with the ‘true’ value of

� = �/� (Taba et al., 2019). Importantly, as shown in the present

paper, such changes in the value of � 0, and hence in the

parameter a02 = � 0R�/(4�), in the TIE-Hom retrieval algo-

rithm, equation (20), leave the gain factor G2 unchanged. This

invariance of the gain factor with respect to � 0 is a direct

consequence of the noise-resolution duality principle

(Gureyev et al., 2014), according to which any increases in the

spatial resolution obtained as a result of using smaller values

of � 0 in the TIE-Hom retrieval are always accompanied by

lowering of SNR in the images.

The fact that the PBI gain factor can be much larger in 3D

imaging (Nesterets & Gureyev, 2014; Kitchen et al., 2017) than

in planar imaging makes PCT a particularly attractive

approach for 3D imaging applications. The method is currently

being adopted for medical imaging of live humans (Gureyev et

al., 2019; Brombal et al., 2019; Arhatari et al., 2021). In this

context, it is important to analyse the details of SNR

improvement in PCT under practical conditions which require

minimization of both the radiation dose and the exposure

time. Such analysis can help researchers and engineers to

optimize future medical instruments for PCT imaging using

synchrotron radiation and laboratory X-ray sources. This

serves as a key motivation for the detailed quantitative study

presented here and in the second part of the present paper,

which further develops and applies the theoretical framework

described in the present paper to experimental PCT images,

with particular emphasis on the role of photon-counting

detectors in such applications (Brombal et al., 2018, 2019).
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