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To date, computed tomography experiments, carried-out at synchrotron radia-

tion facilities worldwide, pose a tremendous challenge in terms of the breadth

and complexity of the experimental datasets produced. Furthermore, near real-

time three-dimensional reconstruction capabilities are becoming a crucial

requirement in order to perform high-quality and result-informed synchrotron

imaging experiments, where a large amount of data is collected and processed

within a short time window. To address these challenges, we have developed and

deployed a synchrotron computed tomography framework designed to auto-

matically process online the experimental data from the synchrotron imaging

beamlines, while leveraging the high-performance computing cluster capabilities

to accelerate the real-time feedback to the users on their experimental results.

We have, further, integrated it within a modern unified national authentication

and data management framework, which we have developed and deployed,

spanning the entire data lifecycle of a large-scale scientific facility. In this study,

the overall architecture, functional modules and workflow design of our

synchrotron computed tomography framework are presented in detail. More-

over, the successful integration of the imaging beamlines at the Shanghai

Synchrotron Radiation Facility into our scientific computing framework is also

detailed, which, ultimately, resulted in accelerating and fully automating their

entire data processing pipelines. In fact, when compared with the original three-

dimensional tomography reconstruction approaches, the implementation of our

synchrotron computed tomography framework led to an acceleration in the

experimental data processing capabilities, while maintaining a high level of

integration with all the beamline processing software and systems.

1. Introduction

X-ray imaging methods are widely used to investigate the

structural properties of materials at the macro-, micro- and

nano-scale, as well as magnetic domain structures, spatial

distribution of the elements, chemical properties, etc. (Xu et

al., 2016; Wang et al., 2020; Zhang et al., 2018, 2022; Suzuki et

al., 2018). The wavelength of X-rays is significantly shorter

than that of the visible light, resulting in an imaging resolution

several orders of magnitude higher than what it is possible to

achieve with visible light. Furthermore, X-rays are character-

ized by possessing very high material penetration capabilities,

thus enabling non-destructive imaging of the internal struc-

tures of thick samples. X-ray computed tomography (CT) is a

non-destructive imaging technique that provides a clear,

accurate and intuitive visualization of the internal structures,

composition, properties and defects of the investigated

materials, both through two-dimensional (2D) or three-
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dimensional (3D) image reconstructions, and it is widely

recognized within the scientific community as one of the best

non-destructive experimental methods (de Jonge et al., 2010;

Xing et al., 2016). With the worldwide widespread use of third-

generation synchrotron facilities, the number of opportunities

to conduct cutting-edge scientific studies have been signifi-

cantly increased. When compared with a traditional CT

experiment, using X-ray laboratory sources, synchrotron CT

(SR-CT) experiments provide remarkable advantages in

terms of a better spatial resolution, improved temporal reso-

lution and access to the multimodal X-ray imaging approach,

when combined with X-ray spectroscopy and diffraction

methods. Moreover, SR-CT is still undergoing a transforma-

tive development process, transitioning from 2D and 3D to

multi-dimensional imaging, from morphology to functional

imaging, from static to dynamic imaging, from single-scale to

multi-scale investigations and from single-modal to multi-

modal imaging (Xie et al., 2019; Deng et al., 2015; Hu et

al., 2017).

As an experimental technique that relies on digital raw data

imaging, SR-CT benefits significantly from continuous inno-

vation stemming from the field of X-ray detector technology,

recently focused on increasing the number of pixels while

reducing the pixel size. This enables the steady improvement

of SR-CT spatial resolution capabilities, while increasing the

amount of morphological details that it can capture. However,

due to the substantial number (ranging from hundreds to

thousands) of projections required by commonly used CT

algorithms in order to generate the final reconstructions

without the presence of significant artifacts, currently the size

of a set of SR-CT datasets often exceeds several gigabytes

(GB) of data. On the other hand, modern ultrafast imaging

detectors allow for the continuous acquisition of data at rates

exceeding 7.7 GB s� 1 (Mokso et al., 2017; Garcı́a–Moreno et

al., 2021), achieving an unprecedented high temporal resolu-

tion, of more than 10 sets of SR-CT data throughput per

second, while generating a series of continuous datasets

representing the dynamic state of the sample. Consequently,

SR-CT data processing becomes a computationally

demanding task and a key critical issue for X-ray imaging

experiments at synchrotron facilities worldwide. Therefore,

the advancements brought by scientific computing at

synchrotron facilities are of a crucial importance in order to

support users to effectively evaluate and improve their

dynamic CT experiments by utilizing full 3D reconstructed

volumes, rather than previewing the original imaging projec-

tions or subsets of reconstructed slices, as the former contains

considerably more information and detail about the current

sample state. Furthermore, processing this large amount of

data collected within a short period of time is crucial in order

to achieve near-real-time 3D reconstruction capabilities

(Wang et al., 2018). This will then maximize the advantages of

leveraging the potential of artificial intelligence (AI) tech-

nologies applied to experimental result-informed data

processing and analysis.

Generally, depending on the adopted geometry, a high-

quality CT data reconstruction workflow may involve

numerous pre-processing and post-processing steps, including

image normalization, geometric parameter correction, phase

retrieval, filtering, smoothing, denoising and artifact removal.

These steps involve the application of various image proces-

sing algorithms and parameter optimizations. Typically, these

algorithms and parameters require iterative optimization and

adjustment for each individual dataset, leading to a heavily

manned interaction between the users and the reconstruction

software, making the reconstruction quality highly dependent

on the users’ level of experience and expertise. Therefore, the

development of unmanned and fully automated high-perfor-

mance CT data pipelines is both critical and a challenging

obstacle to overcome. However, in the case of processing

dynamic CT data and large-scale datasets from extended field

of view or mosaic scan CT experiments (where large samples

are scanned at different vertical and horizontal positions to

obtain a set of datasets that are then stitched together to

generate one large dataset) (Vescovi et al., 2017; Borisova et

al., 2021), where the beamline status and experimental para-

meters can be regarded as static invariants, optimizations and

adjustments of the algorithms and the parameters can be

performed on a series of continuous experimental data flows.

Therefore, the use of an automated processing pipeline can

effectively maximize the experimental efficiency.

Currently, there are several open-source frameworks and

toolkits for tomographic data reconstruction, as well as efforts

aiming at building automatic, fast and flexible workflows

based on them; for example, Tomopy (Gürsoy et al., 2014; Pelt

et al., 2016), TomocuPy (Nikitin, 2023), Tofu (Faragó et al.,

2022), Savu (Atwood et al., 2015; Wadeson & Basham, 2016;

Kazantsev et al., 2022), UFO (Vogelgesang et al., 2012;

Vogelgesang et al., 2016), SYRMEP Tomo Project (Brun et al.,

2017), SPOT (Blair et al., 2014; Deslippe et al., 2014), PyHST2

(Mirone et al., 2014), TOMCAT post-processing pipeline

(Marone et al., 2017; Buurlage et al., 2019), etc. (Hidayetoğlu et

al., 2020; Pandolfi et al., 2018). They provide command-line

interfaces (CLIs), graphical user interfaces (GUIs), or a

combination of both, and achieve complex functionalities by

offering auxiliary pre-processing and post-processing algo-

rithms, as well as interfaces with other 3D reconstruction tools.

They either use CPUs and GPU workstations or benefit from

the computing power provided by national supercomputing

centers in order to fully satisfy real-time reconstruction

requirements. These software frameworks have been used for

many years at many synchrotron large-scale facilities, whose

development process demonstrates the importance of real-

time, versatile, user-friendly and scalable reconstruction soft-

ware in order to establish flexible and effective data proces-

sing workflows.

In this study, a software framework, architected, developed

and deployed by the Big Data Science Center (BDSC) at the

Shanghai Synchrotron Radiation Facility (SSRF), and aiming

at providing online automated processing and real-time

feedback on the experimental data produced by the

synchrotron imaging beamlines at the SSRF, is presented

(Sepe et al., 2024). This framework leverages the resources and

capabilities provided by the BDSC (Wang et al., 2021; Ye et al.,
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2023), including its high-performance computing (HPC)

systems, unified authentication and user management system,

Big Data and metadata framework, as well as its AI-SSRF-

Superfacility Platform (AI-SSRF-SP), to accelerate and

automate the scientific data analysis and processing pipelines,

while fully integrating them into the imaging beamlines,

thereby enhancing their overall scientific productivity.

The remainder of this article is organized as follows. In

Section 2, we introduce the imaging beamlines at the SSRF

and provide an overview on the various infrastructures and

existing capabilities provided by the BDSC to the SR-CT

community; Section 3 presents the detailed implementation of

the software framework developed and deployed by the

BDSC to accelerate and augment the SR-CT experiments;

Section 4 provides an overview on the experimental perfor-

mance improvements as a result of the deployment of the

BDSC CT scientific computing framework, and illustrates its

impact, presenting scientific case studies involving the SR-CT

experiments accelerated and augmented by the BDSC CT

scientific computing framework; finally, in Section 5 the

conclusions and future prospects are presented.

2. The SSRF and the Big Data Science Center

2.1. The SSRF and the SSRF Phase-II Beamline Project

The SSRF is the first medium-energy third-generation

synchrotron light source on the Chinese mainland, featuring a

150 MeV linear accelerator, a 3.5 GeV booster, a 3.5 GeV

storage ring, a circumference of 432 m and an emittance of

about 4 nm rad (Jiang et al., 2009; Yin et al., 2016). The SSRF

was established and became operational in 2009. Since then, it

has supported nearly 700 research institutes, universities and

industries worldwide, with a cumulative user base exceeding

37000 users. The SSRF Phase-II Beamline Project is one of the

key national scientific infrastructure projects of the 12th five-

year plan period, which was launched in 2016 and was fully

completed in July 2023 (Tai & Zhao, 2022). The main goal of

the SSRF Phase-II Beamline Project is to significantly

improve the performance and capabilities of the SSRF, and to

meet the growing needs of the modern science and technology

(Tai & Zhao, 2022). This project comprises 18 novel beamlines

and multiple endstations, accelerator upgrades, user

supporting laboratories, including the BDSC, the beamline

engineering and technology laboratories, as well as utilities

and buildings, housing the BDSC, the user supporting facility

and the user training facility.

To date, the SSRF has 34 beamlines and 46 endstations in

operation (Fig. S1 of the supporting information). Having

completed the Phase-II Beamline Project update, the SSRF is

now able to provide comprehensive user support, including

massive data storage, HPC systems, cloud/edge hybrid

frameworks and the AI-assisted Big Data analysis and inter-

pretation superfacility platform (Wang et al., 2021).

2.2. The Big Data Science Center

To address the Big Data deluge challenges at the large

scientific facilities, the SSRF has strategically planned the

BDSC as a component of the SSRF Phase-II Beamline

Project. The BDSC is founded on the concept of implementing

a superfacility at the SSRF (Wang et al., 2021). Therefore, the

BDSC has developed and deployed a synchrotron big data

framework that comprehensively integrates, within the SSRF,

a large scientific facility experimental infrastructure with the

HPC and supercomputing resources, scientific edge/cloud

infrastructure, the Internet of Things (IoT) and AI capabil-

ities, virtualization framework, low-latency high-throughput

network, remote access infrastructure, the most updated

theoretical science framework, producing the most advanced

algorithms for science, and a user superfacility platform,

enhancing their scientific productivity. This framework

centralizes, unifies, manages, curates and formats the users’

data from all the beamlines throughout the entire SSRF,

enabling a comprehensive facility-wise data lifecycle

management. At the same time, it provides a high-perfor-

mance big data analysis and processing framework to the

SSRF users and beamlines, facilitating the integration and

centralization of all the experimental data pipelines, while

fostering the real-time analytical capabilities at the

SSRF.

To date, the BDSC metadata system has cataloged

more than 47000 datasets, exceeding 1.6 PB, resulting from

over 1200 SSRF user research proposals. The beamlines at

the SSRF have thus highly benefitted from the BDSC

scientific computing architecture, as demonstrated by the

integration of the Aquarium pipeline (Yu et al., 2019)

from the macromolecular crystallography beamline

(BL02U1) and the Biosafety P2 protein crystallography

beamline (BL10U2) into the BDSC scientific computing

framework, which resulted in a significant improvement of

their on-line data processing capabilities (Wang et al.,

2021).

2.3. The imaging beamlines

SSRF currently has several imaging beamlines available to

its users, including the X-ray imaging and biological applica-

tion beamline (BL13HB) (Xie et al., 2015), the 3D nano

imaging beamline (BL18B) (Tao et al., 2023) and the fast

X-ray imaging beamline (BL16U2) (Tai & Zhao, 2022). The

X-ray imaging experimental methods include X-ray micro-CT,

dynamic micro-CT, X-ray nano-CT, X-ray fluorescence

computed tomography (XFCT), small-angle X-ray scattering

(SAXS)-CT, full-field transmission X-ray microscopy (TXM),

etc. (Xie et al., 2020). The fast X-ray imaging beamline is

dedicated to both fast X-ray imaging and dynamic X-ray

micro-CT, providing experimental temporal imaging resolu-

tion from milliseconds, to microseconds, to �100 ps. During

commissioning, it has also successfully performed single-shot

synchrotron X-ray imaging with 60 ps time resolution (X-ray

pulse duration time) in a hybrid bunch filling mode with a

maximum single bunch up to 23 mA (Tai & Zhao, 2022). The

3D nano imaging beamline is dedicated to full-field trans-

mission X-ray microscopy and full-field X-ray nano-tomo-

graphy.
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3. Integrating the imaging beamlines

3.1. Imaging data pipelines

The overall design target for the BDSC, developing the SR-

CT pipeline system, is to deploy and provide a software

framework capable of real-time automatic experimental data

processing, analysis and result feedback to all users at SSRF

imaging beamlines, as shown in Fig. 1 (Sepe et al., 2024).

Architected, developed and deployed over a period of one

year, this framework aims at fully utilizing the HPC resources

and capabilities provided by the BDSC, including its unified

authentication management system, its metadata management

system (SSRF-SciCat) and its AI-SSRF-SP, to accelerate and

automate the SR-CT experimental data analysis pipeline at

the imaging beamlines, thereby enhancing the users’ scientific

productivity. Furthermore, the BDSC staff’s modular and

multidisciplinary skill sets are leveraged, encompassing a

portfolio of expertise from scientific computing to material

science, bioscience, synchrotron science, data science,

computational science, chemistry, physics, and software and

hardware engineering. The BDSC SR-CT software framework

is capable of running the SR-CT reconstruction applications

on the BDSC HPC cluster systems, effectively utilizing the

CPU and GPU computing resources, supporting the massively

parallelized CT reconstruction computing tasks, thereby

significantly reducing the online data processing time.

Furthermore, it provides fully automatic SR-CT experimental

data processing pipelines, equipped with a GUI and services

tightly integrated within the BDSC, while adopting an

advanced architecture that is efficient, stable, reliable and

scalable. These pipelines provide real-time feedback and

monitoring of the pipeline task status. The BDSC SR-CT

framework fully utilizes the SSRF-SciCat metadata manage-

ment system, linking all the data and input/output parameters

resulting from the SR-CT reconstruction applications with the

corresponding experimental data and metadata. All the

scientific metadata are then aggregated into a JavaScript

Object Notation (JSON) universal file format, which are then

accessed by the AI-SSRF-SP platform with the purpose of

training the AI through machine learning (ML). Moreover, it

implements a unified and standardized full data lifecycle

management for the raw data, processed data and results

produced by the users’ experiments at the imaging beamlines.

It also provides to the users a fully integrated solution for all

the data services accessible through the AI-SSRF-SP. Addi-

tionally, it does integrate the BDSC unified authentication

system into the SR-CT experimental pipelines, providing a

robust authentication management system ensuring overall

data privacy and security.

3.2. Integration of the SR-CT reconstruction applications

The integrated SR-CT reconstruction application is a

specialized 3D CT reconstruction software developed and

tailored on the specific data workflow used by the X-ray nano-

and micro-CT beamlines, and it is designed to seamlessly

operate within an HPC cluster environment. The application

consists of two components: a GUI, tailored for the Windows

operating system, and a server-side module. The GUI

allows users to import data, to use sample-specific features

for image correction and alignment, and to set pre-recon-

struction parameters using a graphical interface, which,

further, allows users to seamlessly submit CT reconstruction

computational tasks, for processing, to the BDSC HPC clus-

ters. The server-side component, instead, is in charge of

running the high-performance 3D reconstructions, based on

the parameters provided by the users through the GUI (Sepe

et al., 2024).

The reconstruction application functionalities provide

comprehensive support for the full-field nanoscale CT and

microscale CT scanning data reconstructions, while supporting

the selection of the reconstruction algorithms, including the

filtered back-projection (FBP) and the algebraic reconstruc-

tion technique (ART). They integrate the ordered subset

expectation maximization (OSEM) algorithm, and the

capability of performing missing angle reconstruction.

Furthermore, they provide GPU-accelerated real-time and

efficient 3D reconstruction capabilities, and support for image

pre-processing capabilities (background subtraction, filtering,

smoothing, etc.), for ring artifact removal, for the batch

reconstruction of the micro-CT data and for semi-automatic

geometric parameter correction.
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Meanwhile, the application GUI functionalities include a

client–server architecture, designed to operate within a LAN,

and facilitating seamless client–server interactions. Further-

more, they support manual annotation and correction driven

by sample-specific features inside the nano-CT projection

data; pre-reconstruction of the projection data, allowing a

quick preview of the reconstruction results; region of interest

reconstructions, enabling the users to select the desired

reconstruction area; sample spatial orientation correction,

allowing the users to adjust the sample spatial orientation as-

needed; and real-time 3D multi-planar reformation (MPR)

rendering of the reconstructed data.

3.3. Framework architecture

The architecture of the SR-CT pipeline framework is shown

in Fig. 2 (Sepe et al., 2024). The framework comprises several

components: the SSRF-SciCat scientific metadata manage-

ment system that has been deployed by the BDSC; the

Zookeeper node governance cluster; the Kafka message

management cluster; the SSRF Active Directory (AD) domain

account authentication system; and the BDSC HPC storage.

The overall architecture consists of three layers: the system

driver layer; the core framework service layer; and the client

application layer, as shown in Fig. 2 (bottom-up).

The system driver layer, which includes the GPU pipeline

driver, the pipeline message driver and the Linux Application

Programming Interface (API) for the tomography pipeline,

runs on the BDSC cluster and is responsible for providing a

standard API interface for the GPU task submission pipeline

and scheduling management, and for sending task-end

messages to the Kafka message management cluster, once a

task ends.

The core framework service layer runs on the BDSC data

processing node, and it is responsible for receiving and

processing pipeline task status messages, initializing the

imaging beamline data collection and processing programs,

parsing and extracting all the input and output metadata, in

real-time, from the imaging beamline reconstruction pipelines,

as well as for parsing the metadata from the scheduling

system. Based on the management rules set for the SSRF-

SciCat scientific metadata system, all the extracted metadata

are then persistently stored within the SSRF-SciCat metadata

repository.

The client application layer runs on the terminal work-

stations at the imaging beamlines, and it is responsible for

providing the processing pipeline APIs to the integrated SR-

CT reconstruction applications. Both the client and the

reconstruction applications are deployed together. When the

reconstruction applications utilize the BDSC HPC resources

for the reconstructions, then the pipeline client is launched,

accordingly. It receives input and data from the reconstruction

applications, parses the specified parameter files, submits the

computational tasks to the BDSC and then returns the status

of BDSC data processing and the path to the output data. The

reconstructed data can, then, be accessed directly from the

imaging beamline workstations. The client application layer

supports two operating modes: a Windows client mode and

a Linux client mode, with a unified account and storage

management system provided for both Windows and Linux

systems.

3.4. Functional modules

The various modules developed by the BDSC for the SR-

CT framework (Sepe et al., 2024), along with their respective

categories, specific functionalities and deployment locations,

can be found in Table S1 of the supporting information.

3.5. Framework workflow

The complete workflow of the SR-CT pipeline framework

(Sepe et al., 2024) is shown in Fig. 3. Users log in to the imaging
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beamline workstation using their SSRF AD credentials. The

SR-CT reconstruction application is then launched on the

beamline workstation. The users’ input files are upload to the

workstation and the parameters for the data reconstruction

are configured [Fig. 3(a)]. The pipeline task is then submitted,

with the SR-CTreconstruction application invoking the BDSC

pipeline client in order to submit the task to the remote BDSC

HPC clusters [Fig. 3(b)]. When the reconstruction task is

completed, the message bus is triggered [Fig. 3(c)]. The

imaging beamline data processing service then receives a

message and retrieves the task record and the metadata files

from disk [Fig. 3(d)]. Subsequently, the imaging beamline data

processing service parses the metadata and ingests them into

the SSRF-SciCat system [Fig. 3(e)]. The beamline workstation

then mounts the shared storage, and the users can see the 3D

reconstruction results directly on the beamline workstation

[Fig. 3( f)].

3.6. Data transfer and management

The BDSC scientific computing architecture enables the

imaging beamline workstation, which is integrated within

the SSRF AD domain, to mount and access the BDSC net-

work storage (Sepe et al., 2024). Using the SR-CT recon-

struction application, the SSRF users can, thus, select the

reconstruction input data from either the imaging beamline

local workstation storage or the BDSC network storage.

When the input data are located on the local workstation

storage, the BDSC SR-CT framework automatically detects

and synchronizes them with the reconstruction task directory

under the current AD account path on the BDSC. Each

reconstruction task directory is named by default after the

input file name and a timestamp. On the other hand, when the

input data are stored on the BDSC network storage, the

BDSC SR-CT framework does not synchronize the data.

Instead, it generates a parameter file anew, and updates the

parameter path with the actual storage location. The recon-

structed data, generated by the reconstruction task, will be

then stored inside the output directory, which is located inside

the corresponding reconstruction task directory. Users can

then directly access their data from the output directory at the

beamline workstation.

3.7. Metadata

As illustrated in Fig. 4, the imaging beamline metadata

service parses and extracts all the input and output metadata

during the reconstruction pipeline tasks; it also extracts the

metadata from the scheduling system, and then feeds all the

extracted metadata to the SSRF-SciCat (Sepe et al., 2024).

Within the SSRF-SciCat metadata structure, all the most

relevant and crucial experimental information are tagged with

the #Scientific_metadata label, the #dataset label tags all the

information related to the data files, while the #General label

tags the additional metadata from the SSRF user proposal

management system and from the unified account authenti-

cation service (Wang et al., 2021).

3.8. GUI

During the SR-CT pipeline execution, a GUI is auto-

matically initiated and made available to the users, further

providing an intuitive overview on the pipeline progress to

the users (Sepe et al., 2024). The GUI does highlight each step

within the pipeline execution progress, using colored boxes

and arrows (Fig. S2), where blinking green highlights the step

that is currently executed, solid green highlights that the step

has been completed, and solid gray highlights that the step

is queued.

The pipeline execution procedure is divided into six stages,

as illustrated in Fig. S2 of the supporting information, where,

from left to right, LOGIN reports the user’s login status,

CHECK reports the framework input file check status,

SUBMIT reports the computing job submission status,

QUEUE reports the computing job queuing status, RUN

reports the computing job execution status, and DONE

reports the accomplishment status of the entire pipeline.
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3.9. Framework benefits

The BDSC SR-CT framework provides several advantages

and improvements to the imaging experiments at the

synchrotron facilities:

(i) Application-agnostic. The system is highly decoupled

from the SR-CT reconstruction applications and other systems

at the imaging beamline. It is not limited to a specific imaging

application, and it can easily integrate a large plethora of

different CT reconstruction software. Moreover, only very

minimal modifications are required in order to create a

completely new automated processing pipeline for a totally

different imaging application or task.

(ii) Metadata management. With the deployment of the SR-

CT framework, the BDSC established a standardized tagging

system for the labeling of the synchrotron imaging metadata

parameters. It can automatically parse the parameter and

value tags, and then submit tasks and synchronize data,

accordingly. Other CT reconstruction applications can, thus,

output parameters based on the BDSC SR-CT tagging system

specifications. Moreover, the BDSC SR-CT framework is also

capable of parsing customized parameter and value tags from

other systems and different applications, and convert them

into a standard metadata structure, ultimately feeding them

into the SSRF-SciCat system.

(iii) SR-CT beamline reconstruction software integration.

The framework client is developed using the Java program-

ming language, providing a cross-platform user interface,

while being able of integrating other software developed using

different programming languages. Real-time data processing

and analysis is achieved through inter-process communication

via the deployment of process pipelines. This allows seamless

integration with any software which could be developed in the

future using the same communication method.

(iv) High-performance task processing. The BDSC SR-CT

framework integrates the BDSC cluster task submission

system and the query interfaces on the server-side, using a

cross-platform REpresentational State Transfer (REST) API.

The BDSC dynamically schedules tasks based on the resource

availability, eliminating the need for the clients to be tightly

bound to a specific set of resources, thus fostering scalability

and the automatic allocation of the processing resources.

4. Results

4.1. Improvements of the imaging experimental

performances

To assess the performance improvements brought by the

SR-CT pipeline framework to the imaging experiments, we

conducted performance evaluations in a production environ-

ment using the fast X-ray imaging beamline (BL16U2)

workstations and a series of dynamic CT experimental data-

sets. Each set of the dynamic CT raw data consists of 250

(2000 � 1007 pixels) projections, with each projection being

3.84 MB in size. The total size of a single set of the dynamic CT

raw data is 960 MB. For each dataset, the reconstructed (2000

� 2000� 1007 voxels) 3D result data are stored in .RAW files,

7.5 GB in size. Then, these .RAW files can be split into 1007

(2000 � 2000 pixels) slices using .TIFF format, with each slice

being 7.63 MB in size.

We carried out 3D reconstructions, both on individual

datasets and on a series of datasets, using both the PITRE

reconstruction program (Chen et al., 2012), which utilizes the

computing resources of the local workstation, specifically an

Intel Xeon Gold 6244 CPU, comprising eight cores operating

at 3.6 GHz, equipped with 256 GB of RAM and running the

Microsoft Windows 10 operating system, and the BDSC

centralized SR-CT pipeline framework, which is running the

CentOS Linux 7 operating system. For batch parallel recon-

structions, we utilized four GPU nodes on the BDSC clusters,

with eight threads, where each node was equipped with two
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Figure 4
Metadata architecture of the imaging pipelines.



Intel Xeon 5118 CPUs, with 12 cores at 2.3 GHz, 128 GB of

RAM and two NVIDIA Tesla P100 GPU cards. In both

approaches, the FBP algorithm was used for the reconstruc-

tions. The results, as shown in Table 1, demonstrate that,

compared with the original PITRE software used at the SSRF

imaging beamlines, the 3D reconstructions for a single dataset,

using the BDSC SR-CT pipeline, are accelerated by a factor of

7.84, while, in the case of the batch 3D reconstructions, they

are accelerated by a factor of up to 59.34. With regard to the

BDSC SR-CT pipeline, the typical time from task submission

to the beginning of queuing is approximately 5 s, with an

additional 30 s of queuing time before running on the node,

and with a total completion time of approximately 11 min. The

acceleration hereby introduced is thus resulting from accu-

rately hybridizing the BDSC Big Data framework with its

HPC infrastructure. In particular, the BDSC Big Data

framework capabilities, which are designed to centralize, unify,

manage, curate and format the experimental data from the

beamlines, can be leveraged to transition the raw data into

a metadata format that is ingested by the advanced data

analysis, reconstruction and visualization, as well as machine

learning, pipelines, which are fully integrated within the BDSC

HPC cloud/edge underlying hybrid infrastructure.

4.2. Case studies

To showcase the impact of the BDSC SR-CT framework on

the experimental studies employing the SR-CT, case studies,

from the typical application area of the SR-CT research, are

presented employing the BDSC SR-CT framework.

Fig. 5 shows the experimental results from the SR-CT 3D

imaging analysis, at the X-ray imaging and biological appli-

cation beamline (BL13HB), of the pores and defects within

a micro-fabricated magnesium–aluminium (Mg–Al) alloy.

Fig. 5(a) shows the reconstructed 3D image, while Fig. 5(b)

illustrates a cross-sectional view through the largest pore

present in the alloy. Figs. 5(c) and 5(d), instead, show a

selected region of interest for slicing within the 3D recon-

structed volume and the corresponding longitudinal view of

the 3D distribution and structure of the internal pores,

respectively. The scale bar in the figures represents 100 mm.

The smallest pore present in the alloy measures, approxi-

mately, a few tens of micrometres. By employing the 3D

imaging technique, the spatial distribution of these features

can be analyzed in order to assess the impact of the manu-

facturing process on the samples and evaluate their qualities.

This case study illustrates the acceleration achieved by

implementing the BDSC centralized SR-CT pipeline on the

SSRF imaging beamlines, with a factor of 10.37 increase in

experimental analysis speed (Table 1).

The experimental result presented in Fig. 6 shows SR-CT

phase-contrast imaging, and the corresponding frontal 2D

reconstructed slice, of a fish head (Poecilia reticulata), where a

3D reconstruction is obtained after phase retrieval, leveraging

the high spatial resolution (0.325 mm pixel� 1) provided by the

X-ray micro-CT beamline. As shown in the figure, despite the

intricate structure of the fish head, the 3D imaging technique

enables the discrimination of its various biological tissue

structures. The scale bar in Fig. 6(a) represents 1 mm, with the

smallest feature present in the fish head measuring, approxi-

mately, a few tens of micrometres. 3D high spatial resolution

phase contrast SR-CT allows observation of the tiniest struc-

tural details and features in bones, blood vessels, nerve fibers,

etc., which is crucial for the investigation of the spatial

distribution, morphological changes, internal structures, etc.,

occurring in complex biological structures, thus allowing for a

more in-depth comprehensive study. This case study provides

further evidence of the acceleration achieved through the

implementation of the BDSC centralized SR-CT pipeline on

the SSRF imaging beamlines, with a factor of 9.5 increase in

experimental analysis speed (Table 1). Movie S1 illustrates the

imaging results.
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Table 1
Results from assessment of the acceleration brought by the BDSC
centralized SR-CT pipeline to the synchrotron imaging experimental
performances, when compared with the PITRE suite, using different
numbers of CT datasets and samples.

CT datasets PITRE SR-CT pipeline
Acceleration
factor

1 90.95 min 11.6 min 7.84

8 727 min 12.25 min 59.34
12 1091 min 23.65 min 46.13
Mg–Al alloy 197 min 19 min 10.37
Poecilia reticulata 172 min 18.1 min 9.5

Figure 5
3D imaging of the pores and defects in the magnesium–aluminium alloy.
(a) 3D reconstruction image, (b) cross-sectional view through the largest
pore present in the alloy, (c) selected region of interest for slicing within
the 3D reconstructed volume, and (d) corresponding longitudinal view of
the 3D distribution and structure of the internal pores, are shown.

http://doi.org/10.1107/S1600577524007239
http://doi.org/10.1107/S1600577524007239


5. Conclusions

The BDSC has architected, developed and deployed, at the

SSRF, an SR-CT pipeline software framework capable of

effectively harnessing the BDSC scientific computing

resources in order to accelerate and augment large-scale,

massively parallelized, 3D CT experimental reconstructions at

the imaging beamlines. The imaging beamlines at SSRF have

been, in fact, fully integrated within the BDSC scientific

computing framework, thus enabling the full automation of

the real-time data processing and analysis pipelines and

feedback, significantly reducing the time necessary for the

users to process and analyze their experimental data.

Furthermore, the BDSC has also integrated its SR-CT

framework into the SSRF unified authentication management

system (which has also been developed by the BDSC), thus

enhancing the level of the framework data privacy and

security. Moreover, the BDSC has architected and deployed

the SR-CT metadata infrastructure at the SSRF, where all the

inputs and outputs, including data and parameters, are

ingested by the SSRF-SciCat system, and aggregated into the

JSON universal file format, thus enabling the training of

scientific AI through ML approaches. The limitations

presented by the PITRE software, which lacked crucial HPC

features, including the lack of parallelization capabilities and a

codebase relying heavily on CPUs rather than being optimized

for harnessing GPU architectural acceleration, proved to be a

significant challenge for the BDSC during the design and

integration phases of the imaging experimental pipeline into

the BDSC HPC infrastructure. To address this limitation, the

BDSC has thus designed, developed and deployed a frame-

work capable of wrapping the PITRE software with a software

layer, equipped with a GPU-aware scheduler and massive

parallelization capabilities. This framework is able to translate

non-HPC routines into HPC-optimized reconstructions,

effectively allowing scientific software, not optimized for the

HPC architecture, to access all the benefits of a modern

scientific computing framework. The performance evaluation

of the BDSC SR-CT framework demonstrates the extent of

the acceleration induced by the SR-CT experimental data

processing and analysis capabilities compared with the tradi-

tional beamline CT reconstruction approaches, impacting the

application areas of the synchrotron imaging methods. The

BDSC SR-CT framework architecture is highly decoupled

from the beamline data infrastructure and the other systems;

this allows it to be generalizable, adaptable, scalable, appli-

cation agnostic and modularly expandable, thus facilitating its

integration into the most diverse SR-CT software frameworks

addressing the most heterogeneous scientific cases at other

facilities worldwide, while seamlessly and quickly adapting

to the new challenges posed by the evolution of the future SR-

CT experiments, without requiring a structural change in

its architecture.
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M., Batenburg, K. J. & Schlepütz, C. M. (2019). Sci. Rep. 9, 18379.

Chen, R.-C., Dreossi, D., Mancini, L., Menk, R., Rigon, L., Xiao, T.-Q.
& Longo, R. (2012). J. Synchrotron Rad. 19, 836–845.

Deng, B., Du, G., Zhou, G., Wang, Y., Ren, Y., Chen, R., Sun, P., Xie,
H. & Xiao, T. (2015). Analyst, 140, 3521–3525.

Deslippe, J., Essiari, A., Patton, S. J., Samak, T., Tull, C. E., Hexemer,
A., Kumar, D., Parkinson, D. & Stewart, P. (2014). Proceedings of
the 9th Workshop on Workflows in Support of Large-Scale Science
(WORKS ’14), 16–21 November 2014, New Orleans, LA, USA,
pp. 31–40. IEEE Press.
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