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During beam time at a research facility, alignment and optimization of instru-

mentation, such as spectrometers, is a time-intensive task and often needs to be

performed multiple times throughout the operation of an experiment. Despite

the motorization of individual components, automated alignment solutions are

not always available. In this study, a novel approach that combines optimisers

with neural network surrogate models to significantly reduce the alignment

overhead for a mobile soft X-ray spectrometer is proposed. Neural networks

were trained exclusively using simulated ray-tracing data, and the disparity

between experiment and simulation was obtained through parameter optimi-

zation. Real-time validation of this process was performed using experimental

data collected at the beamline. The results demonstrate the ability to reduce

alignment time from one hour to approximately five minutes. This method can

also be generalized beyond spectrometers, for example, towards the alignment

of optical elements at beamlines, making it applicable to a broad spectrum of

research facilities.

1. Introduction

As part of our ongoing Röntgen–Ångström Cluster (RÅC)

project aimed at developing a new soft X-ray spectrometer

for fluorescence-detected absorption spectroscopy, we are

conducting research to explore the application of machine

learning methods in the design, development and automation

of experiments at the BESSY II X-ray facility. The objective of

our project is to conduct fluorescence-detected (partial-fluor-

escence yield) X-ray absorption spectroscopy at the 3d tran-

sition-metal L-edges, which are relevant for many important

applications such as catalysis and many more applications

(Chanda et al., 2018; Aly et al., 2016).

The spectrometer employs a single reflection zone plate

(RZP) (Braig et al., 2014) as the sole optical element to

differentiate the faint metal fluorescence signal from the

simultaneous oxygen fluorescence. This capability allows us to

detect, for example, the manganese fluorescence signal, even

in cases where the manganese-to-oxygen ratio is heavily

skewed towards the latter (Kubin et al., 2017). Currently, we

are utilizing our spectrometer to assess various RZP designs,

both on planar and spherical substrates (single and multiple

zone plates per substrate) with different concentrations of

manganese to validate the design decisions we have made.

Fig. 1 shows a diagram of our spectrometer, showing the

component parts.

To conduct these experiments, we connect our mobile

spectrometer to an open port beamline at BESSY II and align
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the RZP and camera with respect to the manganese sample.

This alignment process is necessary when the experiment

begins and whenever either the sample or the RZP is changed.

In metalloproteins, the oxygen concentration is of the order

of 55 M (mol l� 1) while the transition metal often has a

concentration of or below 1 mM (mmol l� 1). Given this

difference of four to five orders of magnitude, precise align-

ment of the spectrometer is particularly important when

targeting the fluorescence of the transition metal. Addition-

ally, X-ray free-electron laser (XFEL) based spectroscopy

requires particularly fast alignment, given the scarcity of beam

time, and consequently we expect our method to be well suited

for XFEL-based studies.

Achieving precise alignment of the reflection zone plate

with respect to the sample and detector typically demands

approximately one hour of skilled operation. The alignment

process involves a meticulous nine-point procedure. Initially,

a ‘grid-search’ method is applied to locate two reference

markers. Subsequently, an iterative approach is employed,

aligning the x-axis with the markers while adjusting the y- and

z-axes. In most instances, this procedure effectively aligns the

spectrometer. Detailed documentation of this entire process

is available in Appendix A. In contrast, our machine learning

approach can achieve an alignment with an accuracy of

roughly 0.3 mm in less than 20 s plus the time required to

acquire reference measurements. This position is then suffi-

cient to be either further refined manually or via continued

optimization in order to achieve a precise alignment. As a

result, it can be deployed to conserve valuable beam time.

The machine learning method we have developed operates

by employing an optimiser with the objective of determining

seven parameters: the absolute values of x, y and z, corre-

sponding to the optimal coordinates of the RZP relative to the

sample, camera offsets in the xy-coordinate plane of the

detector, the ratio of manganese to oxygen and an intensity

scaling between simulation and experiment. The greatest

hurdle that our method aims to overcome is the large disparity

between simulation and real-world experiment data, demon-

strating that machine learning algorithms derived entirely by

simulation are applicable in the real world. Similar strategies

have been utilized in determining optimal beam positions at

beamlines (Rebuffi et al., 2023; Zhang et al., 2023; Morris et al.,

2022). Typically, these methods involve running the optimiser

on real-time measurements acquired during beamline opera-

tion, iteratively refining the beam position until the optimiser

converges to an optimum. Further work in this regard has

been undertaken demonstrating the use of Bayesian optimi-

zation for the alignment of beamlines and demonstrated using

a digital twin (Morris et al., 2023).

In contrast, our approach involves training a surrogate

model using simulated data and subsequently determining the

offset between simulation and reality to derive the best

possible alignment. This method offers several possible

advantages. Firstly, it can be developed and refined offline

using simulation data, eliminating the need to acquire beam

time for development. Secondly, the trained surrogate model

can be applied beyond alignment, for instance, optimizing

design parameters. Thirdly, the application at the beamline can

be tuned to the accuracy level required for the given experi-

ment. For example, if more accuracy is required, then the user

has the option to feed more experiment images into the

algorithm or to run the optimization process for longer,

affording the optimiser the ability to further refine the align-

ment. This innovative approach enhances efficiency and flex-

ibility in experimental planning and execution.

2. Method

The automated alignment method we have developed is a

simple four step process (the first two steps are performed in

advance in an ‘offline’ capacity):

(i) Simulate the setup using our in-house-developed RAYX

software (see Subsection 2.1 for details).

(ii) Train the neural network using the simulated dataset,

learning a mapping between the simulated x,y,z coordinates,

camera offset values, and a ratio of manganese to oxygen and

the resultant image.

(iii) Using the spectrometer, record n measurements

covering the search space (approximately 10 to 25 is suffi-

cient).

(iv) Run an optimiser with the goal to minimize the average

difference between the recorded measurements and the

prediction of the neural network, whilst optimizing the

required offsets X-off, Y-off and Z-off, which are the target

offset values, defining the optimal position for alignment as

well as four further parameters (camera offsets in x and y, a

ratio of manganese to oxygen and an overall intensity value).

2.1. Simulation

At BESSY II, we are actively developing a new open-source

iteration of our existing ray tracing software, RAY-UI

(Baumgärtel et al., 2019). This new software, named RAYX, is

crafted to harness the full capabilities of modern GPU tech-

nology while adhering to contemporary software development

design patterns, thereby enhancing maintainability. RAYX is

driven by two primary objectives: (i) to supersede RAY-UI for

optical element and beamline design, and (ii) to facilitate the
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Figure 1
Representation of our soft X-ray fluorescence spectrometer designed for
partial-fluorescence yield X-ray absorption spectroscopy. The setup
incorporates a reflection zone plate (RZP) as the diffracting optical
element and a detector to capture the metal L-edges as shown. The RZP
and the CCD detector are attached and their positions can be adjusted
relative to the sample via step motors. Figure taken from Kubin et
al. (2018).



efficient generation of extensive datasets for training neural

networks as surrogate models. RAYX is open source and

available on GitHub (Maier et al., 2024). The code can be

built from source or installed via a release version for Linux

or Windows.

Presently, RAYX provides a command-line interface that

enables users to load simulation parameters, subsequently

executing multiple instances of the simulation in parallel using

either GPU or CPU computing for ray tracing. While the

command-line functionality is available, ongoing efforts are

directed towards the continuous development of a graphical

design interface. During this transitional phase, RAY-UI is

utilized to generate the initial XML files which define the

parameters, ensuring a seamless integration between the two

software tools. As the software develops, alternative input

methods and formats will be integrated.

To train the neural network, we conducted one million

simulations, systematically varying the x, y and z positions of

the RZP and the detector within specific intervals (in milli-

metres): x [� 5.0, 5.0], y [� 5.0, 5.0], z [� 5.0, 5.0], the xy-

coordinate plane of the detector and the ratio of manganese to

oxygen. These intervals align with the real-world search space,

specifically representing the mechanical limits of the motors

attached to the spectrometer. Notably, the z-axis does actually

have a broader range, serving as the ‘zoom’ axis toward the

detector. Movement along the z-axis imparts significantly less

visual variation to the diffracted image compared with

movements along the x- and y-axes and therefore it was

considered preferable to limit this range to the equivalent for

the x- and y-axes.

Regarding the dataset, initial tests were performed using

200000 simulations; however, the decision to generate a

dataset of one million simulations was ultimately taken due to

the authors’ prior experience in training similar deep neural

networks and the goal of creating a more robust network

capable of a greater level of accuracy during inference. This

exact number is ultimately rather arbitrary, but in most cases

more data are of benefit to help the network generalize

(Mahajan et al., 2018). Affording the model access to more

diverse and representative data means it is less likely to

overfit, because it has a larger and more varied set of examples

to learn from. This is particularly true if the additional data

contains variations and complexities that are reflective of the

real-world scenarios the model will encounter, which given the

intricacies of the signal generated by our RZP lead us to

requiring more data. Given that this work was conducted away

from the beamline and simulated positions were randomized,

the option to generate even more additional simulations

existed but was considered unnecessary. The chosen dataset

size of one million was deemed sufficient to achieve the

desired level of network robustness for accurate inference.

2.2. Augmentation

To minimize the inherent disparity between the network

predictions and the actual experimental recordings, we

employed data augmentation techniques. Prior to training the

network with simulated data, we introduced x and y camera

offsets, shifting the position of the image in the 2D-plane of

the detector. Additionally, we varied the ratio of manganese to

oxygen in the simulation by scaling the resultant intensities.

These artificial augmentations were essential to ensure the

method’s applicability independent of factors that might

fluctuate from beam time to beam time.

The inclusion of camera offsets addresses potential varia-

tions in the exact camera position relative to the RZP, which

can differ based on the spectrometer setup. Therefore, the

network, during training, must also receive detector positions

in x and y in order to successfully generate an image which

conforms with the experiment. Similarly, the absolute inten-

sities of the measured manganese and oxygen signals are

deemed critical and should be correctly predicted. Although

the primary focus is on capturing the form and position of

the signal, optimizing these extra parameters enhances the

robustness of the network across varying experimental

conditions.

2.3. Neural network

The surrogate model is implemented as a standard multi-

layer perceptron, and its architecture was intentionally kept as

compact as possible while still achieving satisfactory results.

This design choice prioritizes fast inference, a crucial factor for

optimizing efficiency in the overall process. Training and

validation were conducted using purely simulated data.

To enhance the training process, a custom learning rate

scheduler was employed, data normalization was applied to

scale values between 0 and 1, and the dimensionality of

simulated images was reduced from (256, 1024) to (64, 256).

The Adam optimiser was utilized for network optimization,

and mean squared error was employed to calculate both

training and validation losses. The network was trained using

the widely adopted PyTorch deep learning library (Paszke et

al., 2019). The specific architecture of the network can be

found in Appendix B.

The trained network serves as a surrogate model for the

simulation, offering the advantage of rapid predictions, taking

only milliseconds instead of seconds. This efficiency makes the

optimization process more feasible in comparison with simply

using the simulation software within the optimization loop

directly. Without using a neural network as a surrogate model,

the optimization process would take multiple orders of

magnitude longer, with every optimization step requiring

seconds to simulate a result, compared with milliseconds for

the inference of the neural network. The network takes as

input 3D coordinates (x, y, z), camera offset values (x and y),

and a ratio of manganese to oxygen. The output of the

network is a 1D vector that can be reshaped to create a 2D

histogram with dimensions (64, 256).

2.4. Image acquisition

The detector utilized in this experiment generates 2D

histograms with dimensions (256, 1024). After thorough

experimentation, we determined that at least ten images are
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necessary for the optimization process to converge success-

fully and with around 25 we yield decent results. These images

are captured at varying motor positions and were chosen

across a grid covering the entire search space and with an

exposure time of 10 s. Attempts with fewer than ten

measurements resulted in the failure of all tested optimisers to

achieve the desired outcome. Conversely, using more than 25

measurements did not notably enhance the accuracy of the

result.

The process of obtaining these images takes approximately

five minutes, encompassing the time required for the motors

to reposition the RZP and the acquisition time of the detector.

It is important to note that this duration may vary based on

the specific coordinates provided, influencing the movement

requirements of the RZP and the overall acquisition time.

2.5. Optimization

In order to ascertain the optimal alignment, coordinate

optimization is required. Given n images acquired at the

experiment at varying positions and a surrogate model trained

with simulation data (NN), a loss function can be defined as

follows,

loss ¼
Xn

i¼ 1

�
expImi � NN

�
expPosi þ offset; camOff; ratio

��2
;

ð1Þ

where

loss := difference to minimize;

expIm := detector image captured at experiment;

NN := neural network [NN(parameters) returns the

predicted image from the neural network];

expPos := x,y,z position of detector image;

offset := x,y,z offset between experiment and simulation;

camOff := x,y detector position offset;

ratio := ratio of manganese to oxygen.

The loss function represents the difference between the

experimental images and the network’s predictions. The

primary objective of the optimiser is to minimize the disparity

between the experimentally acquired measurements and the

predictions generated by the neural network by determining

the optimal linear offset values for the three axes, x, y and z, as

well as the camera offsets, the ratio of manganese to oxygen

and the intensity scaling factor. Once the optimization process

has completed successfully, the derived offset signifies the

absolute optimal alignment position of the RZP and camera

relative to the sample within the spectrometer. The accuracy

of the simulations in combination with the applied augmen-

tations and consequently the quality of the trained neural

network play a key role in how successfully the optimiser can

achieve this. In particular, the form of the manganese and

oxygen components of the signal are significant and these

need to match as closely as possible between simulation and

experiment for this process to succeed. If, for example,

adjusting the x, y and z parameters in the simulation does not

create an equivalent linear shift in the real spectrometer, then

the offset values attained by the optimization process will not

equate to the optimal alignment of the spectrometer.

During the optimization process, the parameters camOff

and ratio are also optimized as the neural network has been

trained to consider variations in these factors. Additionally, a

scaling factor is determined so the variance in overall intensity

between the experimental images and the predictions of the

network can be synchronized. Once the optimiser has

successfully converged, the alignment process is considered

complete, and the determined offset values represent the

desired result. These values signify the optimal configuration

that minimizes the difference between the actual experimental

measurements and the predictions provided by the neural

network. Fig. 2 shows this optimization loop in practice.

3. Results

The validation of our method was conducted at the UE52-

SGM beamline at BESSY II (Miedema et al., 2016). The

spectrometer was positioned at the open port, and a small
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Figure 2
Pipeline for obtaining the optimal values for the seven parameters (the six neural network input parameters and the intensity scaling value). The two
deciding factors as to how long the optimiser tries to find a global optimimum are: N, the number of acquired measurements; and Num Trials, a parameter
set by the researcher and optimiser-dependent.



4 mm-long wire composed of Cu86, Mn12 and Ni2 was

employed as the test sample. A +1-order singular planar zone

plate (produced in collaboration with Institut für Angewandte

Photonik e.V.) served as the diffracting element, and a

Greateyes CCD detector (GE-VAC 1024 256 BI UV1,

Greateyes GmbH, Germany) captured images at a resolution

of 1024 � 256, with a pixel size of 26 mm � 26 mm and a 16-bit

dynamic range. Alignment of the RZP was required once the

sample was positioned in the photon stream.

For data acquisition, ten sets of recordings were obtained,

each comprising 25 measurements. These sets explored posi-

tions around the optimal alignment but did not include it,

utilizing random absolute positions. Various optimisers were

tested, and three proved to be the most effective: a Basin–

Hopping optimiser (Wales & Doye, 1997), a tree-structured

Parzen estimator (TPE) (Bergstra et al., 2011), and simulated

annealing (Kirkpatrick et al., 1983). The Basin–Hopping

optimiser produces the most accurate result but requires a run

time of around 10 to 20 min (depending on compute hard-

ware) compared with 20 to 30 s for the other optimisers. Our

experimentation using the TPE and simulated annealing

optimisers produced comparable results; however, the simu-

lated annealing optimiser proved easier to tune and therefore

was ultimately chosen.

The simulated annealing optimiser was implemented using

the Optuna framework (Akiba et al., 2019). To ensure the

success of the optimization process, we tuned the optimiser’s

hyperparameters, such as temperature, cooldown rate, neigh-

bour range factor and number of trials. The temperature

parameter is used to control the level of randomness involved

in the search. A high value results in more randomness as the

optimiser is more likely to accept a solution that is worse than

the current best solution, whereas a low temperature value

prioritizes better solutions. The cooldown rate controls how

fast the temperature decreases during the optimization

process, or, in other words, the rate at which the algorithm

adapts its behaviour from performing a random search to

focusing on refining promising solutions. Additionally, the

neighbour range factor can be adjusted to control the size of

the neighbourhood, the surrounding search space from any

one position, where the algorithm searches for solutions.

These parameters are therefore responsible for maintaining a

balance between global search space exploration and local

search space exploitation. After tuning, the number of trials

was set at 1000, the temperature and cooldown rate at 1000

and 0.9, respectively, and the neighbour range factor to 0.1.

Upon convergence of the optimiser and obtaining the

correct x, y and z offset values as well as the camera offsets,

ratio and intensity values, the alignment problem was

considered solved. Visualizing this outcome involved plotting

the neural network predictions with the correct offset applied

alongside the experimental images, constituting the pairs used

for calculating the loss. An example of this visualization is

presented in Fig. 3. The network accurately predicts the form

and position of the manganese and oxygen components with

remarkable precision. The fidelity of the images generated by

the network do not match the experimental images due to the

fact that the network is trained using simulation data. Addi-

tional factors such as normalization, dimensionality reduction

and the effective disregarding of irrelevant data such as noise

and zero-order light also contribute. Nonetheless, the predic-

tion is robust enough to achieve the desired level of accuracy

and demonstrates that the correct offsets for the x-, y- and z-

axes have been established and these values can be used to
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Figure 3
Example output of an optimization run using a simulated annealing optimiser and the Optuna framework. The loss is the average difference of the
measured images in row one and the predictions of the neural network in row two. By minimizing this loss the offset between experiment and simulation
is derived, which represents the position of the motors to achieve alignment. An example of this perfect alignment is shown with the manganese and
oxygen components of the signal marked.



align the spectrometer. This aligned position is also shown in

Fig. 3 and results from moving the motors of the spectrometer

to the acquired offset position.

To account for the inherent randomness in optimization, we

assessed the robustness of our approach through 200 trials, all

conducted using the same dataset (a single set of 25 record-

ings), but with a different seed. This results in each trial

starting with different values for the seven parameters that are

to be optimized. Subsequently, we computed the root mean

square error (RMSE) for the predicted optimal alignment

positions across the x-, y- and z-axes, along with the target, for

each trial. The average deviation across these trials was

0.27 mm within an optimization range of [� 5.0, 5.0]. All trials

are within 0.41 mm of the target result, despite a maximum

possible deviation of 5.0 mm. The step motors on our spec-

trometer have a tolerance of 0.1 mm and a backlash effect of

0.05 mm (representing an inaccuracy in the recorded position

when moving in one direction). Therefore, achieving a result

more accurate than 0.15 mm is deemed unnecessary, and a

result within several tenths of a millimetre is considered

sufficient for a rough alignment of the spectrometer. The

average run-time for these trials was 19.0 s. These detailed

results are presented in Fig. 4, which indicates the level

of accuracy achieved despite the large range of possible

staring values.

To address variance in the experimental images, we

obtained ten distinct datasets, each serving as input for the

optimization process. Despite all ten datasets being captured

under the same setup and during the same beam time, varia-

tions in the positions of measurements resulted in entirely

unique datasets with no overlap. Mirroring our previous

approach, we computed the RMSE for the predicted optimal

alignment positions across the x-, y- and z-axes, in addition to

the target, for each dataset. The average RMSE across these

datasets was 0.22 mm, consistent with the results from the

preceding 200 trials. This underscores that any set of input

experiment images should yield successful results, provided

they adequately cover the search space. The findings from this

validation process are presented in Fig. 5, which indicates the

level of accuracy achieved. Similarly to Fig. 4, a region of

interest is shown, this time with the y-axis truncated.

4. Discussion

In the context of our mobile spectrometer, the solution we are

presenting enables the automated alignment of the RZP and

detector. Compared with our previous procedure, the reduc-

tion in alignment time from approximately one hour to five

minutes (image acquisition time plus optimization process)

represents a significant improvement and provides us with the

advantage of more usable beam time.

It is important to note that the performance of the optimiser

heavily relies on the randomly selected starting position,

leading to variations in the optimization process. As illustrated

in Fig. 4, the optimal outcome exhibited an impressive accu-

racy of 48.1 mm, while the least favourable result was

406.0 mm. In instances where the result falls on the latter end

of the spectrum, additional manual fine-tuning may be

necessary. To address this challenge, we explored the feasi-

bility of utilizing the rapidly obtained outcome from the

simulated annealing optimiser (completed in less than 20 s) as

the initial position for a more systematic and exploratory

Basin–Hopping optimiser. This approach proved successful,

with the Basin–Hopping optimiser consistently converging to

a result with an accuracy of approximately 0.1 mm. However,

it is worth noting that this enhanced accuracy came at the
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Figure 4
Result of performing 200 trials and calculating the RMSE of the resulting
coordinates and the target for the optimal position. The x-axis is trun-
cated to show just the region of interest, because all deviations are less
than 0.45 mm, despite a maximum possible deviation of 5.0 mm. The step
motors on the spectrometer have a tolerance of 0.1 mm and a backlash
effect of roughly 0.05 mm which are shown. The average deviation is
0.27 mm with regards to an interval of � 5.0 mm to 5.0 mm, with an
average run-time of 19.0 s.

Figure 5
In order to test the robustness of the method, ten different datasets were
taken during the beam time, each consisting of 25 measurements
exploring the search space. Shown here are the RMSE of the resulting
coordinates and the target for the optimal position. The y-axis is trun-
cated to show just the region of interest, because all deviations are less
than 0.45 mm, despite a maximum possible deviation of 5.0 mm. The
average deviation is 0.22 mm, which is in line with the average deviation
of one dataset across 200 trials of 0.27 mm, shown in Fig. 4.



expense of an extended run-time of around ten minutes,

counteracting the initial objective of efficiency. Consequently,

further testing and optimization are required in this regard.

This work demonstrates the feasibility of creating a surro-

gate model for complex photon science experiments using

only simulation data and successfully applying it to a real-

world experiment. The model is trained to take the x, y and z

coordinates, the camera offsets and the ratio of manganese to

oxygen as input and return the corresponding detector image,

requiring an optimiser to determine the offset between

simulation and experiment. An alternative solution could

involve training an inverse network (image to coordinates).

With such a model, offsets could be calculated using a simple

linear fit, employing experiment detector images as input.

However, this approach poses challenges as the network needs

to process unseen experiment data despite being trained solely

with simulation data. We are currently exploring data

augmentation and domain adaptation methods in this regard.

Our objective at the Helmholtz Zentrum Berlin, concerning

machine learning, is not to create custom solutions applicable

only to one instrument. Instead, we aim to develop methods

that can be generalized across various aspects of photon

science. In this respect, this work serves as a prototype for

data-driven alignment procedures applicable not only to

spectrometers but also to entire beamlines and detectors

in general.

APPENDIX A

Manual alignment procedure

(1) At the outset, shed light on the CCD through a coarse

alignment of the spectrometer’s z-axis.

(2) Precisely centre the light on the CCD by adjusting the

spectrometer’s y-axis. Utilize coarse tuning in 1 mm steps,

followed by fine-tuning with 0.2 mm increments.

(3) Optimize the x-position of the Mn wire while monitoring

the counts on the CCD image.

(4) Move the piezo crawler to the ‘DOUBLE HOLE’

position (10.5 mm) – a double aperture. Adjust the spectro-

meter’s z-axis and y-axis to locate an image of the holes.

(5) Centre the image at the half height of the CCD using the

spectrometer’s y/z axes.

(6) Verification step. Shift the spectrometer’s z-axis by

+1.7 mm and then by � 1.7 mm. If, at dZ = � 1.7 mm, another

faint image of two holes (reflection) can be observed, this

confirms that the initial ‘true’ transmitted image of two holes

existed. If no reflection image is seen, revert to the previous z-

axis position and check if, at dZ = +1.7 mm, a brighter image

of two holes can be seen. If so, the earlier image was a

reflection, and you are now in the ‘true’ two holes image

position. Stay at this position and proceed to Step 7.

(7) Set the piezo crawler to FILTER. Starting from the

position of the ‘true’ two holes, adjust the spectrometer by

dZ = � 3.6 mm. You may now be near the final alignment.

(8) Fine-tune the alignment of the spectrometer’s y-axis.

Straighten the stripe structure by moving the spectrometer’s

y-axis, adjusting by dY = � 0.3 mm.

(9) Fine-tune the spectrometer’s z-axis: decrease the Mn–O

separation (move the image down) by increasing Z, and

increase the Mn–O separation (move the image up) by

decreasing Z. Use a step size of dZ = 0.2 mm, and for the final

fine-tuning set dZ = 0.1 mm.

APPENDIX B

Network architecture

(i) Learning rate: 1 � 10� 3 (scheduler reduces rate by a

factor of 0.5 every 100 epochs).

(ii) Adam optimiser.

(iii) MSELoss with reduction = ‘sum’.

(iv) Batch size = 64.
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Fuller, F. D., Sierra, R. G., Quevedo, W., Weniger, C., Rehanek, J.,
Firsov, A., Laksmono, H., Weninger, C., Alonso-Mori, R.,
Nordlund, D. L., Lassalle-Kaiser, B., Glownia, J. M., Krzywinski, J.,
Moeller, S., Turner, J. J., Minitti, M. P., Dakovski, G. L., Koroidov,
S., Kawde, A., Kanady, J. S., Tsui, E. Y., Suseno, S., Han, Z., Hill, E.,
Taguchi, T., Borovik, A. S., Agapie, T., Messinger, J., Erko, A.,
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