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Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful

technique for strain imaging and morphology reconstruction of nanometre-scale

crystals. However, BCDI often suffers from angular distortions that appear

during data acquisition, caused by radiation pressure, heating or imperfect

scanning stages. This limits the applicability of BCDI, in particular for small

crystals and high-flux X-ray beams. Here, we present a pre-processing algorithm

that recovers the 3D datasets from the BCDI dataset measured under the impact

of large angular distortions. We systematically investigate the performance of

this method for different levels of distortion and find that the algorithm recovers

the correct angles for distortions up to 16.4� (1640%) the angular step size d� =

0.004�. We also show that the angles in a continuous scan can be recovered with

high accuracy. As expected, the correction provides marked improvements in

the subsequent phase retrieval.

1. Introduction

Bragg coherent X-ray diffraction imaging (BCDI) has evolved

as a powerful and promising X-ray microscopy technique for

the study of crystalline nanoparticles (Pfeifer et al., 2006;

Robinson & Harder, 2009; Miao et al., 2015). BCDI exploits

the penetration depth of X-rays and their high sensitivity to

distortions of the crystalline lattice. The structural information

of single particles is encoded in the 3D scattering intensities

around Bragg reflections, and by phase retrieval (Fienup,

1978) of such 3D diffraction datasets, BCDI can provide the

local 3D morphology and strain of a crystalline nanoparticle

with high spatial resolution. The new fourth-generation

synchrotron radiation sources that produce highly brilliant

X-ray beams make it possible to extend BCDI to a larger

range of applications (Li et al., 2022) as well as smaller

nanoparticles (Björling et al., 2019).

In a BCDI experiment as shown in Fig. 1, the Bragg

condition is met when the wavevector transfer |Q| = kf � ki (ki

and kf are the incident and exit wavevectors, respectively)

coincides with one of the reciprocal lattice points Ghkl, with

indexes (hkl). A detector placed at the selected Bragg angle

�hkl at a sample-to-detector distance r would then capture the

Bragg diffraction. The entire 3D Bragg diffraction can be

recorded by rotating the sample along � (around the x axis)

in small steps in a so-called rocking curve. The range of the

rocking curve, ��, is generally less than 1�, and the 2D slices

can be considered as effectively parallel in the q3 direction

as shown in Fig. 1. The relation between the coordinates in

reciprocal space (q1, q2, q3) and those in real space (r1, r2, r3),
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as well as the Cartesian coordinates (x, y, z), are described by

Berenguer et al. (2013).

One of the main challenges for BCDI is the angular

uncertainty that can occur during the BCDI measurement

procedure. Unpredictable particle rotations can be induced by

an imprecise experimental platform, in particular when using

complex in situ experimental setups, as well as movements due

to radiation pressure, charging or heat (Kim et al., 2016; Liang

et al., 2018; Hruszkewycz et al., 2018). These issues are more

pronounced for small nanoparticles and in more realistic

sample systems where particles are weakly bound to the

substrate (Björling et al., 2019), but also when using nano-

focused and high-flux X-ray beams. These distortions can be

quite obvious in severe cases and sometimes prevent phase

retrieval or result in lower-quality reconstructions. Fig. 1

illustrates the three rotations which can suffer from angular

uncertainty. The first is along the rocking curve angle �. It has

previously been demonstrated in simulations that even a slight

angular uncertainty along �, much smaller than the step size,

can introduce artifacts in the 3D reconstruction after the

phase retrieval (Calvo-Almazán et al., 2019). Such small

uncertainties would be hard to recognize in an experiment.

The particle roll angle ! can also be problematic, but it is

relatively easy to recognize since it leads to shifts in the

detector plane. Finally, the BCDI geometry makes it much less

sensitive to uncertainties in the azimuthal angle ’ (Björling et

al., 2020).

There have been some published methods working on

mitigating the influence caused by angular uncertainty and

improving the robustness of BCDI. Calvo-Almazan et al.

(2019) modified the phase-retrieval step to jointly retrieve the

angle and the object. The method could reconstruct the

complex electron distribution � of the sample and estimate the

exact angular position via the calculation of a well defined

error metric gradient during the phasing process. According

to the simulations, their method performed well for modest

distortions of up to 0.4� (40%) the step size d� from nominal

rocking curve angles. At the other end of the spectrum,

Björling et al. (2020) demonstrated a method to recover the

angles from a fully unknown and uncontrolled particle rota-

tion. Their method builds on the Expand–Maximum–

Compress (EMC) algorithm (Loh & Elser, 2009; Loh et al.,

2010; Ekeberg et al., 2015) that is generally applied in X-ray

free-electron laser (XFEL) imaging experiments, and it is used

as a pre-processing step independent of the phase retrieval. In

this case, the particle rotation was fully driven by the beam,

which is a rather extreme scenario.

Here, we investigate how the EMC based method (Björling

et al., 2020) can be used in a scenario with both intentional and

non-intentional rotations. We only consider distortions in the �

direction, which is the most challenging direction to recognize

and correct for, in order to reduce computational time. The

simulations performed show that this pre-processing method

performs well for deviations of up to 16.4� (1640%) the step

size d� = 0.004�. Our method builds on the theoretical

framework presented by Björling et al. (2020), utilizing the

oversampling present in collected diffraction data to correct

the influence of angular uncertainty. We use phase retrieval to

confirm that the angular correction results in improved

reconstructions.

2. Details of the algorithm and simulation

In order to test the performance, we simulated BCDI

measurements of 250 nm-diameter truncated-octahedral gold

nanoparticles (approximately 170 nm in length in the r3

direction) at an X-ray energy of 10 keV. The particle was

combined with an artificial internal phase varying between

� 0.25 radians and 0.25 radians. The whole 3D diffraction

intensity volume around the reciprocal lattice point G111 was

sampled in the angular range �� = �0.4� in Nk = 201 angular

steps (i.e. with a nominal d� = 0.004�). The resulting 2D

diffraction patterns were recorded by a 2D array of 256 � 256

pixels with a 55 mm pixel size, at a sample-to-detector distance

of 0.5 m. A random angular perturbation �� with the average

distortion defined as � � = mean(��)/d� was generated and

added to the preset angular position � to obtain the distorted

trajectory. The generated orientation trajectory was then used

as input for the software Ptypy (Enders & Thibault, 2016) to

simulate the Bragg diffraction dataset.

The algorithm is based on the work proposed by Björling et

al. (2020), in which a corrected model W is iteratively updated

based on searching the maximum value of likelihood with

respect to the measured frames K and their position in �. The

logarithm form of the likelihood Rjk with respect to the frames

K (index k) and the angular position � (bin j) is given by the

probability mass function of the Poisson distribution,

log Rjk ¼
X

i

Kki log Wji

� �
� Wji

� �
; ð1Þ

where index i runs over the detector pixels and will be omitted

in the following. Analogous to the approach mentioned by

Björling et al. (2020) and Ayyer et al. (2016), an annealing

parameter � is used to avoid local optima. Then, the

normalized probability matrix Pjk which indicates the kth
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Figure 1
Scheme of BCDI experiment. A coherent X-ray beam with the incident
wavevector ki and exit wavevector kf is scattered by a nanoparticle with a
truncated octahedron envelope. The angle between ki and kf is twice the
Bragg angle �B of the lattice point G111. The squares across the Bragg
peak represent the detector window, whose plane (q1 � q2) is perpen-
dicular to the exit wavevector kf . By rotating the sample in a small range
along the rocking curve direction �, the 3D diffraction volume in reci-
procal space can be sampled by a stack of 2D slices recorded by the
detector. The q3 direction in reciprocal space corresponds to the rocking
curve direction �. The conjugate space of (q1, q2, q3) is (r1, r2, r3).



experimental frame Kk corresponding to � bin j can be

calculated as

Pjk ¼
Rjk

� ��

P
j Rjk

� �� : ð2Þ

Note that Pjk is a probability distribution, not just the most

probable angle. The final calculated Pjk can be used as the

orientation trajectory �(k) to show where the single measured

diffraction pattern Kk belongs in rocking angle �. A continuity

bias n� is imposed onto Pjk before normalization as mentioned

by Björling et al. (2020) to ensure the orientation trajectory

�(k) is single-valued. According to equation (1), the maximum

value occurs when

W 0
j ¼

P
k PjkKk
P

k Pjk

: ð3Þ

Unlike the case in an XFEL imaging experiment in trans-

mission, where all the measured slices intersect the origin in

reciprocal space, the frames in a BCDI measurement are

approximately parallel to each other. The field of view in the

q3 direction is generally much smaller than in the other two

directions. Therefore, it is necessary and essential to consider

the field of view of the diffraction volume when implementing

the algorithm. In order to limit the field of view, it is often

more convenient to apply a constraint in real space rather than

directly imposing it in reciprocal space, considering that the

diffraction pattern is theoretically infinitely large. Since the

Fourier transform of the corrected diffraction volume W 0
j is an

autocorrelation function, the envelope constraint with extent

D in the r3 direction can be expressed as

F W 00
j

� �
¼
F W 0

j

� �
; where jr3j � D;

0; elsewhere.

�

ð4Þ

Considering the geometrical relation between real space and

reciprocal space, for an arbitrary slice number Nj of the rebuilt

diffraction grid, the parameters we need to adjust to make the

field of view consistent with the desired (set) rocking angle

range are the step size in the q3 direction, dq3, and the

envelope D.

By using the preset angular step size d� = 0.004� and the

lattice parameter, we can derive a nominal dq03 value of

(2�d�)/d, where d� is given in radians. We found that the field

of view was consistent with the desired rocking-curve range

when dq3 = dq03=2 and D = 375 nm. The algorithm ran for 250

iterations to generate a diffraction intensity model W with Nj =

201 frames. An initial probability Pjk with a Gaussian distri-

bution was set to build up our initial model according to

equation (3). The continuity bias n� was fixed at 6, while the

annealing coefficient � was initially 10� 5 and then multiplied

by
ffiffiffi
2
p

every 5 iterations. The algorithm was implemented and

evaluated at MAX IV Laboratory computational cluster and

took about 2.07 h (detailed in supplementary note 1 of the

supporting information).

3. Results and discussion

3.1. Correcting simulated angular distortion

We tested the performance and limitations of the process

for a range of � �, but we first present the results for � � = 2.81 in

some detail in Figs. 2 and 3. The center slices of the datasets

along the q2 and q3 directions are displayed in Figs. 2(a) and

3(c), and the rocking curves of each dataset, as shown in

Fig. 2(b), were calculated by summing the intensity of each

frame along �. The effect of the angular distortion can be

clearly observed in both the diffraction pattern and the

rocking curve in Fig. 2. In contrast, the corrected dataset is

smooth and very similar to the reference in the high-intensity

range between � = [� 0.3�, 0.3�] . For the low-intensity tails,

some deviations can be observed.

To make a more detailed comparison, we analyzed the

distorted and the corrected angular trajectories. The normal-

ized probability distribution Pjk calculated in the last iteration

of the corrected algorithm gives the orientation trajectory for

the rocking angle �(k) as shown in Fig. 3(a), which recovers
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Figure 2
Bragg peak correction at � � = 2.81. (a) Center slice of the corrected, reference and distorted data. (b) Rocking curves (i.e. the total intensity) as a
function of angle, in logarithmic scale, for the corrected, reference and distorted datasets. For clarity, the reference and corrected curves were vertically
shifted by 0.25 and 0.5, respectively.

http://doi.org/10.1107/S1600577524006507


the input trajectory very well. The perturbation distribution ��

shown as the orange shaded area in Fig. 3(b) was obtained

after thresholding the elements of the probability matrix Pjk.

The solid line represents the simulated preset ��, which was

calculated by subtracting the nominal trajectory from the

input one. The preset �� is well covered by the perturbation

estimated by our method. One can observe that the distribu-

tion converges to a very small range in the middle part of the

rocking positions and diverges to a larger range at both ends.

This tendency is consistent with the deviation observed in the

corrected rocking curve mentioned above. According to

equations (1) and (2), Pjk is calculated from the cross corre-

lation between the photon counts in each measurement Kk

and the logarithm of the corrected diffraction volume Wj at

each angular rocking position �j. Both ends of the rocking

curve have much lower photon counts (note the logarithmic

scale), and it is therefore to be expected that the algorithm

performs worse in these regions.

To investigate the robustness of our approach with respect

to the �� variation, more numerical examples with different � �
were calculated. The � � value of these examples varied from 0

to 20.87. All these numerical examples were analyzed by the

correction algorithm, with only minor tuning of dq3 and D to

obtain optimal results. The estimated �� returned from the

correction algorithm and their ground truth �� can be found in

Fig. 4. The method works very well up to � � = 6.11, particularly

in the central region with high photon counts. We notice that

there seems to be a systematic linear error in the retrieved ��

values, especially for mild angular uncertainty (� � � 2.81)

cases. However, this is only observed outside of the central

region. This behavior might come from the Gaussian bias, n�,

applied in the algorithm, or other high-order errors during the

calculation of Pjk. We also note that the field of view defined

by dq3 and D was slightly wider than the ground truth in real

space, which could result in a smaller angular range in �.

For cases with even higher � �, we find that the method can

still give good results up to � � = 16.41 (which is around 0.066�,

almost 10% of the total nominal rocking curve range). The

estimated �� covers the ground truth �� very well in the range

[� 0.3�, 0.3�] of the angular rocking position �j. However, the

resulting �� outside this range seems to be truncated by lines

at both ends. The line-shape truncations of ��, as shown in

higher distortion case in Fig. 4, represent boundaries of the

field of view defined by dq3 and the maximum D. The trun-

cations observed in higher-distortion cases show the similar

behavior as the linear trends observed in low- and mild-

distortion cases discussed above. The datasets with higher � �
might cover a larger angular rocking curve range than the
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Figure 3
Rocking curves and angular positions at � � = 2.81. (a) Orientation
trajectories. The left panel shows the input (distorted) trajectory, and the
right panel shows the probability Pjk from the last iteration of the
correction algorithm, which can be considered as the estimated trajectory
�(k). (b) �� distribution (orange shaded area) and the ground truth (solid
blue line). �� is calculated from Pjk. Since the probability is not a single
value at each regular angular position, a threshold of 10� 3 was applied
here. (c) Center slices of the reference diffraction pattern and corrected
diffraction volume W in logarithmic scale.

Figure 4
Recovered �� for different � �. (a) �� for simulated datasets with different � � values starting from 0 up to 2.81. Distributions for each � � were shifted
vertically for clarity. The black lines show the pre-defined ��. Colored areas are the �� calculated from the probability Pjk after applying a threshold
value of 10� 3. (b) �� for simulated datasets with larger � � up to 20.87, as plotted in (a). The datasets were shifted vertically to separate the graphs
for different � �.



nominal one, which means the angular position of some slices

might be out of the field of view. We performed a test with

Poisson noise distribution (see Fig. S2 of the supporting

information) and found that the algorithm performed simi-

larly well in this case.

The highest level of distortion that we attempted, � � =

20.87, is shown in Fig. 4(b). In this case, the trajectory �(k) (see

Fig. S1) can be described as random. As shown by the previous

results, the algorithm has very good performance in the central

region of the rocking curve range, and it was forced to work in

a much narrower field of view by setting a smaller D. It is

rather surprising that the process could still give us a reliable

result, albeit in a limited angular range. Thus, we find that the

maximum average perturbation that can be reconstructed is

about 0.08�, which is similar to the fringe spacing. Note that

such a large �� is substantial in comparison with the overall

angular range (�� = � 0.4�).

3.2. Reconstructing of continuous angular scans

Traditional BCDI relies on step scanning, where the sample

is rotated between frames and is stationary during the acqui-

sition. Step scanning leads to time lost as overhead when the

motors start, move and stop, as well as in the control software,

and with higher coherent fluxes and shorter counting times

this becomes a comparatively larger problem. The stop-and-go

motion of the motor can also lead to mechanical instabilities,

especially with heavy setups for in situ experiments. Alter-

natively, the rotation motor can be scanned continuously in a

so-called fly scan mode (Li et al., 2020), which has become a

common approach for real space scans in ptychography (Clark

et al., 2014; Pelz et al., 2014).

In the continuous scan, each diffraction pattern represents

an average angle during a single exposure time, which is a

form of smearing in reciprocal space that could potentially

lead to a loss of resolution. We investigated whether the

algorithm could reconstruct the movement during a contin-

uous scan, as shown in Figs. 5 and S3. In our simulation, we

modeled this smearing effect by averaging four adjacent

angular positions in a single pattern, reducing the 324 frames

in the reference to 84. We defined the reconstruction such that

it also has 324 frames, aligning with the frame count of the

reference data, but note that this is not necessary.

The result of the reconstruction is shown as a trajectory in

Fig. 5(a) and as a rocking curve in Fig. 5(b). We find that the

original angles can be recovered very well. The minor ‘peak’

observed at the first fringe in the rocking curve of the smeared

data, highlighted by the red boxes in Fig. 5(b), signifies a

reduction in resolution attributable to the smearing effect

happening in the continuous scan measurement. The

comparison of the rocking curves among the reference,

smeared and corrected data demonstrates the capability of the

algorithm to effectively reconstruct the data from a dataset

with lower resolution. However, the slight wiggles at the ends

of the rocking curve of the corrected data show that it does not

quite match the high resolution of the reference data. This is

also noticeable in the wider range of angles shown by the

shaded area in Fig. 5(a), in line with the results for the

distorted scans above.

We also simulated a combination of distortion and contin-

uous scanning, where the random distortion was applied

before the smearing. The reference, distorted and corrected

datasets consist of 164 frames each, whereas the smeared

dataset contains 41 frames. Although the smearing reduces the

distortion effects to some extent, our approach still demon-

strates superior performance, as shown in Fig. S3.

In this preliminary investigation, we described the smearing

effect in a continuous scan by simply averaging four adjacent

angular positions. This situation does not accurately match the

assumptions for equations (1) and (3), but nevertheless we

obtained satisfying results. We also note that the particles in

the original paper by Björling et al. (2020) were rotated
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Figure 5
Continuous scan simulation with no distortion. In continuous scanning, the rotation motor moves during acquisition, which leads to smearing.
(a) Orientation trajectories for reference (red solid line) and smeared (black dot) datasets. The shaded area represents the possible angular position is
calculated from Pjk by applying a threshold of 10� 4. (b) Rocking curves in logarithmic scale for the smeared, reference and corrected datasets. For clarity,
the reference and smeared curves were vertically shifted by 0.25 and 0.5, respectively.

http://doi.org/10.1107/S1600577524006507
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continuously. This suggests that Pjk is a reasonable repre-

sentation of the continuous scanning scenario. A more accu-

rate theoretical model could lead to better results, but this is

outside the scope of this work.

3.3. Phase retrieval of the simulated data

The correction is applied as a pre-processing algorithm,

performed before and independently of the phase retrieval.

We have so far discussed the results in reciprocal space, where

the correction is easier to analyze. However, we also investi-

gated the impact on the phase-retrieved objects, since this is

the idea of a BCDI experiment. The plotted rocking curve

and the estimated �� shown above indicate that the method

works very well within the angular region [� 0.3�, 0.3�]. The

mismatch part outside this portion might lead to some unex-

pected results after phase retrieval (see Fig. S4). Therefore,

the low-intensity parts at both ends of the rocking curve were

cropped in the resulting corrected diffraction dataset W from

the algorithm as shown in Fig. 2(a). The cropped-corrected

diffraction volume W was then processed using the PyNx

software for phase retrieval (Favre-Nicolin et al., 2020).

The reconstruction from the distorted datasets with � � =

2.81 is shown in Fig. 6(c). We used the default settings as much

as possible, avoiding fine-tuning in order to focus on the

effects of the distortion. The default reconstruction process of

PyNx consisted of 600 relaxed averaged alternating reflection

(Luke, 2005) iterations followed by 200 error-reduction

(Gerchberg, 1972; Fienup, 1982) cycles and a shrink–warp

(Marchesini et al., 2003) support threshold with an amplitude

coefficient of 0.1–0.5. The initial support was obtained based

on the autocorrelation of the input 3D diffraction data. In

total, 1000 reconstructions were carried out and only 20 of

them with the highest free log-likelihood values were selected

and combined for the final result (Favre-Nicolin et al.,

2020). The reconstructed morphology from other phase-

retrieval algorithm, such as hybrid input–output, are shown

in Figs. S5(d)–S5( f), together with their phase-retrieval

transfer functions.

The distorted data with � � = 2.81 results in a poor recon-

struction with multiple sidelobes. Comparably poor results are

observed with other phase-retrieval algorithms, and we

observed similar sidelobes for other high distortions (not

shown). In the phase-retrieval process, sidelobes might appear

when a large support is applied; these can be minized using a

more compact support with fine-tunning, as done in the work

by Calvo-Almazan et al. (2019). However, we would like to

point out that the example shown in this section (� � = 2.81,

281% of the step size) exceeds the capability of the phase-

retrieval based method. In comparison, the reconstruction

from W is very similar to the reference. Both the morphology
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Figure 6
Effect of angular correction on phase retrieval for � � = 2.81. Morphology
of the particle reconstructed from the (a) � � = 0 dataset, (b) corrected
dataset and (c) input dataset via phase retrieval, separately. Identical
phase-retrieval parameters were applied. (d) Internal phase distribution
recovered by phase retrieval shown as slice plots. The slice plots are along
the z direction in real space. The upper panel shows the internal phase
distribution of the reference; the lower panel shows the reconstructed
internal phase distribution of the corrected dataset W at the same posi-
tions as in the upper panel.

Figure 7
Phase-retrieved objects for different levels of � � . Note that the reference
object here is the model, before the simulation of diffraction and phase
retrieval. Planes 1 and 2 represent two perpendicular sections of the
nanoparticle, as illustrated in the figure. The first and the third columns
show the amplitude of the reference particle and reconstructed particles
from different distorted datasets, respectively. The second and the fourth
columns display the corresponding phase distribution. Identical phase-
retrieval parameters were applied for all reconstructions. The last column
displays the reconstructed morphologies from various levels of � � .



of the particles reconstructed from the reference and W

demonstrate the truncated-octahedral envelope very well. The

variation of the reconstructed phase distribution in the z

direction is also consistent with that of the reference. The

more accurate morphology and phase distribution obtained

from the corrected data demonstrate the effectiveness of our

algorithm in correcting artifacts in phase-retrieval recon-

struction introduced by angular distortion in the rocking

direction.

The impact of different � � on the phase retrieval is

presented in Fig. 7. A cross-section slightly above the midpoint

along the y direction was chosen to demonstrate the variation

of the phase distribution along the z direction. The amplitude

and phase plots of the reference dataset are taken directly

from the simulation, whereas those of the corrected datasets

are the reconstructions after phase retrieval. The blurring of

plots can be attributed to the default Gaussian convolution

kernel applied in each relaxed averaged alternating reflection

iteration according to Favre-Nicolin et al. (2020). Together

with the results shown earlier in Figs. 6(a) and 6(b), the

morphology reconstruction from the corrected datasets W

with different � � (see Fig. 7) is robust. Although there are

some sidelobes appearing in the reconstruction at � � = 16.41,

the main features of a truncated octahedron can still be clearly

observed. The phase distributions are challenging to compare

since even a minimal real space shift during the phasing

process makes the slices look quite different. The recon-

structed phase distribution seems consistent under the

variance of ��. From very subtle to large angular distortion of

up to � � = 16.41, the algorithm has a robust performance not

only for the reconstruction of the morphology but also of the

phase. Thus, we find that the improvements observed in reci-

procal space result in much better phase-retrieved objects.

3.4. Algorithm on real experiment data

Finally, we apply our method to real experimental data. We

observed angular drift in a BCDI experiment imaging a

200 nm Ge nanoparticle on the P10 beamline at PETRA III

(details are given in supplementary note 3 of the supporting

information). The Bragg peak of the measured Ge particle was

supposed to be evenly sampled 50 times over a rocking angle

range of �1�. However, as shown in Figs. 8(a), 8(c) and 8(d),

the diffraction patterns vary non-systematically, forward and

backward during the scanning.

Prior to sending the experimental data to the correction

algorithm, several pre-processing steps were performed (see

supplementary note 2 of the supporting information). The

whole dataset is based on the calculated center of mass of the

brightest frame to compensate for the influence caused by the
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Figure 8
Correcting experimental data. (a) Central slice along the q2 direction of the real experimental dataset (left panel) and the corrected dataset W (right
panel). (b) Trajectory �(k) (probability metric Pjk) obtained from the last iteration of our correction algorithm. (c) Measured diffraction frames
(logarithmic scale) in the region highlighted by the gray dashed lines in the rocking curve. (d) The last frame indicates that the measurement was also
affected by the roll angle !, which was aligned by the center of mass in the following step. (d) Normalized rocking curves of the real experimental data
(blue line) and the corrected diffraction volume W (orange line) in logarithmic scale. (e) Slice plots of the corrected volume W in logarithmic scale. It
corresponds to the orange line shown in (d). A threshold of 2 was applied to the corrected volume W.

http://doi.org/10.1107/S1600577524006507
http://doi.org/10.1107/S1600577524006507
http://doi.org/10.1107/S1600577524006507


roll angle !. This step assumes a high degree of symmetry in

the nanoparticle, and a future improvement could be to

include the roll angle in the correction alogorithm. dq3 was

estimated from the first minimum of the brightest frame, and

the maximal D was set to 200 nm. The other parameters were

the same as described above. After 80 iterations, the algorithm

generated a corrected diffraction volume W with 25 frames

taken from the experimental data as input. Figs. 8(a), 8(d) and

8(e) show the results. Compared with the original experi-

mental data, the central slice of the corrected dataset W and its

rocking curve are much smoother. The main features of the

Bragg peak were rebuilt well by the procedure, as shown in

Fig. 8(e). Fig. 8(b) demonstrates the trajectory �(k) obtained

from the last iteration. The trajectory is consistent with the

observed angular drift that appeared during the rocking curve

scanning. We note that the deviation from the nominal angle is

the largest near the peak of the rocking curve, at the Bragg

condition. Unfortunately, we could not obtain a reasonable

phase-retrieval reconstruction even from the corrected frames

due to the poor quality of the original experimental data.

4. Conclusions

We devised a pre-processing algorithm for correcting angular

distortions in BCDI measurements on both simulated and real

experimental data. The process returns a reliable estimate of

the orientation trajectory �(k) for � � of up to 16.41� the step

size d� = 0.004�. We find that this limit is relatively sharp.

Naturally, one can expect a large variation depending on, for

example, sample features, counts and number of frames, but it

is not practical to investigate all these degrees of freedom

here. The reconstruction obtained from the corrected

diffraction volume W via phase retrieval could clearly display

the main features of the phase distribution and the

morphology of the simulated particle. We also found that the

algorithm could correct severely distorted experimental data.

Since this is a pre-processing method, the user still has full

freedom in the phase-retrieval step.

The obvious purpose of the algorithm is to make it possible

to use experimental data that would otherwise be discarded.

However, it could also be used on data that appear to be of

high quality. Modest angular distortions could be difficult to

recognize in an experiment, where there is no ground truth. In

these cases, pre-processing could result in higher-quality phase

retrieval. We have also shown that our approach could be

useful in continuous-scanning BCDI, which is expected to

become more popular with increased coherent fluxes and

shorter acquisition times. Another use could be as a quick

quality control of experimental data. The reciprocal space

analysis could provide faster and more direct insight into

potential problems with angular distortions during acquisi-

tions, compared with analysis of phase-retrieved objects. This

opens the possibility for using BCDI under more challenging

conditions with smaller and less attached particles, and to fully

exploit the intensity of beams from fourth-generation

synchrotrons.
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