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A reliable ‘in situ’ method for wavefront sensing in the soft X-ray domain is

reported, developed for the characterization of rotationally symmetric optical

elements, like an ellipsoidal mirror shell. In a laboratory setup, the mirror

sample is irradiated by an electron-excited (4.4 keV), micrometre-sized

(�2 mm) fluorescence source (carbon K�, 277 eV). Substantially, the three-

dimensional intensity distribution I(r) is recorded by a CCD camera

(2048 � 512 pixels of 13.5 mm) at two positions along the optical axis, symme-

trically displaced by �21–25% from the focus. The transport-of-intensity

equation is interpreted in a geometrical sense from plane to plane and imple-

mented as a ray tracing code, to retrieve the phase �(r) from the radial intensity

gradient on a sub-pixel scale. For reasons of statistical reliability, five intra-/

extra-focal CCD image pairs are evaluated and averaged to an annular two-

dimensional map of the wavefront error W. In units of the test wavelength

(C K�), an r.m.s. value �W = �10.9�0 and a peak-to-valley amplitude of

�31.3�0 are obtained. By means of the wavefront, the focus is first recon-

structed with a result for its diameter of 38.4 mm, close to the direct experimental

observation of 39.4 mm (FWHM). Secondly, figure and slope errors of the

ellipsoid are characterized with an average of �1.14 mm and �8.8 arcsec

(r.m.s.), respectively, the latter in reasonable agreement with the measured focal

intensity distribution. The findings enable, amongst others, the precise alignment

of axisymmetric X-ray mirrors or the design of a wavefront corrector for high-

resolution X-ray science.

1. Introduction

The ellipsoidal mirror of rotational symmetry plays an

important role in soft X-ray science, such as in microscopy

(Müller et al., 2014; Nawaz et al., 2015). As an achromatic

optical element of large numerical aperture (NA), it may

provide efficient point-to-point focusing of weak laboratory

sources with an often broadband spectral emission (Holburg

et al., 2019) and in ‘photon hungry’ experiments at beamlines.

Applications both in scanning microscopy (Kördel et al., 2020)

and spectroscopy benefit from high resolution, i.e. at best, a

nearly diffraction-limited focal spot size. This aim is, in

particular, enabled by a precisely replicated (Chon et al., 2006;

Kume et al., 2019) and adjusted mirror, namely a well known

figure/alignment and slope error of low magnitude. Obviously,

the closed shape and small size of laboratory-scaled ellipsoidal

mirror shells precludes the metrology of the inner surface of

the mirror with established techniques like long-trace (Siewert

et al., 2012) or interferometric (Kühnel et al., 2021) profiling.

Instead, phase retrieval methods such as grating inter-

ferometry (Wang et al., 2013; Kayser et al., 2017), ptycho-

graphy (Takeo et al., 2020) or speckle correlation analysis
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(Kim et al., 2017) are being used. However, the requirements

on coherence and the experimental effort give reasons for

‘easy to use’ alternatives like the (Shack–)Hartmann (Keitel et

al., 2016) or coded mask (Wang et al., 2017) sensor, for

instance – supplemented by machine learning, where applic-

able (Nishizaki et al., 2019; Qiao et al., 2021). Unfortunately,

even those modern concepts still suffer from a limited spatial

resolution or absorption loss in the hole/microlens array or

binary transmission plate, respectively.

In this paper, we present a simple and robust approach to

maskless, CCD-based wavefront sensing at axisymmetric

extreme ultraviolet (XUV) and X-ray optics with an annular

aperture, as an extension of our recently developed concept

for one-dimensional (1-D) focusing, curved mirror segments

of spherical shape (Probst et al., 2020a). In Section 2, we

specify the optic under test and describe the experimental

setup. Under opposite defocus, pairs of intensity patterns,

recorded by a CCD camera, are used for the phase retrieval in

Section 3. The focus and the combined figure/alignment as

well as slope error are reconstructed in Section 4, and the

results are compared with data from direct focus measure-

ments. Section 5 concludes with a discussion of the principle

and an outlook to potential improvements.

2. Optical setup and ellipsoidal mirror specification

Excited by an electron beam at an acceleration voltage of

about 4.4 keV (Jeol 6400), C K� fluorescence is induced at an

energy of 277 eV from a carbon (HOPG) target (Probst et al.,

2020b), slightly contaminated with bremsstrahlung and minor

contributions from O K� at 525 eV, due to surface oxidation.1

For a sufficiently low e� current of a few �A, the almost point-

like, nonetheless incoherent, soft X-ray source with an esti-

mated diameter of �2 mm (Gaussian full width at half-

maximum, FWHM) emits an approximately spherical wave-

front towards the ellipsoidal optic under test.

The mirror shell of rotational symmetry (Pı́na, 2019),

formed from a mandrel (Romaine et al., 2009; Arcangeli et al.,

2017; Yamaguchi et al., 2020), is realized as an off-centred

section of an ellipsoid, defined by its semi-major axis a and the

– much smaller – semi-minor axis b, as sketched in Fig. 1. For

the source in the left of the two ellipsoidal foci at x = �e, the

radius r
ð0Þ
mirðxÞ of the ideal mirror is given as

r
ð0Þ
mirðxÞ ¼ b 1 � a� 1x

� �2
h i1=2

; ð1Þ

and the excentricity

e � a2 � b2
� �1=2

;

halves the focal distance, �xd = 2e. With an entrance distance �x1

and mirror length L, the aperture D1,2 yields an acceptance

solid angle of 2.2 � 10� 3 sterad. Under grazing incidence at an

angle h�ix = 1.23 � 0.06�, the Au coating reflects 76.2 � 2.6%

at an energy of 277 eV, where a diffractive (Aschenbach,

2008) microroughness of �1 nm (r.m.s.) is assumed in the

simulation (https://henke.lbl.gov), in agreement with ‘typical’

values of ‘0.3–2 nm’ (https://www.rigaku.com/products/optics/

replicated) for such mirrors. Mounted in an optical holder with

orthogonal lever arms of 10 cm, the mirror can be aligned

manually in its two-dimensional (2-D) angular orientation

utilizing micrometre screws (Feinmess Suhl GmbH) with a

nominal increment of 10 mm, corresponding to an accuracy of

�10 arcsec – or less, by sensitive handling. The distance �x1

between source and entrance aperture is adjusted on a linear

translation stage with a similar precision of at least �5 mm.

Neglecting off-axis aberrations, the small source of �Ds in

size is focused to a spot of �Dd in the image plane at x = +e.

The magnification Msd � �Dd=�Ds follows from the

geometry in Fig. 1 approximately as Msd ’

�xd � �x1 � L=2ð Þ= �x1 þ L=2ð Þ. With �Ds = 2.0 mm and the

parameters from Table 1, we expect a focus size�Dd = 7.3 mm.

A CCD camera (greateyes ALEX-s 2048 � 515 BI UV1) with

a pixel size �� = 13.5 mm and an 18-bit dynamic range is placed

on an optical bench at a variable distance 250 mm � x �

750 mm from the centre. The whole setup is evacuated to

10� 5 mbar.

3. Measurements under defocus and phase retrieval

Phase retrieval using defocused images of the beam is a well

known method, established three decades ago (Roddier &
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Figure 1
Dimensions of the ellipsoid (dashed curve), defined by its semi-major and
-minor half axes, a and b, respectively. The hatched region represents the
mirror section in use, characterized by entrance separation �x1, length L
and focal distance �xd, with �D1 and �D2 as the inner and outer aperture
of the mirror, respectively. �Ds;d symbolize the source and focus
diameter (FWHM). Marginal rays are drawn in red. The notation refers
to Table 1, and the graphic (not to scale) is adopted from https://
www.rigaku.com.

Table 1
Geometrical design parameters of the ellipsoidal mirror shell, as defined in Fig. 1.

a b L D1 D2 �x1 �xd Msd

500.077 mm 8.75475 mm 100 mm 13 mm 15.46 mm 165 mm 1000 mm 3.65

1 Within this text, the wavefront and its error, if given in units of �0, presume
pure C K� for simplicity.



Roddier, 1993). More general (Paganin & Nugent, 1998),

gradual changes in the three-dimensional (3-D) intensity

distribution I(r) during free-space propagation are related to

the phase �(r) via the transport-of-intensity equation (TIE),

� 2��� 1
0 @xI rð Þ ¼ r? I rð Þ � r?� rð Þ

� �
ð2Þ

with

r? � @r er þ r� 1@’ e’:

Neglecting the azimuthal component of the transverse

gradient r?, justified by the ‘forgiveness factor’ hsin �ðxÞiL ’

2� 10� 2 (Urpelainen et al., 2017), we may derive a simplified

correspondence between the direction dir( . . . ) of the

Poynting vector S and the radial derivative @r�(r, ’) in para-

metric dependence on the polar coordinate ’. In analogy to

the spherical mirror segment with its – approximately – 1-D

focusing properties2, the geometrical relation for the wave-

front slope reads as

� 2��� 1
0 dirðSÞ ¼ @r�ðr; ’Þ ð3Þ

with

dirðSÞ � @r=@x;

interpreted as the inclination of rays relative to the x-axis

(Probst et al., 2020a). In practice, this quantity is extracted

from two CCD frames of different, sufficiently large defocus

��x (with �x > 0), i.e. far outside the focal depth of field

(approximately �2 mm for a blur by 10%) and still beyond

the caustic region up to about �100 mm. To maintain a good

signal-to-noise ratio, the integration time is increased to 40 s

each, whereas statistical uncertainties are reduced in our non-

iterative method by the recording of images at five symme-

trical, intra- and extra-focal camera displacements 210 mm �

�x � 250 mm from the nominal focus at x = e in the coordi-

nates of Fig. 1. An example within that series – others look

similar – is displayed in Fig. 2.

The central peak, as observed in all defocused CCD images,

is used for the coaxial alignment of the ten raw data sets with

sub-pixel accuracy, supported by a typical diameter of the

order of 10 pixels (FWHM) and a well defined maximum after

third-order interpolation. It cannot be explained with low

spatial frequency deviations (<� 10� 3 mm� 1) from the ideal

ellipsoidal surface but is rather an effect caused by diffuse

wide angle scattering from high spatial frequency errors

(>�1 mm� 1) on the polished mirror shell (Schäfers & Cimino,

2013), as confirmed qualitatively in 3-D simulations

[Mathematica/Optica (https://www.wolfram.com/mathematica/,

https://www.opticasoftware.com)] of an ellipsoid with optional

roughness. The ‘spike’ contributes only 1–2% to the total

count rate in that off-focal region and is subsequently ‘erased’

from each CCD frame. Across the full image (512 � 512

pixels), the integrated intensity outside the geometrical cross-

section of the beam (Fig. 2) contributes a fraction of �33% in

the intra- and �42% in the extra-focal domain to the total

detected flux. However, the differential scatter loss from an

inner to the corresponding outer CCD plane is moderate with

11.1 � 0.7% for the five samples.

The 2-D phase problem of the axisymmetric geometry is

reduced to a serial evaluation of 1-D wavefront slopes by

taking radial cross-sections I(r, ’) of the third-order inter-

polated intensity distribution at an angle 0� � ’ < 180� in each
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Figure 2
Representative examples of the normalized intensity distribution I(r), recorded with the CCD camera at two opposite intra- and extra-focal positions in a
defocus of � 230 mm and + 230 mm (top). The central scatter peak, initially used to align the patterns, contributes �1–2% to the total power and is
erased from all data sets before phase retrieval. Each image is composed of 512 � 512 pixels (13.5 mm) and scanned in the radial direction r at angles
0� � ’ < 180�. White dashed arcs indicate the expected geometrical cross-section of the beam in the case of ideal alignment. Corresponding radial
histograms of rays are displayed for the case ’ = 0� (bottom).

2 In Appendix A, the validity of the phase retrieval code is investigated with
respect to this analogy.

https://www.wolfram.com/mathematica/
https://www.opticasoftware.com


CCD plane, as sketched in Fig. 2, and the bijective mapping

Iiðr; ’Þ 7! Ijð� r; ’Þ for i 6¼ j between two of them. An essential

constraint of the TIE-based phase retrieval method in general

and our implementation in particular requires the conserva-

tion of energy along propagation. To compensate a slightly

varying (around�2.1%) power in I(r, ’) due to scattering and

sagittal deflection, the integral
R rmax

rmin
Iðr; ’Þ dr with rmin =

ð1 � �mpixÞ ��=2, rmax = ð �mpix � 1Þ ��=2 and �mpix = 512 is re-

normalized to the same number of 2N rays in all planes. As

depicted in Fig. 3, the continuous intensity distribution is

further discretized to a histogram. Each one of the �mpix bins of

width �� contains a distinct number fm of rays distributed

around the central position r̂m of the mth pixel,

fm / Iðr̂m; ’Þ ð4Þ

with

r̂m ¼ m � ð �mpix þ 1Þ=2
� �

� �� and
X�mpix

m¼ 1

fm ¼ 2N :

With this convention and the sufficiently large exponent N =

17, the radial sampling period is limited by the spatial reso-

lution of the camera, close to �� = 13.5 mm. Via

rmðkÞ ¼ r̂m þ ðfm þ 1Þ
� 1

k � 1=2
� �

� �� ð5Þ

with

1 � k � fm 8 1 � m � �mpix;

and the rule rmðkÞ½ �k;m 7! rðnÞ½ �n¼ 1;...;2N , the histogram is

converted from a nested sequence in (k, m) to a ‘train’ of

strictly separated and sorted positions r(n) in a variable

density, representing the intensity I(r, ’), as illustrated in

Fig. 3. To obtain the direction dir(S) of the energy flow (Probst

et al., 2020a), the difference �r(n) � rj(� n) � ri(n) between

start and end point of the nth ray in planes i and j, respectively,

is divided by the propagation distance �x � xj � xi. The

numerical values of the projections riðnÞ 7! �rðnÞ=�x on the

inner (x < e) and rjð� nÞ 7! �rðnÞ=�x on the outer (x > e) planes

are tabulated and smoothly fitted to the radial phase slope

@r�(r) / dir(S) from equation (3) within the regions of the

geometrical beam cross-section (Fig. 3) by Legendre poly-

nomials up to the 45th order.

With that bidirectional approach, slight mismatches of the

CCD recordings in the intra- and extra-focal domain (Fig. 2),

like an excentricity and enlarged scattering for the latter due

to technical limitations in our setup, are balanced to a far

extent.

4. Focus reconstruction and figure error mapping

Across the beam cross-section within (e � x1)� 1�x(D1/2) �

|r | � (e � x2)� 1�x(D2/2), the slope @r�(r, ’) is evaluated at a

step size of �3.64 mm in the radial direction and with an

increment of 2� in the polar angle 0� � ’ < 180�, as sketched

in Fig. 2. Using the vacuum wavenumber k0 � 2��� 1
0 , the

normalized 3-D Poynting vector S�(r, ’) for propagation from

the plane at x = e � �x to the focus at x = e then reads as

S�ðr; ’Þ ¼
1

k2
0 þ ½@r�ðr; ’Þ�

2
� �1=2

ð6Þ

� �k0ex � @r�ðr; ’Þ cos ’ ey � @r�ðr; ’Þ sin ’ ez

� �
:

In total, 3.9 � 105 rays are traced from the five inner and

corresponding five outer planes to the focus, whose recon-

structed position is located at x = 503.5 � 0.6 mm by an

internal algorithm of the software (Optica), based on the

criterion of a minimized spot size of 69.6 mm (r.m.s.). In Fig. 4,

the experimental result is compared in the pixel matrix with

that simulated focal spot, whose asymmetry on an intensity

level of �10–30% and minor but widespread scattering

(0.2%) can be ascribed to an accidental inaccuracy during the

measurements, as noted at the end of Section 3. Nevertheless,

a third-order interpolation allows the 2-D averaged FWHM

(50%) of both to be estimated, and we find them in good

agreement with �
ð50Þ
focus = (38.9 � 0.5) mm.

To extract the deviation of the real phase �(r) from that

of an ideal sphere at a given angle ’ in the defocused plane at

x = e � �x, we define the differential slope tan#ðrÞ �

�k� 1
0 @r�ðrÞ � r=�x in the radial direction (Fig. 3), again

confined to the annular region of the geometrical beam cross-

section, as specified in the context of equation (6). The

wavefront error Wðr; ’Þ in units of �0 then follows from an

integration along r,
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Figure 3
Schematic of the phase retrieval principle. On the left and right of the focus at x = e, two defocused CCD planes (Fig. 2) at x = e � �x are indexed by i
and j, respectively. Numbered rays (black dots), whose local density is proportional to I(r), are traced in a sequential order from the plane i to the plane j.
The direction dir(S) = �r/�x of the Poynting vector for the nth ray (red) is proportional to the slope @rWðrÞ, marked by the doubled grey line on the left,
and differs from that of the perfect spherical phase by a small angle #(r). The integration of this differential slope yields the wavefront error. The graphic
is adopted from Probst et al. (2020a).



Wðr; ’Þ ¼ �� 1
0

R
tan#ðr; ’Þ dr � Cð’Þ; ð7Þ

where

Cð’Þ � �� 1
0

� R
tan#ðr; ’Þ dr

�

denotes the arithmetic mean of the integral within its radial

domain of definition, representing the constant for piston

correction.3 Computed for 0� � ’ < 180�, each one of the 5 � 2

sample sets (five displacements � �x in a bidirectional

approach) is projected by central dilation to a common plane,

e.g. the symmetric cut at x = 0, and the averaged data for

Wðr; ’Þ are fitted by an expansion
P35

j¼ 0 cjZjðr; ’Þ of Zernike

polynomials up to their seventh order. The result is shown in

the Cartesian coordinate system of Fig. 5 as a view along � ex,

from the focus to the source. In agreement with the common

definition, an errorWðr; ’Þ > 0 stands for a wavefront running

in advance relative to the ideal sphere. According to Fig. 6, the

fit is characterized by major contributions from piston, defocus

and spherical aberration, which compensate each other to

some degree. Besides, angle-dependent aberrations up to the

fifth Zernike order like tilt and primary as well as secondary

coma play a significant role. Coefficients cj with j � 21 for

sixth- (and higher) order aberrations add up to no more than

10% of the total wavefront error magnitude and can be

neglected approximately. At a standard deviation of �1.2 �0,

the raw data from the 5 � 2 plane-to-plane samples are

distributed statistically around the fit (Fig. 5) with a peak-to-

valley (P-V) range of �31.3 �0 and an r.m.s. value �W =

�10:9 �0, whose uncertainty is estimated to ��W ’ �0:1 �0. In

terms of the ‘coefficient of determination’, R2 = 98.8% indi-

cates a good accuracy of the modelled wavefront shape, where

not only the similarity of all 5 � 2 evaluated samples

(‘reproducibility’) but also the slow variation of Wðr; ’Þ in

both variables (‘smoothness’) support the quality of the

Zernike fit.

In the range �x1 � e � x � �x1 � eþ L, as sketched in Fig. 1,

the wavefront errorWðr; ’Þx¼ 0 from Fig. 5 is mapped (Siewert

et al., 2012; Barty et al., 2009) as the surface deviation

�rmirðx; ’Þ � r
ð0Þ
mirðxÞ onto the nominal ellipsoid from equa-

tion (1) via

Wðr; ’Þx¼0 ¼ �
2

�0

�rmirðx; ’Þ sin �ðxÞ ð8Þ

for

rx¼0 7!
e

e � x
r
ð0Þ
mirðxÞ:

From the geometry, we derive �ðxÞ = arctan½ðe þ xÞ� 1r
ð0Þ
mirðxÞ� �

arctan½@xr
ð0Þ
mirðxÞ� for the grazing angle of total external reflec-

tion. That unbiased4 figure and alignment error �rmir(x, ’)

varies within an amplitude of �3.20 mm (P-V), as depicted in
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Figure 4
Measured (left) and reconstructed (right) focus at x = 553.5 � 0.6 mm, the latter obtained via propagation of the aberrated wavefront. Both plots are
composed of 32 � 32 pixels. White contours indicate intensity levels relative to the third-order interpolated maximum, where the innermost (dashed)
refers to 50%. These FWHM values are estimated to �39 mm, whereas an r.m.s. spot size of 69.6 mm in the reconstruction is attributed to weak but
extended scattering of �0.2–1%.

Figure 5
Retrieved wavefront errorW rð Þ on the annular cross-section of the beam
at x = 0, i.e. in the optical centre of the ellipsoid (Fig. 1), in units of �0 at
277 eV. Five different CCD image pairs within 210 mm � �x � 250 mm
are analysed with the algorithm (Figs. 2 and 3). The averaged data are
fitted by means of a Zernike expansion (Fig. 6) up to seventh-order
aberrations, with an r.m.s. value �W = �10:9 �0. See also the movie in the
supporting information.

3 Any bias does not distort the wavefront, and its subtraction (for r < 0 and
r > 0 separately) corresponds to an offset-free figure error �rmir(x, ’) around
the ideal mirror shape r

ð0Þ
mirðxÞ in equation (8).

4 Equation (7) implies a near-zero mean of �rmir(x, ’) relative to r
ð0Þ
mirðxÞ along

each surface line (’ = const).

http://doi.org/10.1107/S1600577524003643
http://doi.org/10.1107/S1600577524003643


Fig. 7 (left). Averaged over the full mirror surface, we find

h�rmir(x, ’)i = �1.14 mm (r.m.s.).

At least in the regime of geometrical optics, however, the

focusing capabilities are determined primarily by the slope

error @x�rmir(x, ’) along the x-axis, i.e. the derivative of the

radial profile irregularity in the direction of beam propagation.

Fig. 7 visualizes on the right the tangential slope, characterized

on average by h@x�rmir(x, ’)i = �8.8 arcsec (r.m.s.) and a P-V

of�18.1 arcsec. The polar component is much smaller, around

�0.5 arcsec (r.m.s.), and contributes less to aberrations.

Based on this information, the simulation of the mirror with

its perturbed radius r
ð0Þ
mirðxÞ þ �rmirðx; ’Þ reveals a focal spot

size of 63.9 mm (r.m.s.) at x = 504.1 mm, close to the result

from the direct reconstruction using equation (6). On the

other hand, the mirror can be modelled as a reflective but

‘wavy’ surface whose slope error leads to a simulated focus

diameter that coincides with measurements within a toler-

ance of 9%.

5. Conclusion

Soft X-ray wavefront sensing at an axisymmetric, ellipsoidal

mirror with an effective angular acceptance of 1.7 millisterad

and a focal distance of 1 m is demonstrated in a table-top

experiment using C K� fluorescence (277 eV), based on a

measurement of the 3-D intensity distribution under defocus

and a novel algorithm for its analysis.

Since the full (512 � 512) pixel matrix of the CCD camera

can be used to probe the beam and each wavefront data set is

sampled by (4.6 � 0.6) � 104 pixels therefrom, our method

combines high spatial resolution and sensitivity. The latter is

of particular relevance for low-flux sources or synchrotron

beamlines, providing a moderate count rate of, for example,

�4.3 � 105 s� 1 like in our laboratory setup. The technique

requires minimal experimental and instrumental effort, only

two recordings by a 2-D CCD camera on a linear translation

stage, and works in the regime of a limited transverse coher-

ence length which is estimated to�50 pixels in the focal plane

for the micro-fluorescence source (2 mm) in use. Customized

ray tracing is applied to develop an optimized, robust code5 in

a noisy environment for the reproducible retrieval of an even

large wavefront error of �10.9 �0 (r.m.s.) or more at optical

elements of rotational symmetry, i.e. the piston-corrected,

relative aberration is 2-D resolved in polar coordinates (r, ’).

As an additional benefit, the wavefront information allows

the focus to be reconstructed, whose spot size of <� 39 mm

(FWHM) and position (0.35% off the nominal focal distance)

nearly coincide with the experiment and theoretical expecta-

tion. The wavefront distortion is moreover mapped onto the

surface of the ellipsoid as its combined figure and alignment

error at a step size of �400 mm in the axial (x) and �250 mm

in the polar (’) direction. The average of �1.1 mm (r.m.s.)

corresponds to a slope error of�8.8 arcsec (r.m.s.). In a closed

loop, the full system with that distorted mirror is simulated in a

Monte Carlo ray tracing routine (Optica), and the outcomes

confirm the findings above.

However, the mirror as considered in this work was known

for its above-average microroughness and scatter, according to

information from the manufacturer. In future, better polished
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Figure 6
Coefficients cj in the polynomial Zernike expansion

P35
j¼ 0 cjZjðr; ’Þ of the wavefront error from Fig. 5 up to seventh-order aberrations. The numerical

values are given in units of �0 at 277 eV. A few selected terms like defocus or coma are labelled.

Figure 7
Radial, i.e. combined figure/alignment error �rmir(x, ’) on the left and slope error @x�rmir(x, ’) on the right along surface lines of constant ’, calculated
using equation (8). The axial position xmir is measured relative to the geometrical centre of the mirror, whereas the angle ’ refers to the polar orientation
as defined in Fig. 2.

5 The Mathematica/Optica code is available for free from the correspondence
author on request.



samples should thus ease the data analysis and yield more

accurate results. Furthermore, our proof-of-principle experi-

ment suffered partially from an accidental shift, tilt or vibra-

tions which are supposed to induce an additional perturbation

to the phase especially in the extra-focal half-space.

Besides gimbal mounting for the optic under test to reduce

misalignment, mechanical components with a tolerance of

�10 mm along the optical x-axis and �0.1 mm in the y, z-

direction should be employed in future for precise in-line

measurements with the moving camera. In consequence of a

good adjustment, the figure error of the optic can be isolated,

and the wavefront is expected to be determined at an

enhanced accuracy well below the Maréchal criterion (Probst

et al., 2020a). To simplify the image pre-processing, a clear,

unique criterion for definition of the optical axis and for

centring of the CCD frames to the exit pupil must be specified

(Ruiz-Lopez et al., 2020). To shorten the integration time of

40 s per image, the source flux may be enhanced and stray light

should be lowered, preserving a high signal-to-noise ratio in

near photon-limited detection.

Possibly, the phase retrieval scheme might be extended to

the absolute metrology mode (Frith et al., 2023). In the code,

the compromise between dynamic range and resolution of the

wavefront sensor is expressed by the density of rays, which is

set to 256 on average per pixel presently. In future versions

of the program, this crucial quantity should be adapted to

demands on the P-V range and the uncertainty of the r.m.s.

wavefront error, for instance. As a mid-term goal, the algo-

rithm (Mathematica) shall be evolved to a fast routine (Python

etc.), such that quick auto-alignment and quality control of

axisymmetric X-ray optics, including zone plates, lenses and

parabolic or Wolter-type mirrors, becomes feasible in the

laboratory and at large-scale facilities like synchrotrons or

free-electron lasers (Frith et al., 2023). In a final step, an

adapted reflective/diffractive wavefront corrector (Probst et

al., 2023) – as the low-absorption soft X-ray alternative to

the refractive phase plate (Dhamgaye et al., 2020) – may be

designed, fabricated and applied, to compensate for the

mirror’s imperfections.

APPENDIX A

Validity of the phase retrieval code

The physics behind our phase retrieval method and the basic

structure of its algorithmic implementation are identical to

that described by Probst et al. (2020a), where the validity was

verified by means of a spherical mirror whose 1-D figure error

in the beam direction has been measured independently using

the Nanometre Optical Component Measuring Machine

(NOM) at Helmholtz-Zentrum Berlin. Our wavefront recon-

struction confirmed the NOM reference with an accuracy of

��0 /25 (r.m.s.). The present project adopts and extends this

approach toward axisymmetric mirror shells in terms of radial,

quasi 1-D wavefront reconstructions along the mirror’s

surface lines.

Notwithstanding the conceptual equivalence to Probst et al.

(2020a), in view of an increased complexity compared with the

spherical mirror, and regarding the fact that the amplitudes of

wavefront (�30�0, P-V) and figure error (�3 mm, P-V) for

the ellipsoidal mirror are up to 102� enlarged, functionality

and accuracy of the proposed extension of our phase retrieval

method to axisymmetric geometries must be verified at

known, simple optics. To reduce the computational payload,

we simulate an analogue system in terms of a radial 1-D cross-

section of the ellipsoid, whose predefined figure error is

modelled as a sine or cosine wave6 of variable amplitude and

spatial frequency in the x-direction. The intersection points

of the propagated rays with two planes (i.e. axial positions of

the CCD camera) in a defocus ��x then yield the intensity

distributions I(r) which can be analysed like the actual

experiment, using the algorithm above. The data in Table 2

span several magnitudes of figure error amplitudes. Higher

amplitudes arise at lower spatial frequencies, qualitatively

imitating the typical power spectral density of a real surface.

At an amplitude of �3 mm, roughly equal to the maximal

deformation as detected in the measurement (Fig. 7), the

halved sine/cosine wave is reconstructed within a relative

standard deviation of 7.7% (r.m.s.). Toward diminished

amplitudes in the nanometre regime, several periods along the

mirror length are well reproduced, represented by residuals

�1%, and the code would still work reliably down to the level

of machine precision on the femtometre scale.

In practise, the lower limit is set by the CCD resolution,

�10� 2–10� 1 pixels for the interpolated, ‘spiky’ intensity

distribution. At a plane-to-plane propagation distance of

460 � 40 mm, this resolution is translated into an angular

accuracy around �6.1 � (10� 2–10� 1) arcsec. Since the

experimental slope of �8.8 arcsec (r.m.s.) corresponds to a

radial error (Fig. 7) of �1.14 mm (r.m.s.) and due to the

linearity of integration in equation (7), the lower limit for the

given surface profile is estimated to �8–80 nm or, using

equation (8), a wavefront accuracy of �8 � (10� 2–10� 1)�0

(r.m.s.). The latter values are comparable with the uncertainty

��W (r.m.s.) of the mean wavefront error and the standard
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Table 2
Sine wave test of the algorithm at various amplitudes and spatial frequencies.

Amplitude (�)

3 � 10� 6 nm 1 nm 10 nm 100 nm 1000 nm 3 � 103 nm

Spatial frequency 80 m� 1 40 m� 1 20 m� 1 10 m� 1 5 m� 1 5 m� 1

Residuals (r.m.s.) 0.5% 0.7% 1.2% 2.4% 4.6% 7.7%

6 The results only depend weakly, if at all, on that spatial phase, and residuals
are averaged in Table 2.



deviation within the raw data set of 5 � 2 evaluations

(Section 4), respectively.

In all, the sine wave test illustrates and confirms the

expectation that ‘our’ sensor, like most others, works best for

smooth intensity distributions and at small amplitudes

�rmir(x, ’), corresponding to wavefront errors (P-V) up to a

few �0 as aimed for in the future.
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Probst, J., Löchel, H., Krist, T., Braig, C. & Seifert, C. (2023). Proc.
SPIE, 12576, 125760C.

Qiao, Z., Shi, X., Wojcik, M. J., Rebuffi, L. & Assoufid, L. (2021).
Appl. Phys. Lett. 119, 011105.

Roddier, C. & Roddier, F. (1993). J. Opt. Soc. Am. A, 10, 2277–2287.

Romaine, S., Boike, J., Bruni, R., Engelhaupt, D., Gorenstein, P.,
Gubarev, M. & Ramsey, B. (2009). Proc. SPIE, 7437, 74370Y.

Ruiz-Lopez, M., Mehrjoo, M., Keitel, B., Plönjes, E., Alj, D., Dovil-
laire, G., Li, L. & Zeitoun, P. (2020). Sensors, 20, 6426.
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