
research papers

J. Synchrotron Rad. (2024). 31 https://doi.org/10.1107/S1600577524005149 1 of 8

ISSN 1600-5775

Received 30 November 2023

Accepted 30 May 2024

Edited by U. Jeng, NSRRC, Taiwan

‡ These authors contributed equally to this

work.

Keywords: X-ray scattering; data analysis;

scientific workflow; plug-in framework.

Published under a CC BY 4.0 licence

StreamSAXS: a Python-based workflow platform
for processing streaming SAXS/WAXS data

Jiayi Wang,a‡ Zheng Dong,a,b‡ Yi Zhang,a,c Wenqiang Hua,d Zudeng Wang,a,c

Huilong Guo,e Yiming Yanga* and Xiaoxue Bia*

aBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049,

People’s Republic of China, bSpallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China,
cUniversity of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China, dShanghai Synchrotron

Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People’s

Republic of China, and eGlobal Energy Interconnection Group Co. Ltd, Beijing 100031, People’s Republic of China.

*Correspondence e-mail: yangym@ihep.ac.cn, bixx@ihep.ac.cn

StreamSAXS is a Python-based small- and wide-angle X-ray scattering (SAXS/

WAXS) data analysis workflow platform with graphical user interface (GUI). It

aims to provide an interactive and user-friendly tool for analysis of both batch

data files and real-time data streams. Users can easily create customizable

workflows through the GUI to meet their specific needs. One characteristic of

StreamSAXS is its plug-in framework, which enables developers to extend the

built-in workflow tasks. Another feature is the support for both already acquired

and real-time data sources, allowing StreamSAXS to function as an offline

analysis platform or be integrated into large-scale acquisition systems for end-

to-end data management. This paper presents the core design of StreamSAXS

and provides user cases demonstrating its utilization for SAXS/WAXS data

analysis in offline and online scenarios.

1. Introduction

Recent advances in small- and wide-angle X-ray scattering

(SAXS/WAXS) technologies, characterized by the emergence

of highly brilliant synchrotron sources (Jiao et al., 2018;

Schroer et al., 2018) and a diversity of experimental modes

(Yaghmur & Hamad, 2022; Petersen & Weidenthaler, 2022;

Hua et al., 2024), have created the urgent requirement for data

reduction and analysis software (Dong et al., 2022). The main

challenge is to facilitate automated data acquisition and

customizable processing workflows, which can be lengthy and

complex. The standalone program Fit2D (Hammersley et al.,

1996; Hammersley, 2016), developed by the European

Synchrotron Radiation Facility (ESRF), was the pioneering

data analysis software to attain worldwide recognition within

the X-ray scattering and diffraction community. At certain

synchrotron beamlines, the Igor Pro-based package Nika

(Ilavsky, 2012) is also used for data reduction. In order to

achieve further analysis like curve fitting or structural

modeling, several well established programs such as SASfit

(Breßler et al., 2015), GSAS-II (Toby & Dreele, 2013),

SasView (Doucet et al., 2020), ATSAS (Petoukhov et al., 2012;

Manalastas-Cantos et al., 2021), GENFIT (Spinozzi et al.,

2014) and McSAS (Bressler et al., 2015) continue to be

maintained. In response to the increased popularity of high-

throughput experiments in recent years, ESRF has developed

the pyFAI library (Ashiotis et al., 2015; Kieffer et al., 2020) in

conjunction with Input/Output (I/O) library FabIO (Knudsen

et al., 2013) to surmount the speed constraints of Fit2D. Owing

https://doi.org/10.1107/S1600577524005149
https://journals.iucr.org/s
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20scattering&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=data%20analysis&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=scientific%20workflow&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=plug-in%20framework&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:yangym@ihep.ac.cn
mailto:bixx@ihep.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577524005149&domain=pdf&date_stamp=2024-07-15


to the open-source nature and scientific community accep-

tance of Python, pyFAI can be readily incorporated into other

software. Some programs with further analysis functions,

tailored for SAXS/WAXS data, such as BioXTAS RAW

(Hopkins et al., 2017; Hopkins, 2024) and DPDAK (Benecke

et al., 2014), have been developed based on it.

To accommodate the long and diverse data processing

pipelines anticipated in future SAXS/WAXS beamlines at the

High Energy Photon Source (HEPS), China, a dynamically

configurable and flexible workflow platform needs to be

developed to orchestrate an automated and sequential data

processing procedure. Workflow-driven systems complete

operations in the form of tasks following user-defined

processes, effectively enhancing flexibility and adaptability to

changes in the processing flow. Due to the advantages in

intelligent processing of large-scale data, workflow platforms

can play a crucial role in scientific fields like medicine,

materials and biotechnology (Kallio et al., 2011; Yildiz et al.,

2019; Giardine et al., 2005). There are also several examples of

applying workflow platforms to synchrotron radiation facil-

ities. The DM software (Veseli et al., 2018), developed by the

Advanced Photon Source, focuses on data movement, meta-

data cataloging, storage management and remote data access.

The Java-based DAWN (Basham et al., 2015; Filik et al., 2017),

created by Diamond Light Source, emphasizes providing a

unified analysis platform for data from any synchrotron

experiment. DAWN allows users to process experimental data

at their home institution, but it currently does not support

online processing. ESRF has designed a meta workflow system

which provides both online and offline data access, Ewoks

(Nolf et al., 2022), to automate data processing and experi-

ments. Among its ecosystem, ewoksxrpd (https://ewoksxrpd.

readthedocs.io/) is a project specifically designed for SAXS/

WAXS data processing through importing the pyFAI library,

which utilizes the desktop graphical interface Orange (Demsar

et al., 2013) for visual programming. EDNA (Brennich et al.,

2016; Incardona et al., 2009), which focuses on bioSAXS data,

is another SAXS/WAXS data processing platform. It has a

relatively fixed workflows and less human intervention,

enabling easy assessment of experimental quality. Upon

considering the easy integration into development ecosystem

at HEPS such as deep binding with the Python-based data

acquisition software framework Mamba (Liu et al., 2022),

using Python as the development language offers an advan-

tage. Furthermore, many SAXS/WAXS data processing

packages such as pyFAI, LMfit (Newville et al., 2023) and

BioXTAS RAW are developed in Python, which also offers

platform independence. Therefore, using Python can simplify

the process of encapsulation and integration of these packages

within the system.

Looking ahead, large-scale SAXS/WAXS data necessitates

greater reliance of scientific users on the software system

provided by the beamline for the full-lifecycle management,

encompassing data acquisition, analysis, visualization and

storage. Therefore, there is an urgent need to develop online

data processing software that seamlessly integrates with the

data acquisition framework. With the data analysis component

operating as a service within the acquisition framework, real-

time data streams can be processed online for integrated

results. Users could then evaluate data quality during acqui-

sition to guide the subsequent scanning process. Moreover,

advanced traditional algorithms or artificial intelligence

algorithms can be further introduced to enhance scientific

outcomes (Zhang, Dong, et al., 2023; Zhang, Li, et al., 2023;

Zhao et al., 2024).

In this work, a new workflow platform named StreamSAXS

(see also Appendix A) has been developed for SAXS/WAXS

data processing using Python. Key features of StreamSAXS

include: (i) customizable analysis tasks catering to user needs;

(ii) visual definition of data flows between tasks via a graphical

user interface for easy operation; (iii) open-source extensi-

bility; (iv) integration with various existing libraries and

algorithms; and (v) support for the analysis of real-time data

streams. Consequently, StreamSAXS can serve as standalone

software or be integrated into a large software framework to

realize full-lifecycle management of data collection, proces-

sing and storage.

2. Platform design

StreamSAXS is a visual scientific workflow platform for

SAXS/WAXS data reduction and analysis. Through the

graphical user interface (GUI), scientists can create data

analysis tasks and visually define the data flows between them,

eliminating the need for programming. This alleviates users

from the underlying execution and scheduling intricacies of

the workflow, potentially reducing the barriers to data analysis

and enhancing scientific productivity. In addition, the

StreamSAXS platform provides task nodes supporting batch

data from HDF5, TIF or TXT files, as well as real-time data

streams from data acquisition systems. Developed in Python,

the platform utilizes both the PyQt (https://pypi.org/project/

PyQt5/) and PyQtGraph (https://www.pyqtgraph.org/)

libraries. PyQt, a binding of the cross-platform GUI toolkit Qt,

enables desktop application development using Python and is

employed for creating the platform’s GUI. The pure-Python

graphics library PyQtGraph is utilized for its high-speed

performance, attributed to its heavy reliance on number

crunching and Qt’s GraphicsView framework for rapid display.

The following sections introduce the development of the

StreamSAXS platform.

2.1. The GUI

The GUI of StreamSAXS includes a workflow widget for

visually programming and constructing workflows, as well as

plot widgets to display the processing results of task nodes

within the workflow.

The StreamSAXS workflow widget employs a multilevel

structure to establish a part-whole hierarchy among work-

flows, sub-workflows and individual tasks, thereby reducing

the complexity of workflow construction. The workflow widget

comprises two sections, as depicted in Fig. 1. The left section

presents the names of each task node used in constructing

research papers

2 of 8 Jiayi Wang et al. � StreamSAXS J. Synchrotron Rad. (2024). 31

https://ewoksxrpd.readthedocs.io/
https://ewoksxrpd.readthedocs.io/
https://pypi.org/project/PyQt5/
https://pypi.org/project/PyQt5/
https://www.pyqtgraph.org/


each component of the workflow. Upon the addition of

components to the widget, workflows are generated on-the-fly.

By default, the platform automatically sets the input data flow

of the new component from the output of the previous one.

Hence, workflows are constructed with a list structure. Users

can modify the input data flow of each component via point-

and-click actions to alter structured workflows, simplifying the

process to create on-the-fly workflows meeting analytical

requirements. A component’s output can serve as input to

multiple other components, while one component can also

utilize multiple components as input. Therefore, the platform

accommodates complex workflow structures like trees and

graphs. Through the GUI, users can conveniently select

SAXS/WAXS data processing algorithms and construct

complex structures with features like parallel branching and

directed acyclic diagrams. This enables simultaneous proces-

sing and displaying of results from multiple analyses. Besides

processing results, the input, modification and presentation of

parameters are also crucial in SAXS/WAXS data analysis. The

right section of Fig. 1 displays parameters for the task node

selected on the left. Prior to workflow execution, users

populate analysis parameters. After execution, this widget

displays the resulting parameter values from the currently

selected component’s output in real time. All generated

parameters can be stored along with analysis results according

to the requirements. Additionally, StreamSAXS incorporates

basic methods for saving and loading workflows, allowing for

the storage of workflow structure and parameters for repeated

usage. The saved workflows serve as configuration files,

supporting text format browsing and editing.

For plot widgets, both the number and the layout can be

customized by clicking and dragging. StreamSAXS provides

real-time display widgets in the main window to plot the final

results of a workflow. Meanwhile, various plot widgets can be

linked to the task components, enabling real-time visualization

of analyzed task node data. Five widget types were developed

to visualize the data processing: (i) 1-D (one-dimensional) plot

widget for displaying 1-D results like integral intensity profiles,

fitting curves, Guinier plots and Porod curves; (ii) 2-D (two-

dimensional) visualizer widget for displaying 2-D patterns

such as raw scattering images, masked images and 2-D integral

intensity maps; (iii) 2-D serial visualizer widget for displaying

a series of 2-D patterns; (iv) 3-D (three-dimensional) slices

visualizer widget for displaying arbitrary direction slices of 3-

D data; (v) 2-D plot widget containing a series of final

calculation values such as peak positions and gyration radii for

user-defined workflows, shown in a 2-D mapping pattern using

data coordinates. Users can opt to show specific task results

based on needs, so the number of first four widgets is config-

urable. To facilitate mapping experiments, regions of interest

(ROIs) can be extracted from the 2-D plot widget and the

corresponding coordinate parameters directly feed into the

scan sequence module of Mamba for further scanning proce-

dures.

2.2. The plug-in framework

To accommodate flexible changes in SAXS/WAXS data

processing and ensure software extensibility, StreamSAXS

adopts a plugin framework to integrate diverse data proces-

sing methods on the platform. Plugins reside in a designated

folder, with similar ones categorized together based on their

processing methods. Each plugin is a class encompassing

management options that instruct the core program on how to

execute analysis, control functionality and handle plot visua-

lization. Hence, developers can extend StreamSAXS by

placing custom script files containing factory classes in the

plugins directory. During StreamSAXS initialization, the

platform searches the plugins folder within the application

path for available plugins. Python’s reflection mechanism,

MetaClass, automatically reads each discovered plugin class

into the system. Every plugin is then automatically appended

to the workflow widget, empowering users to effortlessly

access corresponding task nodes in the GUI for constructing

workflows.

StreamSAXS implements plugins using the factory pattern

(Cooper, 1998), a creational design pattern focused on object

instantiation. The factory provides a unified interface to create

objects without revealing the creation logic, offering flexibility

in the development of data processing tasks. Since Stream-

SAXS is Python-based, abstract classes are utilized to define

task object interfaces. Fig. 2 illustrates StreamSAXS

constructing the abstract Processing Function class as the

factory interface to meet the requirements for SAXS/WAXS

data analysis tasks and visualization. The Processing Function

class contains two static properties, function_text and func-

tion_tip, which respectively furnish the task node’s name and

description for users. It also has a params_dict member to

describe task parameters, and an abstract run_function

method to execute the analysis process. Concrete data

processing tasks are implemented by the overriding

run_function. The ordered params_dict defines input para-

meter information like name, type, default value and tip.

Supported data types include integer, float, string, tuple,

Boolean and enumeration. The workflow widget renders

parameter input and display based on the defined data types.

The return value of run_function reflects the analysis result,

containing data type, legend, axis details, title, line style and

research papers

J. Synchrotron Rad. (2024). 31 Jiayi Wang et al. � StreamSAXS 3 of 8

Figure 1
The workflow widget for StreamSAXS.



other plotting information. It also includes parameter data

needed for workflow progression.

The framework assists developers in quickly encapsulating

SAXS/WAXS analysis functions to construct workflow task

nodes, and integrating them into the platform without

concerning themselves with specific workflow execution

details. As such, developers can concentrate exclusively on the

analysis function itself, leaving the platform to handle work-

flow scheduling and task execution.

2.3. Data source of workflow

Workflow construction in StreamSAXS begins with SAXS/

WAXS data access. The platform supports two data source

types as illustrated in Fig. 3: batch data files which are already

acquired and real-time data streams from large-scale acquisi-

tion systems. HDF5, TIF and TXT formats are supported for

file readings. Real-time data streams leverage the ZeroMQ

(ZMQ) (https://zeromq.org/) network communication

protocol. All data sources are mapped to the IO parameter

type. The data source component can be built as needed and

users access different sources by selecting appropriate para-

meters within the data source component. For instance, HDF5

sources require specifying the file location and dataset. Real-

time ZMQ sources need the server’s IP address and port.

Since ZMQ data are inherently represented as a dictionary,

the key for the target data must also be provided. Therefore,

beyond standalone usage for processing collected data files,

StreamSAXS can also act as a client for any acquisition soft-

ware with ZMQ transmission, facilitating online analysis and

visualization.

3. User case

3.1. Long workflow

In StreamSAXS, we have established a typical data analysis

workflow (top of Fig. 4) to process the dataset obtained from a

WAXS tomography experiment involving a bamboo sample,

aiming to verify the platform’s capability (bottom of Fig. 4) in

handling long processing pipelines. This customized workflow

enables users to easily reconstruct the 3D hemicellulose

content distribution within bamboo from the raw WAXS

tomography dataset.

In detail, the whole processing steps are divided into four

parts: (i) The first part includes the Data Source component.

The data source for this case is a set of TIF files which are

already acquired. (ii) The second part comprises the Import

Calibration component and the Import Mask File component

which are essentially standard for data preprocessing, and

the detector geometric distortion correction is implemented

during this preprocessing. We integrate the Calib2 calibration

tools of pyFAI into StreamSAXS to complete the configura-

tion process and then generate the configuration files

including a calibration file and a mask file. Two configuration

files are accessed through the file path in respective compo-

nents. The configuration parameters are read into memory

only once during workflow initialization and serve the entire

data processing procedure, thus reducing file I/O operations

and enhancing system performance. (iii) The third part

involves the algorithmic operation crucial for the workflow.

The Azimuthal Integration component converts 2-D masked

images into 1-D azimuthal intensity profiles whose abscissa

can be scattering vector, scattering angle or distance. The

intensity uncertainty can also be calculated if needed by users.

We integrate the Azimuthal Integrator module of pyFAI here

to complete this regular integration process. This module can

also be used to perform polarization correction. The ROI

Intensity component extracts intensity summation within the

selected region of a scattering curve. The following Recon-

struction component achieves the 3-D reconstruction based on

the input scalar. We provide back projection (BP), filtered

back projection (FBP), iterative reconstruction technique

(ART), simultaneous iterative reconstruction technique

(SIRT), simultaneous algebraic reconstruction technique

(SART) and conjugate gradient least squares (CGLS) algo-

rithms to deal with the generated sinogram. In this workflow,

the scattering peaks of hemicellulose were observed within

the 1-D intensity profile and its peak intensity was further

obtained by summation. The summed intensity here forms the

sinogram for reconstruction, allowing for the successful

reconstruction of the 3-D spatial distribution of hemicellulose

based on a series of peak intensities in this tomographic

experiment. (iv) The last part focuses on data display and

storage. Any analysis results of the specified component can

research papers

4 of 8 Jiayi Wang et al. � StreamSAXS J. Synchrotron Rad. (2024). 31

Figure 3
Two data source types for StreamSAXS.

Figure 2
The Unified Modeling Language class diagram of the task node in
StreamSAXS.

https://zeromq.org/


be displayed in real time as long as users establish the

connection between component and display widget in the

GUI, aiming to observe data trends and then assess data

quality. Usually the final component of a workflow is Data

Storage, which stores the processing results to a file. The

platform supports both HDF5 and TXT file formats for data

storage. Each data processing step is independent, allowing

users to customize chunk storage based on their actual

memory size. This means that processing results are periodi-

cally written from memory to the hard disk after each

execution of a certain amount of data processing, thereby

accommodating SAXS/WAXS data processing even on

computers with limited performance. Additionally, during

system execution, the task node generates essential processing

parameters, and the system defaults to storing all initialization

parameters and parameters generated during processing

in a file.

3.2. Tree-structured workflow

Fig. 5 shows a workflow applied to the scanning SAXS

dataset for a mouse bone with a distinctive tree structure. The

data source component is universal for all workflows. In the

preprocessing part, the Background Subtraction component in

which the transmission correction has been included is added

before the Import Calibration component to exclude back-

ground scattering. And the mask is generated based on the

threshold set within the Threshold Mask 2D component.

Notably, the following flow expands into three parallel bran-

ches, allowing simultaneous analysis for different types of

integration data. (i) One branch is the 2D Integration

component calculating the azimuthal regrouped 2-D image.

For some anisotropic samples, users may need to select an

appropriate azimuth range for integration to analyze the strain

and texture differences in different regions. Thus, 2-D inte-

gration can be operated to determine 1-D integration para-

meters. (ii) Another branch calculates the radial intensity

profile (intensity–azimuth angle), and then leads to peak

fitting, which reflects the distribution of collagen fibers

through peak intensity. The Radial Integration component

and the Single Peak Fitting component complete the above

operations. (iii) The third branch focuses on analyzing the

azimuthal intensity profile generated by the Azimuthal Inte-

gration component. The Porod Operation component and

Guinier Operation component are used for Porod correction

(Porod, 1952) and Guinier fitting (Guinier, 1939; Chen et al.,

research papers

J. Synchrotron Rad. (2024). 31 Jiayi Wang et al. � StreamSAXS 5 of 8

Figure 4
Workflow (top) and the GUI (bottom) for user case one. In the GUI, the upper left section is the workflow widget where a user-defined workflow for the
WAXS tomography dataset of a bamboo sample has been configured. The lower left section is the graphical tool for geometry calibration inherited from
pyFAI. The right half includes three types of plot widget: 1-D plot, 2-D visualizer and 2-D plot widgets.



2024), both essential for calculation of the integral invariant.

Thus the Integral Invariant component will raise an error if

either of the above two components is missing. Afterward, the

T Parameter, an indicator of the volume-to-surface ratio, is

determined. At present, the tasks within three parallel work-

flows are executed on a single core of the processor. The

processing results given at the bottom of Fig. 5 are displayed in

the GUI and stored by the Data Storage component which is

omitted in the diagrammatic sketch. Benefiting from

numerous Python libraries dedicated to SAXS/WAXS algo-

rithms, several components, including Single Peak Fitting and

Guinier Operation, are effortlessly executed using packages

like LMfit and BioXTAS RAW. This implies that StreamSAXS

can be extended with any existing libraries for further appli-

cations.

3.3. Integration with large-scale acquisition systems

A primary goal in developing StreamSAXS is enabling real-

time data processing on streaming data directly ingested from

acquisition systems at SAXS/WAXS beamlines. At HEPS, all

beamlines will utilize the Mamba platform. Live streams from

SAXS/WAXS detectors and metadata will be fed into

StreamSAXS by the Mamba Data Worker (Li et al., 2023)

using the ZMQ message protocol. StreamSAXS processing

results can then integrate with various control modules

designed for in situ and scanning experiments to achieve

feedback control. Presently, StreamSAXS is deployed at the

3W1 and 1W2A beamlines of the Beijing Synchrotron

Radiation Facility (BSRF). Although handling Mamba

streaming data is realized, currently StreamSAXS focuses

on pure data processing as BSRF experiments are quite

straightforward. Validating its role in fast online processing

and feedback control still awaits commissioning of the new

generation of SAXS/WAXS beamlines at HEPS.

4. Conclusion and future work

StreamSAXS, a desktop application within the SAXS/WAXS

analysis system, allows scientists to seamlessly combine

multiple signal processing tasks through an intuitive GUI. This

user-friendly approach empowers scientists with limited

programming skills to efficiently organize complex data

processes. As a result, scientists can dedicate more of their

attention to analyzing the processing results. Additionally, the

platform features a plug-in framework that supports devel-

opers in secondary development efforts. This framework is

both user friendly and easily extended, with plans for expan-

sion to encompass diverse synchrotron radiation technologies,

including imaging and spectroscopy. Furthermore, the system

supports file-based data batch processing and real-time data

analysis using data streams. As advanced light sources become

more prevalent, scientific users increasingly rely on beamline-

provided software systems throughout the entire data life-

cycle, including acquisition, analysis, visualization and storage.

This positions the platform for widespread adoption and

continued development.

Looking ahead, our future development goals involve

supplementing new data reduction tools (Shih et al., 2022) and

processing algorithms developed by beamline scientists or

users, and integrating the workflow platform with distributed

frameworks to enhance data analysis speed and reduce the run

time of tasks with high time complexity. Moreover, we plan to

expand the platform’s capabilities by incorporating various

data transport protocols, such as Kafka, to further extend its

versatility and functionality.

APPENDIX A

External libraries, language and availability

StreamSAXS is an open-source software distributed under the

GPL v3 license. It can be download from the website https://

github.com/dongzhengniall/streamSAXS, where documenta-

tion, mailing list, installation instruction and running examples

are also given. StreamSAXS is currently compatible with

Windows system and requires Python 3.7 to run. It also uses a

number of third-party Python packages. These include NumPy

(van der Walt et al., 2011), SciPy (Virtanen et al., 2020),

Matplotlib (Hunter, 2007), h5py (https://www.h5py.org/),

PyQt5 (https://pypi.org/project/PyQt5/), PyQtGraph (https://

www.pyqtgraph.org/), pyFAI (Ashiotis et al., 2015; Kieffer et

research papers

6 of 8 Jiayi Wang et al. � StreamSAXS J. Synchrotron Rad. (2024). 31

Figure 5
Tree-structured workflow for the scanning SAXS dataset of a mouse bone
in user case two. Three parallel branches are included. One branch is 2-D
integration which will be skipped during actual execution. Another
branch utilizes azimuthal integration to obtain the T parameter. The third
branch involves peak parameter extraction based on radial integration.
The corresponding processing results are given at the bottom.

https://github.com/dongzhengniall/streamSAXS
https://github.com/dongzhengniall/streamSAXS
https://www.h5py.org/
https://pypi.org/project/PyQt5/
https://www.pyqtgraph.org/
https://www.pyqtgraph.org/


al., 2020), FabIO (Knudsen et al., 2013), LMfit (Newville et

al., 2023), BioXTAS RAW (Hopkins et al., 2017), OpenCV

(Bradski, 2000), ASTRA (van Aarle et al., 2015), filetype

(https://github.com/h2non/filetype), Pillow (https://pypi.org/

project/pillow/), tifffile (Christoph, 2024), PyYAML (https://

pypi.org/project/PyYAML/) and skimage (van der Walt et

al., 2014).

Acknowledgements

TAll authors are grateful for the support from the 3W1 and

1W2A beamlines at BSRF and the BL10U1 beamlines of

SSRF.

Funding information

This work was supported by the National Natural Science

Foundation for Young Scientists of China (Grant No.

12305371, 12105309), the Strategic Priority Research Program

of Chinese Academy of Sciences (XDB 37000000).

References

Aarle, W. van, Palenstijn, W. J., De Beenhouwer, J., Altantzis, T., Bals,
S., Batenburg, K. J. & Sijbers, J. (2015). Ultramicroscopy, 157, 35–
47.

Ashiotis, G., Deschildre, A., Nawaz, Z., Wright, J. P., Karkoulis, D.,
Picca, F. E. & Kieffer, J. (2015). J. Appl. Cryst. 48, 510–519.

Basham, M., Filik, J., Wharmby, M. T., Chang, P. C. Y., El Kassaby, B.,
Gerring, M., Aishima, J., Levik, K., Pulford, B. C. A., Sikharulidze,
I., Sneddon, D., Webber, M., Dhesi, S. S., Maccherozzi, F., Svensson,
O., Brockhauser, S., Náray, G. & Ashton, A. W. (2015). J.
Synchrotron Rad. 22, 853–858.

Benecke, G., Wagermaier, W., Li, C., Schwartzkopf, M., Flucke, G.,
Hoerth, R., Zizak, I., Burghammer, M., Metwalli, E., Müller-
Buschbaum, P., Trebbin, M., Förster, S., Paris, O., Roth, S. V. &
Fratzl, P. (2014). J. Appl. Cryst. 47, 1797–1803.

Bradski, G. (2000). Dr Dobb’s J. 25, 200.
Brennich, M. E., Kieffer, J., Bonamis, G., De Maria Antolinos, A.,

Hutin, S., Pernot, P. & Round, A. (2016). J. Appl. Cryst. 49, 203–
212.

Breßler, I., Kohlbrecher, J. & Thünemann, A. F. (2015). J. Appl. Cryst.
48, 1587–1598.

Bressler, I., Pauw, B. R. & Thünemann, A. F. (2015). J. Appl. Cryst. 48,
962–969.

Chen, R. C., Li, Z. H. & He, J. H. (2024). Nucl. Instrum. Methods
Phys. Res. B, 552, 165377.

Christoph, G. (2024). cgohlke/tifffile v2024.5.3, https://doi.org/10.5281/
zenodo.11111725.

Cooper, J. W. (1998). Commun. ACM, 41, 65–68.
Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic,

M., Mozina, M., Polajnar, M., Toplak, M., Staric, A., Stajdohar, M.,
Umek, L., Zagar, L., Zbontar, J., Zitnik, M. & Zupan, B. (2013). J.
Mach. Learn. Res. 14, 2349–2353.

Dong, Y., Li, C., Zhang, Y., Li, P. & Qi, F. (2022). Nat. Rev. Phys. 4,
427–428.

Doucet, M., Cho, J. H., Alina, G., Attala, Z., Bakker, J., Bouwman, W.,
Butler, P., Campbell, K., Cooper-Benun, T., Durniak, C., Forster, L.,
Gonzales, M., Heenan, R., Jackson, A., King, S., Kienzle, P.,
Krzywon, J., Nielsen, T., O’Driscoll, L., Potrzebowski, W., Prescott,
S., Ferraz Leal, R., Rozycko, P., Snow, T. & Washington, A. (2020).
SasView Version 5.0.1, https://doi.org/10.5281/zenodo.3653469.

Filik, J., Ashton, A. W., Chang, P. C. Y., Chater, P. A., Day, S. J.,
Drakopoulos, M., Gerring, M. W., Hart, M. L., Magdysyuk, O. V.,
Michalik, S., Smith, A., Tang, C. C., Terrill, N. J., Wharmby, M. T. &
Wilhelm, H. (2017). J. Appl. Cryst. 50, 959–966.

Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L.,
Shah, P., Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., Miller,
W., Kent, W. J. & Nekrutenko, A. (2005). Genome Res. 15, 1451–
1455.

Guinier, A. (1939). Ann. Phys. 11, 161–237.

Hammersley, A. P. (2016). J. Appl. Cryst. 49, 646–652.

Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. &
Hausermann, D. (1996). High. Press. Res. 14, 235–248.

Hopkins, J. B. (2024). J. Appl. Cryst. 57, 194–208.

Hopkins, J. B., Gillilan, R. E. & Skou, S. (2017). J. Appl. Cryst. 50,
1545–1553.

Hua, W., Song, M., Liao, K., Zhou, P. & Li, X. (2024). J. Appl. Cryst.
57, 446–455.

Hunter, J. D. (2007). Comput. Sci. Eng. 9, 90–95.

Ilavsky, J. (2012). J. Appl. Cryst. 45, 324–328.

Incardona, M.-F., Bourenkov, G. P., Levik, K., Pieritz, R. A., Popov,
A. N. & Svensson, O. (2009). J. Synchrotron Rad. 16, 872–879.

Jiao, Y., Xu, G., Cui, X.-H., Duan, Z., Guo, Y.-Y., He, P., Ji, D.-H., Li,
J.-Y., Li, X.-Y., Meng, C., Peng, Y.-M., Tian, S.-K., Wang, J.-Q.,
Wang, N., Wei, Y.-Y., Xu, H.-S., Yan, F., Yu, C.-H., Zhao, Y.-L. &
Qin, Q. (2018). J. Synchrotron Rad. 25, 1611–1618.

Kallio, M. A., Tuimala, J. T., Hupponen, T., Klemelä, P., Gentile, M.,
Scheinin, I., Koski, M., Käki, J. & Korpelainen, E. I. (2011). BMC
Genomics, 12, 507.

Kieffer, J., Valls, V., Blanc, N. & Hennig, C. (2020). J. Synchrotron
Rad. 27, 558–566.

Knudsen, E. B., Sørensen, H. O., Wright, J. P., Goret, G. & Kieffer, J.
(2013). J. Appl. Cryst. 46, 537–539.

Li, X., Zhang, Y., Liu, Y., Li, P., Hu, H., Wang, L., He, P., Dong, Y. &
Zhang, C. (2023). J. Synchrotron Rad. 30, 1086–1091.

Liu, Y., Geng, Y.-D., Bi, X.-X., Li, X., Tao, Y., Cao, J.-S., Dong, Y.-H.
& Zhang, Y. (2022). J. Synchrotron Rad. 29, 664–669.

Manalastas-Cantos, K., Konarev, P. V., Hajizadeh, N. R., Kikhney, A.
G., Petoukhov, M. V., Molodenskiy, D. S., Panjkovich, A., Mertens,
H. D. T., Gruzinov, A., Borges, C., Jeffries, C. M., Svergun, D. I. &
Franke, D. (2021). J. Appl. Cryst. 54, 343–355.

Newville, M., Otten, R., Nelson, A., Stensitzki, T., Ingargiola, A.,
Allan, D., Fox, A., Carter, F., Michał, Osborn, R., Pustakhod, D.,
lneuhaus, Weigand, S., Aristov, A., Glenn, Deil, C., mgunyho, Mark,
Hansen, A. L. R., Pasquevich, G., Foks, L., Zobrist, N., Frost, O.,
Stuermer, azelcer, Polloreno, A., Persaud, A., Nielsen, J. H.,
Pompili, M. & Eendebak, P. (2023). lmfit/lmfit-py: 1.2.2, https://doi.
org/10.5281/zenodo.598352.

Nolf, W. D., Payno, H., Svensson, O. & Koumoutsos, G. (2022). ewoks
(0.0.5a), https://doi.org/10.5281/zenodo.6075054.

Petersen, H. & Weidenthaler, C. (2022). Inorg. Chem. Front. 9, 4244–
4271.

Petoukhov, M. V., Franke, D., Shkumatov, A. V., Tria, G., Kikhney, A.
G., Gajda, M., Gorba, C., Mertens, H. D. T., Konarev, P. V. &
Svergun, D. I. (2012). J. Appl. Cryst. 45, 342–350.

Porod, G. (1952). Kolloid-Z., 125, 108–122.

Schroer, C. G., Agapov, I., Brefeld, W., Brinkmann, R., Chae, Y.-C.,
Chao, H.-C., Eriksson, M., Keil, J., Nuel Gavaldà, X., Röhlsberger,
R., Seeck, O. H., Sprung, M., Tischer, M., Wanzenberg, R. &
Weckert, E. (2018). J. Synchrotron Rad. 25, 1277–1290.

Shih, O., Liao, K.-F., Yeh, Y.-Q., Su, C.-J., Wang, C.-A., Chang, J.-W.,
Wu, W.-R., Liang, C.-C., Lin, C.-Y., Lee, T.-H., Chang, C.-H.,
Chiang, L.-C., Chang, C.-F., Liu, D.-G., Lee, M.-H., Liu, C.-Y., Hsu,
T.-W., Mansel, B., Ho, M.-C., Shu, C.-Y., Lee, F., Yen, E., Lin, T.-C.
& Jeng, U. (2022). J. Appl. Cryst. 55, 340–352.

Spinozzi, F., Ferrero, C., Ortore, M. G., De Maria Antolinos, A. &
Mariani, P. (2014). J. Appl. Cryst. 47, 1132–1139.

Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.

research papers

J. Synchrotron Rad. (2024). 31 Jiayi Wang et al. � StreamSAXS 7 of 8

https://github.com/h2non/filetype
https://pypi.org/project/pillow/
https://pypi.org/project/pillow/
https://pypi.org/project/PyYAML/
https://pypi.org/project/PyYAML/
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB10
https://doi.org/10.5281/zenodo.11111725
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB33
https://doi.org/10.5281/zenodo.598352
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB41


Van der Walt, S., Schonberger, J. L., Nunez-Iglesias, J., Boulogne, F.,
Warner, J. D., Yager, N., Gouillart, E. & Yu, T. (2014). PeerJ, 2, 453.

Veseli, S., Schwarz, N. & Schmitz, C. (2018). J. Synchrotron Rad. 25,
1574–1580.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright,
J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov,
N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J.,
Polat, I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C.
R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt,
P., Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll, A.,
Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N.,
Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.
A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E., Wieser,
E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold,
G., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P.,
Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner, J., Kulick,
J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J.,
Harrington, J., Rodrı́guez, J. L. C., Nunez-Iglesias, J., Kuczynski, J.,

Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke,
M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N.,
Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer,
R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S.,
Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones,
T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U.,
Halchenko, Y. O. & Vázquez-Baeza, Y. (2020). Nat. Methods, 17,
261–272.

Walt, S. van der, Colbert, S. C. & Varoquaux, G. (2011). Comput. Sci.
Eng. 13, 22–30.

Yaghmur, A. & Hamad, I. (2022). Molecules, 27, 4602.

Yildiz, O., Ejarque, J., Chan, H., Sankaranarayanan, S., Badia, R. M.
& Peterka, T. (2019). Comput. Sci. Eng. 21, 76–86.

Zhang, Z., Dong, Z., Yan, H., Pattammattel, A., Bi, X., Dong, Y., Liu,
G., Sun, X. & Zhang, Y. (2023). iScience, 26, 107932.

Zhang, Z., Li, C., Wang, W., Dong, Z., Liu, G., Dong, Y. & Zhang, Y.
(2023). Innovation, 5, 100539.

Zhao, X., Dong, Z., Zhang, C., Gupta, H., Wu, Z., Hua, W., Zhang, J.,
Huang, P., Dong, Y. & Zhang, Y. (2024). IUCrJ, 11, 502–509.

research papers

8 of 8 Jiayi Wang et al. � StreamSAXS J. Synchrotron Rad. (2024). 31

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB43
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB43
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB45
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB45
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB46
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB47
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB47
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB48
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB48
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB49
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB49
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB50
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ju5059&bbid=BB50

	Abstract
	1. Introduction
	2. Platform design
	2.1. The GUI
	2.2. The plug-in framework
	2.3. Data source of workflow

	3. User case
	3.1. Long workflow
	3.2. Tree-structured workflow
	3.3. Integration with large-scale acquisition systems

	4. Conclusion and future work
	APPENDIX A: External libraries, language and availability
	Acknowledgements
	Funding information
	References

