
computer programs

J. Synchrotron Rad. (2024). 31 https://doi.org/10.1107/S1600577524003989 1 of 8

ISSN 1600-5775

Received 28 December 2023

Accepted 1 May 2024

Edited by M. A. G. Aranda, University of

Malaga, Spain

Keywords: TomoPyUI; computed tomography;

alignment; reconstruction; TomoPy; Jupyter.

Supporting information: this article has

supporting information at journals.iucr.org/s

Published under a CC BY 4.0 licence

TomoPyUI: a user-friendly tool for rapid
tomography alignment and reconstruction

Samuel S. Welborn,a,b Molleigh B. Preeferb and Johanna Nelson Wekerb*

aDepartment of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA, and
bStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

*Correspondence e-mail: jlnelson@slac.stanford.edu

The management and processing of synchrotron and neutron computed tomo-

graphy data can be a complex, labor-intensive and unstructured process. Users

devote substantial time to both manually processing their data (i.e. organizing

data/metadata, applying image filters etc.) and waiting for the computation of

iterative alignment and reconstruction algorithms to finish. In this work, we

present a solution to these problems: TomoPyUI, a user interface for the well

known tomography data processing package TomoPy. This highly visual Python

software package guides the user through the tomography processing pipeline

from data import, preprocessing, alignment and finally to 3D volume recon-

struction. The TomoPyUI systematic intermediate data and metadata storage

system improves organization, and the inspection and manipulation tools (built

within the application) help to avoid interrupted workflows. Notably, Tomo-

PyUI operates entirely within a Jupyter environment. Herein, we provide a

summary of these key features of TomoPyUI, along with an overview of the

tomography processing pipeline, a discussion of the landscape of existing

tomography processing software and the purpose of TomoPyUI, and a

demonstration of its capabilities for real tomography data collected at SSRL

beamline 6-2c.

1. Introduction

During time-sensitive experiments, users would like to rapidly

process and assess their data directly after acquisition to draw

immediate conclusions from the data, which can dictate their

next experimental step and save limited beam time. Further, it

allows users to finish their beam time with processed data.

Unfortunately, data processing is frequently held up by a

complicated, time-consuming data processing pipeline that

may be unfamiliar to the user, especially an inexperienced

one. Navigating this complexity frequently necessitates

guidance from experienced personnel, imposing additional

demands on beamline staff. Further, both the experimental

settings and the sample type impact ease of processing. User-

friendly tools that provide an intuitive and interactive work-

space for data visualization and processing should therefore

be highly valued. By reducing time spent teaching and

learning the assemblage of software, we can reduce the time

between data acquisition and scientific understanding.

In this work, we aim to improve the experience of

synchrotron and neutron computed tomography (CT) users

by enhancing TomoPy (Gürsoy et al., 2014; Pelt et al., 2016),

a popular text-based software package for tomography

data processing, to TomoPyUI (https://github.com/swelborn/

tomopyui), a graphical user interface (GUI) that prioritizes

visualization, interactivity, and standardized data and meta-

data storage. Here we provide background on tomography

https://doi.org/10.1107/S1600577524003989
https://journals.iucr.org/s
https://scripts.iucr.org/cgi-bin/full_search?words=TomoPyUI&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=computed%20tomography&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=alignment&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=reconstruction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=TomoPy&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=Jupyter&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:jlnelson@slac.stanford.edu
https://github.com/swelborn/tomopyui
https://github.com/swelborn/tomopyui
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577524003989&domain=pdf&date_stamp=2024-06-26


data processing and currently available software, introduce

the purpose of TomoPyUI, discuss its key features, present the

results obtained from using it to align and reconstruct a real

dataset, and provide details on its underlying code structure to

facilitate its uptake at other user facilities. Although the

modules in TomoPyUI are focused on processing and visua-

lizing tomography datasets, we believe the logic behind its

primary features are generalizable to other types of image

series data.

2. Background

2.1. Computed tomography processing

In the age of in situ and operando tomography and high-

brightness synchrotrons, hundreds of tomography datasets can

be collected in a given beam time. This leaves the user with

potentially thousands of projection images of the sample to

preprocess, align and finally reconstruct into a 3D volume

representation using a selection of available reconstruction

algorithms. The data processing pipeline requires several

steps: preprocessing data, searching for the center of rotation,

projection image alignment and reconstruction.

(1) Preprocessing data. Reference and dark images before,

during and/or after an acquisition are used to correct for

background signal present in the projection images (normal-

ization). Multiple exposures of reference/dark images and

projection images may be collected to avoid detector satura-

tion and reduce the signal-to-noise ratio, in which case they

need to be averaged together. After normalization and aver-

aging, it may be necessary to apply preprocessing such as

image filtering and destriping to minimize artifacts in the

reconstructed image (Vo et al., 2018).

(2) Searching for the center of rotation. The center of rota-

tion (the axis around which the sample rotates) typically lies at

some offset from the center pixel of the projection images due

to the inherent challenge of aligning the sample perfectly at

the time of data acquisition. Finding the correct center of

rotation is critical, as severe artifacts will appear in the

reconstruction if it is set incorrectly (Gürsoy et al., 2014; Yang

et al., 2015). Further, if the rotation axis is not exactly

perpendicular with respect to the bottom of the projection

image, it will vary along the height of the images.

(3) Projection image alignment. High-resolution tomo-

graphy data can suffer from jitter – imprecision of the rotation

motor sample stage (runout) causes the sample to jump

around in the field-of-view during data collection (Gürsoy et

al., 2017; Wang, 2020). This motion is especially severe during

the collection of X-ray nanotomography data (Gürsoy et al.,

2017; Wang, 2020). Solutions to this problem vary and include

the use of external sensors to correct for misalignments or

automatic alignment algorithms to adjust the raw data

(Gürsoy et al., 2017; Wang, 2020; Stankevič et al., 2017; Wang et

al., 2012; Liu et al., 2012; Larsson et al., 2019; Pande et al., 2022;

Nikitin et al., 2021). Often, automatic alignments do not work

as expected, and users resort to manually aligning the raw data

in a user interface.

(4) Reconstruction. A number of reconstruction algorithms,

which fall into the category of either analytic or iterative

algorithms, can be used to perform a transformation from the

projection image domain to the reconstructed image domain

(Withers et al., 2021). The details of these algorithms are

beyond the scope of this work, but can be found in review

articles such as Withers et al. (2021).

2.2. Tomography processing packages

Many software packages exist to aid in the reconstruction of

tomography data, including GUIs (Liu et al., 2012; Xiao et al.,

2022; Pandolfi et al., 2018) and text-based applications

(Gürsoy et al., 2014; Pelt et al., 2016; Wadeson & Basham,

2016; Vo et al., 2019, 2021; van Aarle et al., 2016) which

implement the full processing pipeline. While we discuss some

of these tools in this work, a more exhaustive list can be found

on the repository at https://tomopedia.github.io/software/.

TXM Wizard (Liu et al., 2012) is a GUI based on Matlab

capable of each of the main tomography processing steps (and

more), but is not open-source. This makes the addition of any

novel and more robust alignment or reconstruction routines

difficult; it would require source access and a Matlab license.

TXM-Sandbox is a recently developed GUI that uses both

TomoPy and ImageJ for external image processing and

analysis (Xiao et al., 2022). While ImageJ offers a wide variety

of image processing tools, moving data into another applica-

tion can decentralize the workflow unless it is integrated

directly into the application like in AreaDetector (Rivers et al.,

2010) or TomoStream (Nikitin et al., 2022). Tomviz (Schwartz

et al., 2022), a GUI developed by Kitware, provides a robust

graphical interface for rendering, manipulating and analyzing

3D tomograms. It is capable of handling the full pipeline of

data processing steps from reconstruction to visualization to

analysis of 3D data, with Python tools for 3D analysis.

Workflow management tools enable users to create a series

of steps that can be represented in a directed acyclic graph

(DAG) and then execute this graph. Tomwer enables work-

flow automation by tailoring the ESRF Workflow System

(ewoks) to NXTomo datasets (Payno et al., 2022). Tasks can be

drawn on a canvas and set up to automate data processing as

scans are acquired. Further, it integrates with the slurm

scheduler, making it possible to run workflows on remote

resources. Tomwer can be used alongside nabu, the ESRF

command line interface workflow tool (Paleo et al., 2019).

Tofu (Faragó et al., 2022) is a workflow toolkit that utilizes the

ufo framework (Albarghouthi et al., 2012) for rapid GPU

processing. Similar to tomwer, it enables users to create a

workflow graph in a user interface, and is optimized for use on

a single workstation. On the other hand, the workflow tool

Savu, in operation at Diamond Light Source, has the ability to

ingest a list of commands and run them on a compute cluster,

making use of the Message Passing Interface (MPI) to run

workflows in parallel (Wadeson & Basham, 2016).

In the domain of text-based tools, command line interfaces

(CLI) such as tomopy-cli (Gürsoy et al., 2014) offer a

streamlined solution for users seeking to quickly and effi-

computer programs

2 of 8 Samuel S. Welborn et al. � TomoPyUI: rapid tomography alignment and reconstruction J. Synchrotron Rad. (2024). 31

https://tomopedia.github.io/software/


ciently reconstruct tomography data directly within a terminal

environment. This approach is advantageous for batch

operations where processing parameters remain constant

across datasets, and eliminates the need for script editing.

Users can execute reconstruction commands by specifying

parameters at runtime, or by using configuration files.

The majority of the solutions discussed above adhere to a

post-acquisition model, where data are initially stored on disk

before being imported into software for further analysis. The

landscape of data processing is evolving rapidly, however, with

significant advancements in real-time visualization and

reconstruction directly from data streams. This shift is driven

by the escalating challenge of data management; as the

volume of data generated outpaces the capacity for traditional

storage and processing methods, the efficiency of saving to

disk and subsequently transferring data to high-performance

computing (HPC) resources emerges as a critical bottleneck.

For example, the tomoscopy setup at PSI can acquire data at

acquisition rates of up to 1000 tomograms per second (Garcı́a-

Moreno et al., 2021). To deal with this, packages such as

RECAST3D (Schoonhoven et al., 2020) and tomoStream

(Nikitin et al., 2022) enable on-the-fly processing of the data

streams, dramatically reducing turnaround times.

3. TomoPyUI: a graphical interface for TomoPy

Within the dynamically evolving landscape of data manage-

ment solutions, TomoPyUI stands out as a platform that not

only facilitates a fully interactive experience throughout the

processing pipeline, but also enables access to remote data and

computational resources. The interactive experience begins

when raw projection data are imported into TomoPyUI. These

data are automatically normalized and displayed in an image

viewer, along with acquisition information (e.g. number of

projection images, image size, X-ray energy etc.) in the form of

a metadata table, providing accessible and contextual infor-

mation about the imported data. The user can then work

through the rest of the data processing pipeline interactively

and visually, applying methods developed in TomoPy to their

data (Fig. 1). The pipeline currently includes image filtration,

center of rotation tools, and automatic alignment and recon-

struction. Metadata are saved at each step of this process,

tracking the processing performed and allowing the user to

pick up where they left off. Additionally, the user has the

flexibility to return to any stage along the pipeline and redirect

their analysis if so desired. Some of the features available in

other software (e.g. 3D XANES analysis) are not currently

implemented in TomoPyUI but could be added; the software

is open-source and is structured in a manner that lends itself to

feature addition, which is discussed later (see Program

Structure).

Developed within the Jupyter ecosystem, TomoPyUI capi-

talizes on the ability of the Jupyter programming environment

to run on remote hardware. This is a strategic response to the

evolving challenges in data management and analysis at light

source facilities, which are poised to generate an exabyte of

data per year by 2028 (Schwarz et al., 2020). Notably, premier

HPC centers, such as NERSC at Lawrence Berkeley National

Laboratory, have embraced Jupyter as a core programming

environment (Thomas & Cholia, 2021), underscoring its

significance. Although existing tools like Savu and tomwer

provide mechanisms for remote operations, their integration

into a web interface remains limited. Tomwer, for instance,

supports remote access, but its setup demands more from the

user (i.e. setting up X-forwarding) compared with the intuitive

approach of running a cell in a Jupyter notebook. By inte-

grating directly with the Jupyter ecosystem, TomoPyUI

simplifies the process of engaging with HPC resources by

allowing users to initiate the application on a remote

JupyterHub. Further, while TomoPyUI does not currently

offer a way to visualize processed data streams from instru-

ments, its tools built in the Jupyter ecosystem could be

extended to enable real-time visualization.

4. Key features of TomoPyUI

This section highlights the main features of TomoPyUI. It is

not intended to explain all the tabs in TomoPyUI step-by-step;

see the video tutorials and walkthroughs at https://tomopyui.

readthedocs.io/.

4.1. Pyramidal downsampling

TomoPyUI relies on both full-resolution and downsampled

data. Whenever data are imported, they are downsampled

pyramidally using dask (Rocklin, 2015). If a dataset contains

computer programs

J. Synchrotron Rad. (2024). 31 Samuel S. Welborn et al. � TomoPyUI: rapid tomography alignment and reconstruction 3 of 8

Figure 1
TomoPyUI processing flowchart. The intuitive user interface of TomoPyUI allows users to move through the tomography processing pipeline in a
streamlined manner. Figure created using FontAwesome Free icons, creative commons license CC BY 4.0 (https://fontawesome.com/license/free).

https://tomopyui.readthedocs.io/
https://tomopyui.readthedocs.io/
https://fontawesome.com/license/free


360 2048 � 2048 images, TomoPyUI will create additional

datasets containing 360 1024 � 1024 images, 360 512 � 512

images and so on. These secondary datasets are stored on the

same hdf5 file as the full-resolution dataset. Downsampling

serves two crucial functions within TomoPyUI: reduced lag

time in refreshing changes to the displayed output image and

facilitating fast alignment.

The alignment protocol incorporated into TomoPy and

TomoPyUI (joint iterative reconstruction and reprojection)

(Gürsoy et al., 2017) can be computationally time intensive

when full-resolution datasets are used. In addition, full-reso-

lution data contain Poisson noise, which can be partially

filtered by downsampling to improve the efficacy of the

alignment algorithm (Gürsoy et al., 2017; Marais & Willett,

2017). In many cases, using downsampled data produces

similar, if not identical, alignment results compared with the

full-resolution data. To demonstrate this, we took 360

projection images of a nanoporous gold sample at SSRL

beamline 6-2c in 1� increments and used TomoPyUI to align

both the full-resolution dataset (360 � 2048 � 2048) and a

heavily downsampled dataset (360 � 256 � 256). Figs. 2(a)

and 2(b) show the X and Y pixel shifts, respectively, following

300 iterations of automated alignment, utilizing simultaneous

iterative reconstruction technique (SIRT) as the reconstruc-

tion algorithm. Note that the iterative alignment process

depends on cross-correlation between the initial projection

images and the images re-projected from the reconstruction.

Consequently, the selection of the reconstruction algorithm

influences the outcome of the alignment. The blue line

represents the shift of the full-resolution dataset, the red line

represents the downsampled dataset shifts, and the black line

represents the difference between these shifts. Despite only

slight deviations from 0 in the shift difference, the total

alignment time was 4.8 times longer for the full-resolution

dataset than for the downsampled dataset. Considering the

time difference and the robustness of the alignment, we

recommend using the downsampled data to perform an initial

alignment. After the alignment is completed, two image

viewers appear to compare projection images and sinograms

before and after the alignment [Figs. 2(c) and 2(d)]. Based on

visual inspection, the user can choose to use the aligned data

for another alignment at a higher resolution (i.e. less down-

sampling), or try another alignment with different options

using the original dataset.

Note that TomoPyUI also works with larger datasets typical

of microCT. Please see the supporting information for a

demonstration of a round-robin dataset from TomoBank (De

Carlo et al., 2018).

4.2. Image viewers

Another key feature of TomoPyUI is its built-in, modular

image viewer in each tab of the application for visualizing,

manipulating and interacting with data. For example, in the

Center tab, we provide a center of rotation-finding wizard that

is modeled from the tomopy center of rotation search found in

the tomopy.recon.rotation module (Fig. 3).

The user can quickly choose a slice to reconstruct [green

horizontal line, Fig. 3(a)] using the vertical slider [left,

Fig. 3(a)] and hence reconstruct that slice for a given range of

rotation centers. This uses a wrapper around tomopy.r-

econ.rotation.write_center, where instead of writing the

reconstructed slices to disk, it stores them in the Reconstruc-

tions image viewer [Fig. 3(b)]. After reconstruction, they can

determine the best center by sliding through the reconstructed

slice for the range of centers. The center value is automatically

updated in the Alignment/Reconstruction tabs to ensure a

smooth transition between processing steps. To accommodate

scenarios where projection images rotate around a non-

perpendicular axis, one can iteratively define multiple centers

computer programs

4 of 8 Samuel S. Welborn et al. � TomoPyUI: rapid tomography alignment and reconstruction J. Synchrotron Rad. (2024). 31

Figure 2
Impact of downsampling data on alignment efficacy. (a) X pixel shift and (b) Y pixel shift with respect to the projection angle (�) for both full resolution
(360 � 2048 � 2048) in blue and downsampled (360 � 256 � 256) in red datasets. Example of sinogram (c) before and (d) after automatic alignment
using downsampled data. The downsampled dataset took a nearly a fifth of the time that the full dataset took to align.

http://doi.org/10.1107/S1600577524003989


of rotation at different slices of the dataset. This is achieved by

setting several centers [marked as red points in Fig. 3(a)] by

repeating the process outlined above at various slices. We

point the reader to our online documentation for a video

explanation of this process (https://tomopyui.readthedocs.io/).

In the Align and Reconstruct tabs, users can select a region

of interest (ROI) within their dataset in the Imported

Projections viewer (red box, Fig. 4). This selection is then

transferred to the Altered Projections viewer, which will then

be used for computation of alignment and/or reconstruction.

The ability to reduce the dataset in this way saves alignment

and reconstruction time, and it can dramatically improve the

efficacy of the joint iterative alignment scheme. For example,

projection image datasets may have objects that float into the

field of view for a small fraction of the projection angles;

cropping these objects out can improve alignment.

5. Example alignment and reconstruction

In the following section, we demonstrate the efficacy of the

TomoPyUI automatic alignment algorithm using a real

dataset.

5.1. Experimental

Particles from a cycled Li-ion pouch cell

(LiNi0.5Mn0.3Co0.2O2) were loaded into a 0.3 mm inner

diameter glass capillary. A total of 1800 projection images

(1024 � 1024 pixels) were acquired on beamline 6-2c at the

Stanford Synchrotron Radiation Lightsource over 180� with

angular resolution of 1� at 8353 eV. Ten projection images

were averaged at each angle, and reference images were taken

every 10�. For more experimental details, refer to Preefer et

al. (2022).

5.2. Computed tomography before and after various align-

ment protocols

To demonstrate the effectiveness of alignment in Tomo-

PyUI, we show a sinogram and a reconstruction slice for

several different methods of alignment in Fig. 5. The discon-

tinuities visible in the unaligned sinogram in Fig. 5(a) indicate

a significant amount of jitter in the raw dataset. The jitter

appreciably impacts the quality of reconstruction: nanoscale

features are completely blurred out. On the other hand, after

two short (18 s) alignments using a heavily downsampled

dataset in TomoPyUI [Fig. 5(b)], the overall shape of the

sinogram has not been impacted, but the discontinuities

(jitter) have been removed and thus the quality of recon-

struction has dramatically improved. It is evident that the

central hole in the particle comprises a larger and a smaller

hole, and smaller cracks can be seen throughout the particle.

Fig. 5(c) is the sinogram and resulting reconstruction slice of

the raw data in Fig. 5(a) that have been manually aligned in

TXM Wizard. During manual alignment in TXM Wizard, the

user clicks the same point on an object in each of the

projection images, shifting the image from that point to the

center X and Y pixels. Even if the object has a non-zero

computer programs

J. Synchrotron Rad. (2024). 31 Samuel S. Welborn et al. � TomoPyUI: rapid tomography alignment and reconstruction 5 of 8

Figure 4
Image viewers displayed in the alignment and reconstruction tabs. (a)
Imported Projections viewer, where an ROI shown in red captures a
portion of the data to send to the (b) Altered Projections viewer, which is
the data used for alignment or reconstruction. The Altered Projections
viewer ROI is used to select a pixel range to compare the projected and
reprojected images in the joint iterative alignment algorithm (Gürsoy et
al., 2017).

Figure 3
Image viewers in the Center tab. Using the vertical slider on the left side
of the Projections viewer (a) one chooses a slice to reconstruct. After
choosing options for the center of rotation range (not shown), the
reconstructed slice over a range of different centers is plotted in the (b)
Reconstructions image viewer. One can quickly check the results of
different centers by sliding through the reconstructed slices. If the rota-
tion axis has a tilt, users can set multiple center points to create a list of
centers that varies linearly along the slice dimension [orange dashed
line in (a)].

Figure 5
Sinograms (left image of each panel) and XY slice of reconstructions
(right image of each panel) of a Li-ion battery cathode particle with
various alignment protocols. (a) Unaligned; (b) automatically aligned
using TomoPyUI; (c) manually aligned using TXM Wizard; and
(d) manually aligned using TXM Wizard, then automatically aligned
using TomoPyUI.

https://tomopyui.readthedocs.io/


transverse displacement from the rotation axis of the sample

holder, it is placed on the center of rotation in the images,

altering the sinograms’ shape [compare the sinograms in

Fig. 5(a) with those in Fig. 5(c)]. Some jitter still persists in the

manually aligned data in Fig. 5(c), and while the resolution of

the resulting reconstruction slice is better than the raw

reconstruction in Fig. 5(a) (e.g. smaller cracks throughout the

particle can be observed), the automatically aligned recon-

struction exhibits better feature resolution. Finally, we auto-

matically aligned the manually aligned dataset in Fig. 5(c) to

further remove jitter which, again, significantly improves

feature visibility in the reconstruction. Although it appears

that Fig. 5(d) has a comparable resolution to Fig. 5(b), the

overall particle shape in the reconstructed slice in Fig. 5(b)

more closely resembles that in the reconstructed slice in

Fig. 5(a). Note the particle perimeter and the shape of the

large hole in the particle center. We speculate that the manual

alignment, which sets the rotation center to the X value of the

point clicked by the user in the image, impacts the particle

shape. However, since we do not have a ground truth

measurement for this particle, we cannot determine which

methodology is better: automatically aligned [Fig. 5(b)] or

manually and then automatically aligned [Fig. 5(d)]. More-

over, the best methodology is likely to be sample dependent.

For example, the shape of a particle close to the center of

rotation may be less impacted by manual alignment than the

example given here. Nevertheless, using TomoPyUI to auto-

matically align a downsampled dataset twice (a total of 36 s of

computation time) is far more desirable for the user than

iteratively clicking 180 images and makes higher angular

resolution data reasonable to collect and align. In some cases

(i.e. when objects that float into the field of view cannot

effectively be removed by cropping), performing a manual

alignment prior to automatic alignment may be necessary to

avoid automatic alignment failure.

6. Program structure

6.1. Overview

TomoPyUI is an open-source GUI, built entirely in Python,

with its frontend operating within the Jupyter ecosystem

(Kluyver et al., 2016). The project uses several actively

developed Python packages, including ipywidgets, bqplot,

TomoPy, dask, Astra Toolbox and cupy. An overview of the

structure of the project is shown in Fig. 6(a), containing three

modules: (1) widgets, which houses the user interface and is

built primarily from bqplot, bqplot-image-gl and ipywidgets;

(2) backend, where data and metadata input/output and

alignment/reconstruction functions run and is built using

TomoPy and dask; and (3) gpu, a Compute Unified Device

Architecture (CUDA)-enhanced alignment and reconstruc-

tion package that runs significantly faster than the CPU based

TomoPy routines by leveraging the power of GPUs and

making use of cupy and Astra Toolbox. For each step of the

data processing pipeline, there is a widgets submodule that

creates the corresponding frontend (GUI) tab, including data

import in imports, center of rotation search in center, and

alignment and reconstruction in analysis. Each of these

submodules converses with the view submodule, which

contains Python classes that create the image visualizers

present in each tab and discussed above. After choosing

various options in the frontend, backend and gpu perform the

behind-the-scenes computations and send the result to the

frontend on completion. Many of the tools in backend and gpu

are wrappers for TomoPy functions with enhanced features,

including real-time visualization during alignment and algo-

rithms sped up by CUDA [calling the Astra Toolbox (van

Aarle et al., 2016) directly and using cupy]. Note that while

these backend enhancements currently reside within the

TomoPyUI codebase, they could be integrated into TomoPy

(Gürsoy et al., 2014) and/or TomocuPy (Nikitin, 2023) in the

future to make these features more widely accessible.

6.2. Modularity and object-oriented framework

While developing TomoPyUI, we focused on code modu-

larity in three of its key features such that it could be scaled to

other beamlines and provide the backbone for other 3D

synchrotron data software.

(1) Data import. Since each of the CT beamlines stores raw

data in different file formats, software logic behind data

import can be burdensome (De Carlo et al., 2014). For

example, it can be challenging to create a general import

function that could detect whether an .h5 file is from the

Advanced Light Source (ALS) or Advanced Photon Source

computer programs

6 of 8 Samuel S. Welborn et al. � TomoPyUI: rapid tomography alignment and reconstruction J. Synchrotron Rad. (2024). 31

Figure 6
(a) Structure of TomoPyUI. The submodules of the code interact (shown
by the red arrows) to create the GUI. The Python symbols indicate
individual Python files, and the black lines indicate their subfolder (i.e.
widgets, backend and gpu). (b) Scalability to other beamlines. Only minor
modifications need to be made to a selection of the Python files (e.g. io.py
shown in blue) to add import functionality for specific beamlines. Figure
created using FontAwesome Free icons, creative commons license CC BY
4.0 (https://fontawesome.com/license/free).

https://fontawesome.com/license/free


(APS). On top of this, the normalization procedure of one

beamline may differ from another. Projection images collected

at the SSRL beamline 6-2c, for example, are saved as a series

of darkfield-corrected images that need to be averaged toge-

ther after normalization. Other beamlines may store pre-

averaged projection images and darkfield images separately in

an hdf5 file. Given these complications, we created a class

inheritance structure to enable new import protocols to be

deployed in TomoPyUI with relative ease. We have provided a

guide to create a new import protocol through an example pull

request (https://github.com/swelborn/tomopyui/pull/41) for

the import of raw data stored in the NXTomo format file. The

current version of TomoPyUI requires datasets to fit in the

memory of the host machine during import. Note, however,

that one could implement their own data import protocol that

mitigates this requirement.

(2) Metadata management. Similar to our data import class

structure, TomoPyUI contains metadata classes (subclasses of

the metadata class in io.py) that manage metadata storage

both during import and throughout the processing pipeline,

allowing for quick and easy visual access to this information in

the form of metadata tables displayed on the Import tab. Each

type of metadata has its own metadata class, and thus the table

may appear different for data from different beamlines. While

only a few metadata variables are required for data import for

TomoPyUI to function properly (e.g. start and end angles,

reference location indices, and pixel size), additional experi-

ment- or beamline-specific values can be added to inform the

user about their acquisition.

(3) Data visualization. The data visualizers in each tab of

TomoPyUI are constructed from the various viewer classes

found in view.py, built using a combination of widgets from

the Python packages bqplot, bqplot-image-gl and ipywidgets.

These viewers all contain the same base-level functionality

including an image histogram, an image index slider and

several common image visualization buttons. However, addi-

tional and distinct functionality is required in each tab (e.g. an

additional slider for finding the centers of rotation). For this

reason, we created a subclass structure that lends itself to

easily building these features on top of the image viewer base

class. We should emphasize that our data visualization logic

could be applied to other image series data without significant

changes to our modular, open-source code.

7. Conclusions

This manuscript presents TomoPyUI, a GUI that builds on the

TomoPy library to facilitate improved interaction with

computed tomography (CT) data. TomoPyUI responds to the

growing needs for data management and analysis capabilities

at synchrotron and neutron facilities. TomoPyUI leverages the

ability of the Jupyter ecosystem to operate on remote hard-

ware, thereby making advanced computing resources more

accessible to a wider range of users. The utilities we have

developed in TomoPyUI enable these users to navigate the

processing pipeline efficiently by interactively executing tasks

such as identifying the center of rotation and aligning

projection images, facilitating rapid processing feedback loops.

Additionally, TomoPyUI supports the storage and visualiza-

tion of metadata, enabling users to easily monitor the modi-

fications and processing steps applied to their data within the

workspace. As an open-source project (https://github.com/

swelborn/tomopyui), it encourages contributions and feed-

back from the user community to ensure it meets the evolving

needs of researchers in the field. For instructions on how to

install TomoPyUI, import data, and utilize its alignment and

reconstruction features, users are encouraged to consult the

documentation and tutorials available at https://tomopyui.

readthedocs.io/.

Acknowledgements

The authors thank Alexander Ng and Dr Eric Detsi for

providing the nanoporous gold sample used in Fig. 2. We

thank the eXtreme fast charge Cell Evaluation of Lithium-ion

batteries (XCEL) team for sending us the battery sample used

in this work.

Funding information

This material is based on work supported by the US Depart-

ment of Energy (DOE), Office of Science, Office of Workforce

Development for Teachers and Scientists, Office of Science

Graduate Student Research (SCGSR) program. The SCGSR

program is administered by the Oak Ridge Institute for

Science and Education (ORISE) for the DOE. ORISE is

managed by ORAU (contract No. DE-SC0014664). All

opinions expressed in this paper are the authors’ and do not

necessarily reflect the policies and views of the DOE, ORAU

or ORISE. Research at XCEL is supported by the Vehicle

Technologies Office of the US DOE, Office of Energy Effi-

ciency and Renewable Energy under the Advanced Battery

Cell Research Program. Use of the Stanford Synchrotron

Radiation Lightsource, SLAC National Accelerator Labora-

tory, is supported by the US DOE, Office of Science, Office of

Basic Energy Sciences (contract No. DE-AC02-76SF00515).

References

Aarle, W. van, Palenstijn, W. J., Cant, J., Janssens, E., Bleichrodt, F.,
Dabravolski, A., De Beenhouwer, J., Joost Batenburg, K. & Sijbers,
J. (2016). Opt. Express, 24, 25129.

Albarghouthi, A., Li, Y., Gurfinkel, A. and Chechik, M. (2012).
Proceedings of the 24th International Conference on Computer
Aided Verification (CAV2012), 7–13 July 2012, Berkeley, CA, USA,
pp. 672–678.

De Carlo, F., Gürsoy, D., Ching, D. J., Batenburg, K. J., Ludwig, W.,
Mancini, L., Marone, F., Mokso, R., Pelt, D. M., Sijbers, J. & Rivers,
M. (2018). Meas. Sci. Technol. 29, 034004.

De Carlo, F., Gürsoy, D., Marone, F., Rivers, M., Parkinson, D. Y.,
Khan, F., Schwarz, N., Vine, D. J., Vogt, S., Gleber, S.-C.,
Narayanan, S., Newville, M., Lanzirotti, T., Sun, Y., Hong, Y. P. &
Jacobsen, C. (2014). J. Synchrotron Rad. 21, 1224–1230.

Faragó, T., Gasilov, S., Emslie, I., Zuber, M., Helfen, L., Vogelgesang,
M. & Baumbach, T. (2022). J. Synchrotron Rad. 29, 916–927.

computer programs

J. Synchrotron Rad. (2024). 31 Samuel S. Welborn et al. � TomoPyUI: rapid tomography alignment and reconstruction 7 of 8

https://github.com/swelborn/tomopyui/pull/41
https://github.com/swelborn/tomopyui
https://github.com/swelborn/tomopyui
https://tomopyui.readthedocs.io/
https://tomopyui.readthedocs.io/
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB5


Garcı́-Moreno, F., Kamm, P. H., Neu, T. R., Bülk, F., Noack, M. A.,
Wegener, M., von der Eltz, N., Schlepütz, C. M., Stampanoni, M. &
Banhart, J. (2021). Adv. Mater. 33, 2104659.

Gürsoy, D., De Carlo, F., Xiao, X. & Jacobsen, C. (2014). J.
Synchrotron Rad. 21, 1188–1193.

Gürsoy, D., Hong, Y. P., He, K., Hujsak, K., Yoo, S., Chen, S., Li, Y.,
Ge, M., Miller, L. M., Chu, Y. S., De Andrade, V., He, K., Cossairt,
O., Katsaggelos, A. K. & Jacobsen, C. (2017). Sci. Rep. 7, 11818.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M.,
Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P.,
Avila, D., Abdalla, S., Willing, C. & Jupyter Development Team
(2016). Jupyter Notebooks – a publishing format for reproducible
computational workflows. (eds.) In Positioning and Power in
Academic Publishing: Players, Agents and Agendas, edited by F.
Loizides & B. Scmidt, pp. 87–90. IOS Press.

Larsson, E., Gürsoy, D., De Carlo, F., Lilleodden, E., Storm, M.,
Wilde, F., Hu, K., Müller, M. & Greving, I. (2019). J. Synchrotron
Rad. 26, 194–204.

Liu, Y., Meirer, F., Williams, P. A., Wang, J., Andrews, J. C. & Pianetta,
P. (2012). J. Synchrotron Rad. 19, 281–287.

Marais, W. & Willett, R. (2017). Proceedings of the 7th International
Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP2017), 10–13 December 2017, Curacao,
Netherlands Antilles.

Nikitin, V. (2023). J. Synchrotron Rad. 30, 179–191.
Nikitin, V., De Andrade, V., Slyamov, A., Gould, B. J., Zhang, Y.,

Sampathkumar, V., Kasthuri, N., Gürsoy, D. & De Carlo, F. (2021).
IEEE Trans. Comput. Imaging, 7, 272–287.

Nikitin, V., Tekawade, A., Duchkov, A., Shevchenko, P. & De Carlo,
F. (2022). J. Synchrotron Rad. 29, 816–828.

Paleo, P., Mirone, A., Nemoz, C. & Viganò, N. (2019). Nabu, https://
gitlab.esrf.fr/tomotools/nabu.

Pande, K., Donatelli, J. J., Parkinson, D. Y., Yan, H. & Sethian, J. A.
(2022). Opt. Express, 30, 8898.

Pandolfi, R. J., Allan, D. B., Arenholz, E., Barroso-Luque, L.,
Campbell, S. I., Caswell, T. A., Blair, A., De Carlo, F., Fackler, S.,
Fournier, A. P., Freychet, G., Fukuto, M., Gürsoy, D., Jiang, Z.,
Krishnan, H., Kumar, D., Kline, R. J., Li, R., Liman, C., Marchesini,
S., Mehta, A., N’Diaye, A. T., Parkinson, D. Y., Parks, H., Pellou-
choud, L. A., Perciano, T., Ren, F., Sahoo, S., Strzalka, J., Sunday,
D., Tassone, C. J., Ushizima, D., Venkatakrishnan, S., Yager, K. G.,
Zwart, P., Sethian, J. A. & Hexemer, A. (2018). J. Synchrotron Rad.
25, 1261–1270.

Payno, H., Paleo, P., Nemoz, C., Cloetens, P., di Michiel, M., Rack, A.,
Tafforeau, P., Solé, V. A. & Viganò, N. R. (2022). J. Phys.: Conf. Ser.
2380, 012106.

Pelt, D. M., Gürsoy, D., Palenstijn, W. J., Sijbers, J., De Carlo, F. &
Batenburg, K. J. (2016). J. Synchrotron Rad. 23, 842–849.

Preefer, M. B., Tanim, T. R., Welborn, S. S., Agyeman-Budu, D. N.,
Dunlop, A. R., Trask, S. E., Dufek, E. J., Jansen, A. N. & Nelson
Weker, J. (2022). J. Phys. Chem. C, 126, 21196–21204.

Rivers, M. L., Garrett, R., Gentle, I., Nugent, K. & Wilkins, S. (2010).
AIP Conf. Proc. 1234, 51–54.

Rocklin, M. (2015). Proceedings of the 14th Python in Science
Conference (SciPy 2015), 6–12 July 2015, Austin, TX, USA, pp.
126–132.

Schoonhoven, R., Buurlage, J.-W., Pelt, D. M. & Batenburg, K. J.
(2020). Proceedings of the IEEE 30th International Workshop on
Machine Learning for Signal Processing (MLSP2020), 21–24
September 2020, Espoo, Finland.

Schwartz, J., Harris, C., Pietryga, J., Zheng, H., Kumar, P., Visheratina,
A., Kotov, N. A., Major, B., Avery, P., Ercius, P., Ayachit, U., Geveci,
B., Muller, D. A., Genova, A., Jiang, Y., Hanwell, M. & Hovden, R.
(2022). Nat. Commun. 13, 4458.

Schwarz, N., Campbell, S., Hexemer, A., Mehta, A. & Thayer, J.
(2020). Proceedings of the 17th Smoky Mountains Computational
Sciences and Engineering Conference (SMC2020), 26–28 August
2020, Oak Ridge, TN, USA, pp. 145–156.

Stankevič, T., Engblom, C., Langlois, F., Alves, F., Lestrade, A.,
Jobert, N., Cauchon, G., Vogt, U. & Kubsky, S. (2017). Rev. Sci.
Instrum. 88, 053703.

Thomas, R. & Cholia, S. (2021). Comput. Sci. Eng. 23, 93–98.

Vo, N. T., Atwood, R. C. & Drakopoulos, M. (2018). Opt. Express, 26,
28396.

Vo, N. T., Atwood, R. C. & Drakopoulos, M. (2019). Proc. SPIE,
11113, 309–328.

Vo, N. T., Atwood, R. C., Drakopoulos, M. & Connolley, T. (2021).
Opt. Express, 29, 17849–17874.

Wadeson, N. & Basham, M. (2016). arXiv : 1610.08015.

Wang, C.-C. (2020). Sci. Rep. 10, 7330.

Wang, J., Karen Chen, Y., Yuan, Q., Tkachuk, A., Erdonmez, C.,
Hornberger, B. & Feser, M. (2012). Appl. Phys. Lett. 100, 143107.

Withers, P. J., Bouman, C., Carmignato, S., Cnudde, V., Grimaldi, D.,
Hagen, C. K., Maire, E., Manley, M., Du Plessis, A. & Stock, S. R.
(2021). Nat. Rev. Methods Primers, 1, 18.

Xiao, X., Xu, Z., Lin, F. & Lee, W.-K. (2022). J. Synchrotron Rad. 29,
266–275.

Yang, Y., Yang, F., Hingerl, F. F., Xiao, X., Liu, Y., Wu, Z., Benson,
S. M., Toney, M. F., Andrews, J. C. & Pianetta, P. (2015). J.
Synchrotron Rad. 22, 452–457.

computer programs

8 of 8 Samuel S. Welborn et al. � TomoPyUI: rapid tomography alignment and reconstruction J. Synchrotron Rad. (2024). 31

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB21
https://gitlab.esrf.fr/tomotools/nabu
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB41
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB41
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=vl5020&bbid=BB42

	Abstract
	1. Introduction
	2. Background
	2.1. Computed tomography processing
	2.2. Tomography processing packages

	3. TomoPyUI: a graphical interface for TomoPy
	4. Key features of TomoPyUI
	4.1. Pyramidal downsampling
	4.2. Image viewers

	5. Example alignment and reconstruction
	5.1. Experimental
	5.2. Computed tomography before and after various alignment protocols

	6. Program structure
	6.1. Overview
	6.2. Modularity and object-oriented framework

	7. Conclusions
	Acknowledgements
	Funding information
	References

