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The inherent ambiguity in reconstructed images from coherent diffraction

imaging (CDI) poses an intrinsic challenge, as images derived from the same

dataset under varying initial conditions often display inconsistencies. This study

introduces a method that employs the Noise2Noise approach combined with

neural networks to effectively mitigate these ambiguities. We applied this

methodology to hundreds of ambiguous reconstructed images retrieved from a

single diffraction pattern using a conventional retrieval algorithm. Our results

demonstrate that ambiguous features in these reconstructions are effectively

treated as inter-reconstruction noise and are significantly reduced. The post-

Noise2Noise treated images closely approximate the average and singular value

decomposition analysis of various reconstructions, providing consistent and

reliable reconstructions.

1. Introduction

Coherent diffraction imaging (CDI), an oversampling based

lensless imaging technique, is realized by capturing coherent

scattering patterns and applying retrieval algorithms to

reconstruct images. To facilitate CDI, obtaining high-coher-

ence light sources, particularly in the hard X-ray region, is

challenging. At the end of the twentieth century, the emer-

gence of partially coherent X-rays from third-generation

synchrotron radiation facilities advanced X-ray CDI. Subse-

quently, free-electron laser facilities emitting fully coherent

X-rays further developed these techniques. Recently, fourth-

generation synchrotron radiation facilities near diffraction-

limited X-ray sources have increased the prevalence of CDI

and related lensless imaging techniques.

These lensless imaging techniques have intrinsic limitations.

In the early stages, to satisfy the oversampling method criteria

in CDI (Sayre, 1980; Miao et al., 1999), the sample size had

to be isolated and smaller than the illuminated beam size.

Recently, an increasing number of CDI based lensless X-ray

imaging techniques have been proposed to overcome the

limitations of CDI. For instance, Kang et al. (2021) and

Takazawa et al. (2021) used apertures that were larger than the

sample to define the sample profile and to overcome the beam

size limitation in CDI. Takayama et al. (2021) collected a series

of coherent scattering patterns over time to achieve time-

resolved CDI. Vartanyants & Robinson (2003) applied a

partially coherent beam to a structured quantum-dot array to

observe the average shape and orientation of an individual

island. Ayyer et al. (2016) demonstrated that the loss corre-

lation of an array containing identical objects yields diffraction
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peaks from the array and scattering patterns from individual

objects. Chen et al. (2023) proposed an ensemble CDI method

using numerous randomly arranged identical unit patterns

to enhance the signal-to-noise ratio of a diffraction pattern.

Furthermore, the methods for improving the robustness and

resolution of CDI are also reported. Sekiguchi et al. (2017)

proposed a protocol to efficiently yield realistic maps with low

similarity scores (Yoshida et al., 2024) that were based on the

empirical observation in their prior study. In addition, the

similarity score, characterized in terms of the phase differ-

ences between the structure factors of the retrieved maps, was

proposed by Takayama & Nakasako (2024).

However, CDI exhibits ambiguity during retrieval, and the

retrieved images with different initial conditions are incon-

sistent. Various guiding methods have been employed to

improve the reliability of retrieval algorithms (Chou & Lee,

2002; Chou et al., 2003; Chen et al., 2007). In order to improve

robustness, free log-likelihood as an unbiased metric for CDI

has been proposed (Favre-Nicolin et al., 2020). Furthermore,

in the same research, the eigen-solution analysis conducted by

performing singular value decomposition (SVD) on datasets

can successfully reduce ambiguity. Recently, machine learning

(ML) showed a significant advantage for solving many

computational imaging problems, such as semantic segmen-

tation (Badrinarayanan et al., 2017; Ronneberger et al., 2015;

Long et al., 2015) and image classification (Agrawal et al.,

2014; Simonyan & Zisserman, 2015; He et al., 2015). In CDI

experiments, ML also plays an important role and has been

considered revolutionary for image reconstruction. For

instance, Wu et al. (2021) and Cherukara et al. (2018) used

convolutional neural networks for rapid two-dimensional

phase retrieval. In addition, a three-dimensional ML model

combining supervised learning with transfer learning to the

complex morphological information of a range of nano-

particles has also been proposed (Wu et al., 2021). Bellisario et

al. (2022) used deep learning as a tool to denoise and demask

diffraction patterns on simulated images. Image applications

have been receiving increasing attention for decades due to

progress in computational capabilities.

This study proposes a potential method based on the

Noise2Noise approach to denoise CDI images and hence

reduce ambiguity. An open-source implementation in Python,

corresponding to a mixed-scale dense network architecture,

was used. The proposed neural network can efficiently extract

reconstruction related consistent features and reduce ambi-

guity in various reconstructions.

2. Experimental

To elucidate the ambiguity inherent in CDI reconstructions,

we adapted a measurement using ensemble CDI (eCDI) with

a standard sample. For more details on the eCDI measure-

ment, please refer to previous work (Chen et al., 2023). eCDI

is an advanced methodology base on CDI. In traditional CDI,

only one sample can be illuminated by a totally coherent

incident beam. In contrast, eCDI permits the illumination of

multiple samples by a partially coherent incident beam while

adhering to two additional constraints: (1) the sample must

consist of ‘units’ that are identical in morphology and orien-

tations, and (2) the unit size must fall within the coherent

length of the incident beam and the distance between the units

must exceed the coherent length of the incident beam. These

constraints ensure that the diffraction patterns generated by

each individual unit are identical and do not interfere with one

another, resulting in what is termed an ensemble diffraction

pattern. According to the principle of eCDI, if a sample

comprises N such units, the diffraction pattern of the entire

sample is equivalent to that of a single unit, but with the

intensity magnified N�. Alternatively, eCDI can also be

performed with totally coherent sources. In this case, inter-

ference fringes appear on the diffraction pattern from multiple

units within the entire illuminated area. The presence of

interference fringes depends on the arrangement of the units.

These fringes can be mitigated by utilizing ensemble diffrac-

tion patterns from units that are arranged differently. Thus, the

ensemble diffraction pattern approximates that of a single

unit. Finally, the reconstruction processes of CDI and eCDI

are identical.

Fig, 1(a) shows the ensemble CDI performed at TPS 13A

and TPS 25A at the Taiwan Photon Source (TPS). The

wavelengths of the two incident X-rays were approximately

1.4 Å. Eiger detectors 9M and 16M were located 6 m below

the sample to collect the ensemble coherent scattering

patterns. The intrinsic characteristics of the light sources at the

two beamlines are distinct. TPS 13A is a partially coherent

beamline with a beam size and coherent length of approxi-

mately 200 mm � 200 mm and 700 nm, respectively; TPS 25A

is a nearly totally coherent beamline with a beam size of

approximately 6 mm � 8 mm. The data collection processes

and samples were carefully designed to satisfy the eCDI

criteria described previously. In more detail, the sample

comprised numerous unit patterns in ‘IP’ with a random

arrangement, as shown in Fig. 1(b). The unit patterns were

deposited with platinum and manufactured using the deposi-

tion mode of a focused ion beam (FIB) on a 500 nm-thick SiN

membrane. The linewidth and the thickness of the ‘IP’ are

both approximately 100 nm. The overall size of a single unit is

about 450 nm and the spacing between units is around 1 mm,

fulfilling the eCDI criteria for TPS 13A. Consequently, we

captured an ensemble diffraction pattern directly in TPS 13A

and 287 diffraction patterns at various illuminating positions

in TPS 25A to compile an ensemble diffraction pattern.

Fig. 1(c) shows the collected ensemble coherent scattering

pattern. The patterns obtained at TPS 13A and TPS 25A were

indistinguishable because they satisfied the ensemble

criterion.

3. Data processing and image retrieval

The data processing and reconstruction algorithms are

described as follows. A total of 2000 reconstructed results

were obtained for each dataset using the same algorithm.

Dead zones appeared on the detectors owing to the hardware

limitations of the detectors and the beam stops used to protect
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them. To cover the region with missing data, the diffraction

pattern was rotated by 180� to fill the missing data according

to Friedel’s law, which states that the diffraction pattern is

centrosymmetric for a non-absorbing sample (Vartanyants &

Robinson, 2001). Datasets were cropped into 1201 � 1201

pixels for reconstruction, and the estimated pixel resolution of

the reconstructed images calculated using the formula �x =

�z/Np�p was 9.2 nm, where �x is the real-space pixel size of

the reconstructions, � is the incident beam wavelength, z is the

distance between the sample and the detector, Np is the

number of pixels used for the reconstruction, and �p is the

pixel size of the detector (Burdet et al., 2014). Finally, using the

datasets prepared, the phase retrieval process is initiated using

an iteration package, including hybrid input–output algorithm

(HIO) (Fienup, 1982, 2013; Nishino et al., 2003), dynamic

support (Marchesini et al., 2003) and error reduction (Fienup,

1982), where each reconstruction undergoes the iteration

package three times; the iteration package includes: (1)

update the supporting, (2) HIO 100 cycles, (3) ER 10 cycles

and (4) HIO 20 cycles. Usually, ER is the final algorithmic step

to truly investigate the depth of the local minimum HIO.

However, during retrieval, the supports inducing the artificial

signals on the boundary affect the retrieved images. Moreover,

these artificial signals affect the result of FSC corresponding to

the calculation for spatial resolution. To address the artificial

signals, the last step in the iteration package is systematically

set as HIO 20 cycles in this work. The diffraction intensity

Fourier transform, which is the autocorrelation function of the

object, estimates the HIO support in real space (Marchesini et

al., 2003; Fienup, 1982a,b, 2013).

Two datasets with identical experimental conditions were

subsequently acquired and prepared to estimate the spatial

resolution using the Fourier shell correlation (FSC) method

(Harauz & van Heel, 1986, 2005). Based on the previously

described data processing method, 2000 reconstructions for

each dataset were organized into three reconstruction groups

using the error function (Erf) as the indicator of the degree of

matching between the reconstructed and the measured scat-

tering patterns. Accordingly, the 2000 reconstructions were

categorized into three groups: the top 10% (200 reconstruc-

tions), the 10–40% (600 reconstructions) and the bottom 60%

(1200 reconstructions). In this study, we focused on the top

10% and 10–40% groups and discarded the bottom-60%

group. Four examples of reconstructed images in the top-10%

are shown in Group a in Fig. 2. Compared with the scanning

electron microscope (SEM) image of the unit pattern in

Fig 1(b), defects and ambiguities, such as blurred edges,

connections and disconnections, were present despite using

the same phase retrieval processes. Based on multiple results,

the reconstructed images can be averaged to obtain a single

image to reduce defects. Fig. 3(a) shows the average image of

the top-10% group. The quality of the averaged image was

better than those in Group a in Fig. 2.

4. Denoising treatment

ML associated with image denoising was adopted to reduce

the ambiguous features treated as noise in CDI-reconstructed

images. ML algorithms are useful for performing nonlinear

regression. Hence, image denoising was implemented using

the Noise2Noise approach, with each 10–40% group from the

two datasets divided into two stacks (Lehtinen et al., 2018).

Note that 10–40% groups using in ML is still extracted from

the same 2000 reconstructed results. Consequently, a convo-

lutional neural network was constructed and trained to project

one stack onto another in the reconstruction domain. The

identical information of both stacks was preserved, whereas

the noise component did not regress owing to the lack of

correlation between the two different reconstructions.

Consequently, noise and defects in the reconstructions were

reduced and a clearer image was acquired. This study focused

on the applicability of the Noise2Noise approach for ambig-

uous features treated as noise in CDI-reconstructed images.

The detailed mathematics and algorithms can be found in

Lehtinen et al. (2018).

An open-source Python implementation associated with a

mixed-scale dense (MS-D, https://dmpelt.github.io/msdnet)

network architecture was employed (Pelt & Sethian, 2018; Pelt

et al., 2018; Flenner et al., 2022). The two 10–40% groups (600

reconstructed images for each dataset) were selected to ensure

sufficient training data. Initially, 600 reconstructed images with

151 � 151 pixels were divided into two stacks (300 recon-
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Figure 1
(a) Experimental setup for eCDI in which numerous unit patterns are randomly arranged on an SiN membrane and illuminated by coherent X-rays
generating ensemble coherent scattering patterns. (b) eCDI unit pattern. (c) Collected ensemble coherent scattering pattern. (d) Reconstructed image.

https://dmpelt.github.io/msdnet


structed images per stack), one comprised the reconstructed

input images and the other was used for training. A stack of

the first 255 images was used for training, and the remaining

45 images were used for validation. Computations were

performed on an NVidia Tesla P100 GPU running CUDA

10.2, and the network was tested for the top-10% groups.

The stack of the tested images was different from that of

the training images. The output of the tested images was

computed using a Tesla P100 GPU. Generally, a common rule

is to have at least thousands of images for training a dataset.

Pelt & Sethian (2018) used hundreds of reconstructed images

for training to denoise. In our work, hundreds of reconstructed

images are used for training as well, which was sufficient for

Noise2Noise to work. Note that in order to calculate a

quantitative comparison of spatial resolution in the following

section, both datasets with identical experimental conditions

were trained separately.

Group b in Fig. 2 shows four images selected in the top-10%

group. The reconstruction quality seems acceptable and

unacceptable in b-1 and b-2 to b-4 in Fig. 2, respectively. The

test and training images were different; however, ML asso-

ciated with image denoising can significantly improve the

quality of the reconstructed images. Group c in Fig. 2 repre-

sents the outputs of Group b in Fig. 2 after denoising, indi-

cating a significant improvement in the image quality.

Although b-2 and b-3 in Fig. 2 exhibit inferior image quality,

the disconnection and connection corresponding to noise (red

arrows) can be repaired and removed, as shown in c-2 and c-3.

However, c-4 in Fig. 2 shows that the results exhibit inferior

quality when the reconstructed image is severely damaged.

5. Discussion

A quantitative comparison of spatial resolution illustrates the

denoising treatment behavior. To determine the spatial reso-

lution, FSC was adopted as the indicator, and the threshold

followed a T-1bit curve (Harauz & van Heel, 1986; van Heel &

Schatz, 2005). The two reconstructed images from the two

independent measurements were used to calculate the FSC,

as indicated by datasets 1 and 2 in Fig. 3. The reconstructed

images within the top-10% groups underwent the following

four treatments: averaged images [Fig. 3(a)], one-to-one

images [Fig. 3(b)], one-to-one images with denoising [Fig. 3(c)]

and the first eigen-solution analysis (Favre-Nicolin et al., 2020)

[Fig. 3(d)].

The FSCs for an averaged image within the top 10% in

Fig. 3(a) and the best 20 are shown in Fig. 3(e), where the

spatial resolutions are 28.4 nm and 38.0 nm. The resolution of

one-to-one images shown in Fig. 3(b), i.e. applying two indi-

vidual reconstructed images from HIO directly to FSC

calculation, was 75.1 nm; the red line in Fig. 3( f) denotes the

corresponding FSC. The resolution of one-to-one images in
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Figure 2
Group a: four images reconstructed using HIO within the top-10% reconstruction groups. Group b: four images within the top-10% reconstruction
groups that appear unacceptable on visual inspection. Group c: Noise2Noise treated images corresponding to Group b. Note that all reconstructions are
chosen by the indicator of Erf and start with random initial conditions.



Fig. 3(b) after undergoing denoising, as shown in Fig. 3(c), was

46.0 nm; the green line in Fig. 3( f) denotes the corresponding

FSC. Compared with HIO images, the estimated resolution

for ML was improved using FSC. Hence, ML can efficiently

reduce ambiguous features treated as noise and extract

consistent features from the reconstructed images. However,

although ML eliminates the discrepancies and retains consis-

tent signals, enhancing consistent artificial noise may disturb

the reconstructions with ML. The reconstructions with poor

quality and those with high resolution by ML are shown in

Group b in Figs. 2 and 3(c), respectively. The resolution of an

averaged image is higher than that of a reconstruction with

ML, and the improvement of reconstruction for a ‘single’

image is demonstrated using FCS. Moreover, encountering a

few unsuccessful results (i.e. c-4 in Fig. 2) is common in

network based approaches, as observed in other fields that

utilize ML.

On the other hand, the comparison given by Favre-Nicolin

et al. (2020) with the approach demonstrated in our study is

also shown. Top-40% data were used in the SVD method. The

FSC for the image with the first eigen-solution in Fig. 3(d) is

shown in Fig. 3(e). This result is very close to the averaged

image and is greater than reconstructed images from direct

HIO and ML results.

ML can potentially improve the quality of CDI recon-

struction and offer advantages such as high-resolution output

images from a trained network and fast computing from noisy

to clear images (0.03 s). However, distinguishing the recon-

structed image quality using ML and averaging remains

challenging. The images that exhibit improved quality were

defined by FSC in the spatial resolution. Evidently, the results

reveal that, not only the highest resolution is an averaged HIO

result, but the ML-denoised image shows improvement in

the reconstruction. As indicated in the first paragraph of

Section 4, the purpose of this work is the applicability of the

Noise2Noise approach for ambiguous features treated as noise

in CDI-reconstructed images. To our knowledge, a limitation

of this approach to be used more commonly for a wide range

of samples can be attributed to insufficient varieties of data-

sets corresponding to real samples. Note that when new

samples are applied, the network should be re-trained.

6. Conclusions

This study focuses on reducing the ambiguity in CDI retrieval.

The diffraction patterns applied in this research were adopted

from an ensemble CDI measurement on an artificial test

sample. The sample comprised numerous randomly arranged
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Figure 3
(a)–(d) Reconstructed images within the top-10% groups from the two datasets with different treatments for FSC calculations. (a) Average image of all
reconstructed images. (b) Single reconstructed image from HIO. (c) Single denoised images of (b). (d) First eigen-solution by SVD analysis of all
reconstructed images. The corresponding FSCs are shown in (e) and ( f ). For comparison, the FSC of the average of the best-20 reconstructions is
shown in (e).



identical unit patterns, manufactured using the deposition

mode of an FIB on an SiN membrane. Two datasets under

identical experimental conditions were collected and 2000

reconstructed images were obtained from each dataset using

the HIO method. The images selected for further analysis

were determined based on the Erf metric of the reconstructed

images. To diminish the ambiguity of images reconstructed

with HIO, ML techniques associated with image denoising

were employed. The Noise2Noise approach was used to

perform image denoising, and a convolutional neural network

was constructed and trained. An open-source implementation

in Python, corresponding to a mixed-scale dense network

architecture, was used to compare the images with and without

denoising. The images reconstructed by ML exhibited

improved quality. Additionally, eigen-solution analysis

conducted by performing SVD on the same dataset was

employed for comparison.

In addition to the demonstration of images, FSC was

employed as an indicator to elucidate the impact of ML on

image quality. Compared with the resolutions achieved by

images reconstructed with HIO, the resolutions of the images

reconstructed by ML were enhanced from 75.1 nm to 46.0 nm.

These results highlight the efficiency of ML in reducing

ambiguities and extracting consistent features from recon-

structed images. Although the average and eigen-solution

analysis presented better results, this work demonstrated the

potential of the ML for CDI.
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