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X-ray and neutron scattering have long been used for structural characterization

of cellulose in plants. Due to averaging over the illuminated sample volume,

these measurements traditionally overlooked the compositional and morpho-

logical heterogeneity within the sample. Here, a scanning tomographic imaging

method is described, using contrast derived from the X-ray scattering intensity,

for virtually sectioning the sample to reveal its internal structure at a resolution

of a few micrometres. This method provides a means for retrieving the local

scattering signal that corresponds to any voxel within the virtual section,

enabling characterization of the local structure using traditional data-analysis

methods. This is accomplished through tomographic reconstruction of the

spatial distribution of a handful of mathematical components identified by non-

negative matrix factorization from the large dataset of X-ray scattering intensity.

Joint analysis of multiple datasets, to find similarity between voxels by clustering

of the decomposed data, could help elucidate systematic differences between

samples, such as those expected from genetic modifications, chemical treatments

or fungal decay. The spatial distribution of the microfibril angle can also be

analyzed, based on the tomographically reconstructed scattering intensity as a

function of the azimuthal angle.

1. Introduction

X-ray and neutron scattering patterns from plant cell walls

typically consist of diffraction peaks from crystalline cellulose

and diffuse contributions from amorphous components like

lignin. The scattering data can be used to characterize the

abundance and degree of organization of cellulose structures,

based on derived quantities such as the crystallinity index (CI)

(Thygesen et al., 2005) and the degrees of correlation between

cellulose fibrils. Scattering methods therefore have been used

in studies of breakdown of biomass feedstock for bioenergy

production (Dadi et al., 2006; Samayam et al., 2011; Inouye et

al., 2014) and natural fungal decay of wood (Castaño et al.,

2022; Floudas et al., 2022). Spatially resolved measurements

using micro-focused X-ray beams can reveal the structural

heterogeneity in the sample and therefore have the potential

to provide a more precise description of how these processes

take place. For instance, scanning mapping of thin sections has

been used to quantify the local orientation of the cellulose

microfibrils in secondary cell walls (Lichtenegger et al., 1999).

However, preparing sections that are cut perpendicular to the

growth direction and therefore reveal the cell-wall archi-

tecture is not always feasible, especially for samples that have

been chemically treated or have already decayed naturally.

Furthermore, due to the fiber geometry of the cellulose

structures, the observed scattering intensity can be highly
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dependent on local orientation of the cellulose fibrils, making

data analysis difficult. Here, we use scanning scattering

tomography to circumvent both issues.

Performing tomographic imaging based on X-ray scattering

contrast has been applied to polymer materials (Stribeck et al.,

2006; Schroer et al., 2006) as well as biological tissues (Jensen

et al., 2011; Liebi et al., 2015; Schaff et al., 2015; Georgiadis et

al., 2021; De Falco et al., 2021). In general, the observed

scattering signals may be dependent on the orientation of the

underlying structure (e.g. collagen and minerals in bones, or

myelin in nerve tissues). The tomographic reconstruction

algorithm therefore needs to account for this projection-angle

dependence. On the other hand, in cases where the basis for

the reconstruction is invariant during sample rotation (see

discussion by De Falco et al., 2021), the reconstruction can be

much simplified. Cellulose in plant cell walls is the primary

source of the observed X-ray scattering intensity. The scat-

tering from an isolated cellulose fibril is rotationally invariant

with respect to the fiber axis. Plant cells in tissues that are most

abundant in cellulose are cylindrical structures that are elon-

gated along the growth direction. The overall scattering from

the enclosed cell walls resembles that from cellulose fibrils,

with the growth direction being the average cellulose fiber

direction. However, the presence of the microfibril angle

(MFA), which is the angle between the fiber axis and the

growth direction [see Fig. 1(B)], gives rise to a split peak along

the azimuthal angular direction [e.g. Fig. 1(D) and the inset of

Fig. 1(E)]. Nevertheless, the scattering intensity integrated

over all azimuthal angles does not depend on sample rotation

about the growth direction. Therefore, as long as the plant

sample (e.g. a matchstick cut from wood, or the stem of a

small plant) is positioned such that the growth direction

coincides with the rotation axis of the projection angle and is

perpendicular to the incident beam, the rotational invariance

holds. The reconstruction can then be performed using

existing tools developed for tomographic imaging based on

observables that are scalers, such as X-ray absorption or

fluorescence emission.
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Figure 1
The overall data-processing workflow and representative data collected in scanning tomography measurements. (A) An overview of all the processing
and analysis described in this article. The experimental geometry and typical scattering patterns are shown in (B). The plant sample is schematically
depicted as a collection of hollow cylinders that represent the cell walls. The spiral lines indicate the orientation of cellulose fibrils with a non-zero MFA
value. The sample is scanned across the X-ray beam (red arrow) at a series of projection angles during measurements. The scattering patterns were
collected on two separate detectors, for small- and wide-angle X-ray scattering (SAXS and WAXS), and then reformatted and merged into q–’ maps.
The relevant data collection and processing details have been described elsewhere (Yang et al., 2022). The data shown are from (C) a bamboo sample and
(D) a rice sample, respectively. The lower horizontal (ix) and left vertical axes (iy) are the pixel indices of the intensity map. The intensity profiles
averaged over all azimuthal angles, ’, are shown in (E), while the angular intensity distributions near the maximum of the cellulose peak are shown in the
inset. The scattering intensity spans a dynamic range of several orders of magnitudes. Therefore, in (C) and (D), the scattering intensity has been
multiplied with a factor of q2 so that the features at both high q and low q are visible with the same color scale. Similarly, a non-uniform q grid is used to
show features more clearly at both high q and low q. The black vertical lines in (E) indicate the peaks that are attributed to the structure of starch.



Collecting the scattering data as described above can also

be helpful in determining the MFA from the observed inten-

sity. Typically, the cell-wall geometry must be separately

characterized to define the cell-wall orientation as an input

parameter when calculating the MFA distribution (Cave, 1997;

Rüggeberg et al., 2013). In tomographic data collection, the

sample is rotated for observation from different projection

angles. In the scattering intensity averaged over all projection

angles, all cell-wall orientations contribute equally. The overall

MFA distribution can therefore be evaluated based on the

scattering data alone. In addition, under the assumption of

rotational invariance of the angular scattering intensity profile,

we can further retrieve the local MFA and visualize its spatial

distribution.

We demonstrate the workflow of scanning scattering

tomography using, as examples, a bamboo sample cut from the

internode and the intact stalk from several rice plants.

2. Tomography based on the intensity of specific

features in the scattering data

Fig. 1 shows typical X-ray scattering patterns from a bamboo

sample and a rice sample. As part of the uniform data-

processing workflow summarized in Fig. 1(A), we first convert

the X-ray scattering data into intensity maps with coordinates

of the scattering vector q [defined as ð4�=�Þ sin �, where � is

the X-ray wavelength and 2� is the scattering angle] and the

azimuthal angle ’. The most prominent feature in a typical

scattering pattern is the well documented diffraction peaks

from crystalline cellulose. There is also a diffuse peak at

�0.1 Å� 1 that is perpendicular to the fiber axis, which can be

well explained by the correlation between cellulose micro-

fibrils (Jakob et al., 1994; Kennedy et al., 2007; Fernandes et al.,

2011; Penttilä et al., 2019). Finally, the streak at extremely low

q has been attributed to the porous structure of plant tissue

(Jakob et al., 1996; Nishiyama et al., 2014).

Crystalline cellulose and amorphous structural components

(e.g. lignin) contribute to this intensity map differently. In the

context of tomographic reconstruction, we consider the

contribution from a volume element in the virtual cross

section during sample rotation. The scattering from amor-

phous components is isotropic. In contrast, for crystalline

cellulose, the scattering intensity is a function of the azimuthal

angle, and dependent on the microfibril orientation in the cell

walls (Cave, 1997; Barnett & Bonham, 2004). We have two

different options for analyzing these data. A unsplit cellulose

peak along the ’ axis in the intensity map that is independent

of the projection angle during tomographic data collection, as

is the case for the bamboo sample [see the inset of Fig. 1(E)],

suggests that most cellulose fibrils are highly oriented with a

near-zero MFA. We could then focus on the intensity profile at

’ = 0 (on the equator in the fiber-diffraction diagram): Ie(q) =

I(q, ’ = 0). This assures that the intensity is free of contam-

ination from the cellulose peaks outside of the zeroth layer

line. More generally, however, the MFA is not a single value

but a distribution. Multiple structural components may also

have different orientational distributions [e.g. cellulose and

starch contributions in Fig. 1(D), as described below]. It is

therefore preferred to work with the intensity integrated over

all azimuthal angles: Io ¼
R

Iðq; ’Þ d’, which is equivalent to

the data from powder diffraction measurements (commonly

referred to as XRD in the literature). This is because the

integral over ’ negates the MFA-induced intensity redis-

tribution at the fibril level. Therefore, Io(q) is independent of

the projection angle, even if the ’-dependent profile of the

contribution from the individual cells could vary with the

projection angle due to the cell-wall architecture.

With the rotational invariance of the scattering intensity

established, we can use general-purpose software like tomopy

(Gürsoy et al., 2014) for tomographic reconstruction. The

contribution to the overall scattering intensity from cell walls

that are not aligned with the growth direction is expected to be

small and therefore neglected. As we will see in the following,

this assumption does not seem to affect tomographic recon-

struction and therefore likely holds true for the examples

below.

As a proof of concept, we have previously demonstrated

(Yang et al., 2022) tomographic sectioning of a poplar stem

based on the intensity of the cellulose (020) peak in the

scattering data. Fig. 2 shows similar results for the bamboo and

rice samples. In principle, any parameter extracted from

conventional analysis of the individual scattering patterns can

be used for tomographic reconstruction, so long as they are

additive and therefore follow the Radon transform. For

instance, rice plants store starch in granules in the leaf sheath

and culm during vegetative growth (Perez et al., 1971; Sato,

1984). Diffraction peaks that are characteristic of the A-type

starch structure at q ’ 1.07, 1.21 and 1.27 Å� 1 (scattering

angles of 2� = 15.2, 17.2 and 18.0� at 8 keV, respectively;

Kadan & Pepperman, 2002) are visible in the data shown in

Fig. 1(C). Rice plants are also known to contain silica.

However, no clear signature from silica is visible in the data,

likely due to its amorphous form. We can use the intensity of

the most prominent peaks that correspond to cellulose and

starch in the scattering data (see details in Section 5.4) to

estimate their spatial distributions based on tomographic

reconstruction. This is demonstrated in Fig. 2(B). Notably,

while the starch distribution appears uniform in the leaf

sheath, in the culm there is a clear radial distribution, with

higher concentration on the inner periphery. Starch also

appears absent in tissues that show high values in the CI map,

suggesting those specific cell types are not involved in starch

storage.

The intensity-based tomograms are direct measures of

material abundance (cellulose and starch in this example).

However, the numerical values are not calibrated. They may

need to be scaled to account for the difference in the inte-

grating q ranges used for preparing the sinograms when

making comparisons between datasets (different samples or

plant individuals). The values in the absorption tomogram

correspond to the logarithm of absorption per voxel and are

therefore comparable between tomograms. Indirect calcula-

tions of other quantities are possible. In particular, the cellu-

lose crystallinity can be calculated based on the intensity
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tomograms for the cellulose (020) peak, and for the intensity

minimum between the (020) and (110) peaks, as shown in the

CI maps in Fig. 2. While the numerical value of the CI cannot

be taken at face value, as has been discussed in the literature

(e.g. French & Cintrón, 2013; Lindner et al., 2015), it is

adequate for quantitative comparisons.

The small-angle X-ray scattering (SAXS) tomograms

correspond to the scattering intensity in the q range where the

cellulose-fibril correlation peak is expected to appear.

Correlations between fibrils can affect both the magnitude and

the position of this peak. Therefore, the numerical values in

these maps cannot be simplistically interpreted as the abun-

dance of a structural species. However, it could serve as a

starting point to identify regions for further inspection, for

instance by using the method for extracting local scattering

intensity described below.

3. Recovering spatially resolved X-ray scattering

patterns based on component decomposition and

segmentation of scattering tomogram by composition

While the tomograms presented in the previous section

provide intuitive visualization of material distribution,

spatially resolved scattering data that correspond to each

individual voxel in the tomogram would permit evaluation of

the local structure based on traditional X-ray scattering

analysis methods. In principle, tomographic reconstruction can

be performed for each q value in the scattering data, to

recover the local scattering intensity, as has been previously

demonstrated (Jensen et al., 2011; Birkbak et al., 2015). Here,

we take a different approach that is computationally less

costly, by reducing the number of required reconstruction

calculations from a few hundred (>400 q points in our data) to

under ten, and potentially more reliable since limiting the

number of components assures that the reconstructions are

minimally affected by the statistical noise in the low-intensity

portions (q’ 0.3 Å� 1) of the scattering data (see Fig. S1 of the

supporting information). Representing the data with a small

number of components amounts to reducing the dimension-

ality of the dataset and facilitates the application of machine-

learning methods like clustering analysis, as we will show

below.

It is reasonable to assume that the sample being measured

contains only a finite number of structural components. If we

could identify the scattering profiles that correspond to these

components, by decomposing the scattering data into this basis

set, we would be able to quantify the contribution from each

component in a spatially resolved manner. We could then use

tomographic reconstruction to convert these distributions as

functions of angle and position to the cross-sectional distri-

butions of the same components. In practice, the number of

components and their corresponding scattering profiles are

typically unknown. However, we can decompose the scat-

tering patterns based on a set of mathematically selected

components, or basis vectors, and similarly recover the local

scattering intensity as we would do for physical components.

Fig. 3 shows this process being applied to the bamboo and rice

samples, once we decompose the scattering profile into three

and four components, respectively, using non-negative matrix

factorization (NMF, see Section 5.6 for details). As examples,

the reconstructed local scattering profiles are shown for three

different locations in each sample.

These results are in general consistent with the tomograms

in Fig. 2. For instance, for the rice sample, the top two basis

vectors in Fig. 3(C) exhibit the scattering characteristics from

the cellulose fibril correlation and starch. Not surprisingly, the

resulting tomograms are similar to the SAXS and starch maps

in Fig. 2(B). On the other hand, the NMF analysis highlights
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Figure 2
Tomograms based on features extracted from the X-ray scattering data for the (A) bamboo and (B) rice samples. The scale bars represent 0.5 mm. The
absorption-based tomograms are included for reference. The scattering intensity based tomograms were obtained as described in Section 5. The color
bars are for the absorption and CI maps only. All the other maps show relative values and follow the same color code.
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some features in the scattering data that may be easily missed

unless being specifically looked for. For the bamboo samples,

the third basis vector shows several sharp but low-intensity

peaks. We are unable to identify the corresponding structural

component. Since this component is abundant in the cortex

(near the outer surface of the culm), it could be partially due

to water-insoluble components that typically need to be

removed when bamboo is used as a structural material

(Nkeuwa et al., 2022). Bamboo is also known to store starch in

the undifferentiated cells between vascular bundles (Wang et

al., 2016). The extracted starch has been identified to have the

A-type structure (Felisberto et al., 2020). However, since the

presence of starch is seasonal, transient structural species that

form during starch metabolism could have contributed to what

we observe as well.

The components identified by NMF reflect prominent

features observed in the scattering data, but in general they do

not correspond to physical constituents. The NMF algorithm

only assures that the basis vectors have positive values. Some

vectors may contain features that are not realistic in scattering

data, such as a dip in intensity that corresponds to the inverse

of a peak from a different basis vector [see examples in

Fig. 4(A)]. NMF results are not unique, but rather depend on

the input parameters. NMF also does not account for any

feature that varies slightly in position (e.g. the fibril correlation

peak) in the dataset as a single component, but rather inter-

prets that as a superposition of different peaks. These are well

known issues and an active research area in the X-ray scat-

tering and powder diffraction community (e.g. Maffettone et

al., 2021). Nevertheless, the recomposed spatially resolved

scattering data are expected to be independent of the basis set

used for the decomposition, as long as the process is suffi-

ciently accurate in describing the original experimental data.

Even when the tomographic reconstruction is marginal [e.g.

the second component for the bamboo sample, as shown in

Fig. 3(C)], the salient features in the scattering pattern are still

captured.

The recomposed scattering data can now be analyzed using

methods developed for conventional scattering data. The large

number of data points (�105 per sample in these examples)

makes it very computationally costly to perform analysis (e.g.

model fitting) on the individual scattering intensity profiles

before tomographic reconstruction. This is also true for the

recomposed data. In cases where features in the NMF

components can all be accounted for by physical constituents,

the individual components can be analyzed first. For instance,

they can be fitted to find the intensity of known crystalline

cellulose peaks. These results can then be used either to

construct tomograms as discussed in Section 2 or to derive the

results for the same analysis for the recomposed per-voxel

data.

In samples with complex compositions, it may be more

important to understand how the overall composition varies

spatially, rather than to identify the distribution of each pure

component. This is analogous to the CI that captures the

relative abundance of crystalline cellulose and the amorphous
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Figure 3
Spatially resolved scattering intensity derived from the tomography data. For each sample, the entire dataset can be decomposed using a basis set, for
which the number of vectors is determined based on the relative residue error [(A), see Section 5 for details]. (B) and (C) show the three basis vectors
chosen for bamboo and the four vectors chosen for rice, respectively, where the vectors are offset for clarity and the dashed lines indicate the baselines
(zero intensity). Decomposing the scattering data using these basis sets gives the sinograms for each basis vector, which are then converted into spatial
distributions by tomographic reconstruction, shown in (D) and (E), where the color bar shows the relative magnitude. The scattering intensity for any
given position in the virtual cross section can then be reconstructed, based on the local concentration of each component. This is shown in ( F ) and (G),
with the scattering profiles corresponding to the three locations indicated in the insets by plus signs with the same color code.



component being more informative than the abundance of

either the crystalline or amorphous component alone. For this

purpose, decomposition by NMF can be seen as a process of

reducing the dimensionality of the parameter space, to

provide inputs to further composition analysis, for instance by

clustering. This is shown in Fig. 4. Here, we have performed

NMF to decompose eight sets of scattering data from samples

of four genotypes into six common components, followed by a

clustering analysis using k-means to ‘segment’ the virtual

section into three clusters, shown as different colors. The

scattering intensities representative of these clusters are

shown in Fig. 4(C).

This analysis is helpful when the NMF components do not

show features that can be clearly attributed to structural

components and therefore cannot be interpreted as scattering

intensity from physical structures. In contrast, the cluster

averages do represent actual scattering intensity and are

therefore interpretable. In this specific example, the main

difference between the clusters appears to be starch abun-

dance, with the gold component being the most cellulose rich

and the cyan component being the most starch rich. The

biological study (Dwivedi et al., 2024) that produced these rice

plants was designed to elucidate the consequence of introdu-

cing genes that affect the production of lignin, which is unclear

from this analysis due to the presence of starch. On the other

hand, the distribution of these components clearly varies

between plants and between different locations within the

same plant. Interpretation of these data would be more

informative with better defined biological context.

4. MFA analysis

As discussed in the Introduction, averaging the scattering data

over all projection angles eliminates the contribution from
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Figure 4
(A) Six components are used to decompose the data from four individual rice plants [columns in (B)], collected at two different positions [rows in (B)]
along the growth direction. The voxels in the tomograms (B) have been grouped into three clusters, represented by different colors, based on the relative
magnitude of the six components as described in the main text. The average scattering intensity profile that corresponds to each cluster is shown in (C),
using the same color code as in (B). The inset shows the inertia of the k-means analysis as a function of the chosen number of clusters. The four rice plants
correspond to the genotypes MOMT4 (a, e), MOMT9 (b, f ), WT (c, g, wildtype) and VC (d, h, empty vector control) (Dwivedi et al., 2024).



cell-wall architecture in the observed azimuthal angle depen-

dence in the scattering intensity. The MFA distribution can

then be estimated based on a finite number of discrete MFA

values, similar to the method described by Rüggeberg et al.

(2013). To do so, the contribution from amorphous compo-

nents is first subtracted, assuming that it can be represented by

the scattering intensity just outside of the crystalline cellulose

peak (q = 1.8–1.9 Å� 1), and the contribution from higher-

order cellulose peaks is ignored. These approximations will

likely introduce some inaccuracies in the subsequent MFA

analysis, therefore we have employed a simplified method (see

Section 5) for extracting the approximate MFA distribution,

instead of fitting the data using an assumed functional form for

the distribution. Figs. 5(A) and 5(B) show this analysis being

applied to the rice plants from Fig. 4.

Assuming that the azimuthal angle dependence of the

intensity from each voxel is invariant with respect to the

projection angle, we can perform tomographic reconstruction

for each azimuthal angular position (’) and retrieve the

azimuthal angular intensity profile for each voxel, I(’; x, y).

This assumption would hold true if the distribution of cell-wall

orientation within each voxel is close to isotropic, which is

more likely when the voxel size is large (�5 mm in this study)

compared with the cell size. The sinograms for these angular

positions do not exhibit any anomalies (e.g. intensity discon-

tinuity or usually symmetry) and the reconstructions show the

same morphology as other tomograms from the same sample

(see the supporting movie in the supporting information).

Therefore, at a minimum, these tomograms can be considered

as a reasonable approximation of the ground truth. However,

due to the underlying assumption of invariance in the

azimuthal intensity profile, they should be considered quali-

tative until more rigorous validation can be performed.

To visualize the MFA distribution, we plot [Figs. 5(C) and

5(F)] the nominal MFA value, defined as the intensity-

weighted average of the absolute value of the azimuthal

angular positions for each reconstructed scattering profile:

’a ¼

R
’
�
�
�
�I ’ð Þd’

R
I ’ð Þ d’

:
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Figure 5
(A) The azimuthal angular intensity profiles of the crystalline cellulose peaks corresponding to the four samples shown in Fig. 4. The calculated MFA
distributions are shown in (B), using the same color code. The calculated intensity profiles are shown as dashed lines in (A). The overall distribution of
MFA is shown in (C), represented by ’a as defined in the main text. The color in these maps corresponds to the angular value, while the transparency is
based on the sample absorption, to avoid confusing ’a values where the scattering intensity is low. The angular dependence of each voxel in the virtual
section can be extracted and analyzed using the same method as the averaged data. This is shown for two locations (colored circles) for sample d as
examples, with the local angular intensity profiles shown in (D) and the MFA distributions shown in (E), using the same color code. A similar analysis has
been carried out in ( F )–(H) for the bamboo sample for comparison.

http://doi.org/10.1107/S1600577524004387


This is not a direct measurement of the MFA. But small MFAs

do lead to a low ’a value. In the extreme case, ’a = 0 if all

microfibrils are aligned with the growth direction. There is

clearly a variation of MFA within these plants. In particular,

the sclerenchyma cells in the periphery of the leaf sheath and

the exterior surface of the culm exhibit the lowest values of

MFAs (see the supporting movie). This is qualitatively

consistent with the azimuthal intensity profiles observed

during data collection, e.g. the angular distribution is narrower

when the beam illuminates the exterior of the sample

compared with when the beam path traverses the center of the

stalk (Fig. S8). With the reconstructed full azimuthal angular

intensity profile, we can also perform the MFA analysis

for each voxel in the virtual section, as shown in Figs. 5(D)

and 5(E).

This analysis is also performed for the bamboo sample for

comparison, with the effective MFA shown in Fig. 5(F) and

the local MFA analysis shown in Figs. 5(G) and 5(H). The

MFA distributions in the fibers and parenchyma are consistent

with the results reported in a previous study (Ahvenainen et

al., 2017), where data carefully collected from each type of

tissues were analyzed based on cell-wall architecture obtained

from absorption-based X-ray microtomography.

5. Experimental and data-analysis details

The overall workflow for data processing and analysis is

summarized in Fig. 1(A). Detailed descriptions of each step

are given below. This workflow has been implemented in the

lixtools Python package (https://github.com/NSLS-II-LIX/

lixtools).

5.1. Samples

The bamboo sample, possibly Phyllostachys bissetii, was

harvested from a local residential area. An �20 mm-long

section was extracted from the internode of a plant that was

�10 mm in outer diameter. The rice samples were provided by

Dr Chang-Jun Liu’s group (Dwivedi et al., 2024). Four

different samples (see Figs. 4 and 5) were measured, including

two MOMT variants in which lignin biosynthesis had been

modified. All samples were air dried and measured without

any further treatment.

5.2. Data collection

The X-ray scattering experiments were performed at the

Life Science X-ray Scattering (LiX) beamline (Yang et al.,

2022) at the NSLS-II synchrotron source of Brookhaven

National Laboratory (Upton, New York, USA). The X-ray

beam was focused to the sample position within a spot size of

�5 mm. The X-ray energy was 15 keV. Scattering patterns

were collected at a frame rate of 20 Hz, as the sample was

scanned along the x axis (perpendicular to the beam and the

growth direction) in fly scanning mode. That is, the motion

controller (Newport XPS) produced pulses at a series of

predetermined positions to trigger the detectors as the sample

stage moved continuously. The incident and transmitted beam

intensities were also recorded as previously described (Yang et

al., 2020, 2022). The averaged sample position during the

detector exposures followed 5 mm steps. A total of 121

projection angles (Ry at 1.5� intervals) were collected, divided

into eight groups of evenly spaced angles, such that each group

covered half a rotation, e.g. 0, 5, 10, . . . , 180�, followed by 1.5,

6.5, 11.6, . . . , 176.5�, etc. Between groups, the sample was

shifted slightly (10 mm) along the rotation axis to limit radia-

tion damage. This implicitly assumes that the structure does

not change significantly along the growth direction. This is

confirmed by the general lack of discontinuities in the sino-

grams that would otherwise arise from structural differences

that are adjacent in space but measured far apart in projection

angles (the beginning of an angular group and the end of the

next one, e.g. 0 and 176.5�). Since these angular positions are

also measured far apart in time, structural changes due to

radiation damage would produce similar discontinuities.

Sinograms, especially those based on mathematical compo-

nents (see Fig. S9), can therefore be used effectively to

monitor radiation damage.

5.3. Assembling data for analysis

For each data point (x and Ry), the X-ray scattering patterns

from the two detectors were merged into a combined q–’map,

with central symmetry applied to increase the detector

coverage in the reciprocal space (Yang et al., 2022). This

intensity map was then further reduced to one-dimensional q

and ’ profiles. The background scattering, for which we take

the average intensity from the scattering patterns of the lowest

overall intensity when the sample is not illuminated by the

beam, is subtracted based on the transmitted beam intensity.

In this process, the data are also corrected by sample

absorption, as measured by the incident and transmitted

intensities. The scattering patterns sometimes contain sharp

diffraction peaks that can be attributed to cuticular wax, which

were removed using a simple rolling ball algorithm that

excludes sharp features in the data.

5.4. Scattering intensity based sonograms

The sinograms, I(x, Ry), were first calculated based on

various features in the scattering profile, then converted to the

corresponding tomograms (see below). The SAXS sinograms

are based on the scattering intensity integrated in the q range

of 0.1–0.15 Å� 1. The cellulose and amorphous tomograms are

based on intensities integrated within the q ranges of 1.55–1.63

and 1.28–1.37 Å� 1, respectively. The CI tomograms were

calculated from the cellulose and amorphous tomograms,

based on the Segal definition:

CI ¼
Icellulose � Iamorphous

Icellulose

;

after normalization to account for the difference in the inte-

grating ranges. Low-intensity voxels were excluded to avoid

division-by-zero artefacts.

research papers

8 of 12 Lin Yang � X-ray scattering characterization of cellulose in plants J. Synchrotron Rad. (2024). 31

http://doi.org/10.1107/S1600577524004387
http://doi.org/10.1107/S1600577524004387
https://github.com/NSLS-II-LIX/lixtools
https://github.com/NSLS-II-LIX/lixtools
http://doi.org/10.1107/S1600577524004387


The data from the rice sample were processed differently

due to the presence of starch. The intensity of the peaks

attributed to starch was estimated using a rolling ball algo-

rithm then integrated within the q ranges of 1.10–1.18 and

1.25–1.32 Å� 1, where pure cellulose scattering does not show

significant intensity (see Fig. S2). Similarly, the intensity for

crystalline cellulose and amorphous components was inte-

grated in the q ranges of 1.45–1.55 and 1.30–1.35 Å� 1, which

are minimally affected by the subtraction of the assumed

starch scattering. While it is possible to fit each scattering

profile based on a model that includes all know diffraction

peaks from starch and cellulose, as well as amorphous scat-

tering from other components, doing so would be very time

consuming, given that each dataset contains �105 individual

scattering patterns.

5.5. Pre-scaling

The scattering intensity spans several orders of magnitude

over the full q range of the data [see Fig. 1(E)]. Since the loss

function in the decomposition algorithm is based on intensity,

low-intensity features are more likely to be neglected. In order

not to miss any important features, before decomposition we

first multiplied the data with a shape factor (Fig. S3) that

significantly reduces the dynamic range of the data without

introducing any new features. In Figs. 3 and 4, the basis vectors

are based on the modified data, while the recomposed data are

divided by the same shape factor to recover the original

dynamic range.

5.6. NMF

Decomposition by NMF was performed using scikit-learn

(Pedregosa et al., 2011), using the default Frobenius beta loss.

The parameters were manually adjusted to obtain basis

vectors that resemble realistic scattering profiles in Fig. 3. To

estimate the number of components required to adequately

represent the data, trial runs were performed with an

increasing number of components, as shown in Fig. 3(A).

The number of components is selected such that more

components do not result in a significant decrease in the beta

loss. For the analysis in Fig. 4, all default NMF parameters

were kept intentionally, to produce a basis set that clearly

does not represent physical components. In addition, due

to the larger size of the dataset combined from eight samples,

the randomized singular value decomposition (SVD) algo-

rithm was used to estimate the required number of basis

vectors, by placing the cut-off at �1% of the first SVD

eigenvalue.

5.7. Tomographic reconstruction

The final virtual cross sections that correspond to each

component were calculated from sinograms using standard

tomography software, tomopy (Gürsoy et al., 2014). The

algorithm pml-hybrid (Chang et al., 2004) was used with

typically 100 iterations. The numerical values were normalized

based on the values in the sinograms. Representative sino-

grams are shown in the supporting information. For consis-

tency, all tomographic reconstructions for the same dataset

were performed using the same rotation center value, which is

determined from test-running reconstruction on the absorp-

tion data.

5.8. Accuracy of the tomograms

The accuracy of the reconstructed tomograms described

above can be affected by several factors. First, the use of a

finite number of components necessarily introduces some

discrepancy between the actual dataset and the simplified set

that is used in the subsequent data analysis. This can be

evaluated by the relative error of NMF, calculated as the

Frobenius beta loss normalized to the Frobenius norm of the

original data and shown in Fig. 3(A). Some examples of the

decomposition are also shown in Fig. S4. Second, the results

produced by iterative reconstruction algorithms are not

strictly mathematical inverse of the input sinograms.

Combining the two steps together in future reconstruction

algorithms may improve the accuracy of this analysis.

From the standpoint of scattering data collection, due to the

finite sample size, different parts of the sample that contribute

to the intensity in the same detector pixel in fact correspond to

slightly different q values. In our measurements, the maximum

lateral dimension of the sample is less than 5 mm, compared

with the mean sample-to-detector distance of �350 mm. This

corresponds to an uncertainty of �1.5% in q, or a smearing of

�0.02 Å� 1 at the location of the cellulose main peak. This is

considered negligible, compared with the q grid of 0.01 Å� 1 in

the q–’ intensity map. Data collection can also benefit from

better detector coverage in reciprocal space, as can be seen

from Figs. 1(C) and 1(D).

5.9. Voxel size in the tomograms

This is set by the step size in the data collection, which is

5 mm for the results reported here and chosen to be close to

the beam size. This is a good compromise for many plant

samples. At this resolution, sufficient morphological details

are preserved, allowing reasonable comparison with optical

micrographs. With the current data-collection speed of 20

frames per second on the scattering detectors, which is limited

by the speed of packaging the data into hdf5 files, data

collection on a sample with a maximum lateral dimension of

3 mm takes 1 h. Given the same incident beam intensity, a

smaller beam size would result in a higher rate of radiation

deposited into the sample. This may require the data collec-

tion to run proportionally faster to limit radiation damage,

resulting in lower scattering intensity. And it would take more

data points to cover the same field of view. The compromise

between sample morphology, data-collection speed, data

quality and radiation damage ultimately determines the

optimal voxel size in these measurements.

5.10. Clustering

After the tomographic reconstruction, we now have a set of

distribution maps of the NMF components. In the parameter

space, each voxel in the virtual cross section is represented by
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a point with coordinates corresponding to the amplitude of

each NMF component. These voxels were grouped into clus-

ters using the k-means algorithm implemented in scikit-learn

(Pedregosa et al., 2011), based on their locations in the para-

meter space. The number of clusters (Nc) was selected based

on the change in inertia, which is the objective function

minimized by the k-means algorithm and defined as the sum of

squared distances of data points to the cluster center, as the

number of clusters was increased [the inset of Fig. 4(C)]. There

is not a clear best choice. Nc = 3 was chosen to keep the maps

from becoming too difficult to read. The coordinates of the

centroid of each cluster were used to calculate the repre-

sentative scattering intensity for each cluster, as shown in

Fig. 4(C). Clustering analyses depend on the evaluation of

distances in parameter space. Since we were interested in the

material composition, this analysis was based on the relative

magnitude of different components, after the length of all

vectors that represent the data in the parameter space was

normalized to unity. However, since the basis sets do not

correspond to physical components, this may not be the best

representation of material composition.

5.11. MFA decomposition

The angular intensity profile after removal of the estimated

contribution from amorphous components is decomposed into

intensity distributions that correspond to a set of discrete

MFA values, from 0 to 90�, at an interval of 3� (Fig. S7),

assuming an intrinsic peak width of 5�. The decomposition is

performed using the non-negative least-square (NNLS) algo-

rithm implemented in scipy (Virtanen et al., 2020). This basis

set is stored in a matrix A. To decompose the observed

intensity y, we need to solve the equation y = Ax, where x

gives the MFA distribution, by minimizing |y � Ax|2. To avoid

over-fitting, two regularization terms are also added to

simultaneously minimize the squared sum of the coefficients

|Ix|2, where I is the identity matrix, and the difference between

the neighboring terms |Dx|2, where the only non-zero

elements in D are directly below the diagonal and have the

value of � 1. Effectively, the equation that the NNLS algo-

rithm needs to solve becomes

y

0

0

0

@

1

A ¼

A

�1I

�2D

0

@

1

Ax;

where the Lagrange multipliers �1 and �2 are adjusted

manually to get the best results.

6. Concluding remarks

We have demonstrated scattering-based scanning tomography

for plant samples, for which the rotational invariance of

scattering intensity is generally satisfied when the growth

direction is aligned to the rotation axis in the measurements.

As an imaging method, scattering tomography provides direct

visualization of the sample. At the same time, this method

reveals information on the underlying structural information

that is only accessible through analysis of the scattering

intensity. The data-analysis workflow described in this article

necessarily introduces some systematic errors. The approach

of representing data as mathematical components enables the

calculation of spatially resolved scattering intensity and

further analysis using machine-learning methods. On the other

hand, the fidelity of this component representation to the

ground truth depends on the components chosen and the

subsequent tomographic reconstruction. This is especially true

for the inter-fibril correlation peak, whose position variation

should require multiple components of different discrete

positions to reproduce. Therefore, further work is needed to

improve the accuracy of the data-analysis workflow. The

rotational invariance is another issue, which is assumed but

may not always be satisfied in the analysis of local MFAs. On

the other hand, even as a qualitative diagnostic tool, scattering

tomography as described here is still valuable for helping the

experimenter to identify interesting areas in intact samples for

more detailed studies.

Scattering-based imaging complements other imaging

modalities that are based on absorption and fluorescence and

therefore not sensitive to material structures. They can be

particularly useful when used in combination. For instance, the

variation in crystallinity or cellulose fibril correlation inferred

from the SAXS intensity could be correlated with the distri-

bution of chemical agents that are expected to break down

cell-wall structures, to evaluate the efficacy of chemical

treatment in bioenergy research. We are currently imple-

menting simultaneous fluorescence and scattering data

collection at the LiX beamline. The sample itself will absorb

fluorescence emission from the interior of the sample, which

can be corrected following recently developed methods (Ge et

al., 2022).

Radiation damage is an important consideration in

synchrotron-based measurements on biological samples. In

principle, the sample could be measured in a frozen-hydrated

state, as is routinely done for protein crystallography and cryo-

electron microscopy. However, performing flash freezing and

maintaining the sample temperature during the measurement

may not always be possible for larger samples. In the example

presented here, all samples were measured dry, limiting the

damage by radiation-induced free radicals. As a mitigation

measure, we periodically translated the sample along the

rotation axis during data collection to expose fresh parts of the

sample to the X-rays and used the sinograms to monitor

radiation damage as described earlier (an example of unmi-

tigated radiation damage is shown in Fig. S9). Given that

tomograms can be obtained even from scattering data of low

intensities (Fig. S1), we should be able to further reduce

radiation damage by shortening the exposure time for scat-

tering-data collection. Future instrumentation developments

to optimize data collection will be combined with refinement

of tomographic reconstruction algorithms, to better account

for the various assumptions we have made in the data-analysis

workflow.
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