
research papers

1234 https://doi.org/10.1107/S1600577524006994 J. Synchrotron Rad. (2024). 31, 1234–1240

ISSN 1600-5775

Received 14 May 2024

Accepted 17 July 2024

Edited by K. Kvashnina, ESRF – The European

Synchrotron, France

Keywords: distributed software system;

synchrotron radiation big data; ptychography;

parallel computing.

Published under a CC BY 4.0 licence

A distributed software system for integrating
data-intensive imaging methods in a hard X-ray
nanoprobe beamline at the SSRF

Peicheng Zhang,a,b Zhisen Jiang,a* Yan Hea and Aiguo Lia*

aShanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China,

and bSchool of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People’s Republic of

China. *Correspondence e-mail: jiangzs@sari.ac.cn, liag@sari.ac.cn

The development of hard X-ray nanoprobe techniques has given rise to a

number of experimental methods, like nano-XAS, nano-XRD, nano-XRF,

ptychography and tomography. Each method has its own unique data processing

algorithms. With the increase in data acquisition rate, the large amount of

generated data is now a big challenge to these algorithms. In this work, an

intuitive, user-friendly software system is introduced to integrate and manage

these algorithms; by taking advantage of the loosely coupled, component-based

design approach of the system, the data processing speed of the imaging

algorithm is enhanced through optimization of the parallelism efficiency. This

study provides meaningful solutions to tackle complexity challenges faced in

synchrotron data processing.

1. Introduction

The hard X-ray nanoprobe beamline at the Shanghai

Synchrotron Radiation Facility (SSRF) offers a lot of high

spatial resolution methods for structure, morphology and

composition studies of heterogeneous systems. Coherence

diffraction imaging (CDI) and ptychography are based on the

coherence of light to achieve high spatial resolution, while

scanning diffraction, X-ray fluorescence (XRF) and X-ray

absorption near-edge structure spectroscopy (XANES)

mapping are based on a focused beam (Johansson et al., 2021;

Quinn et al., 2021; Martı́nez-Criado et al., 2016; Leake et

al., 2019).

With the continuous advancements in light sources, detec-

tors and automation capabilities at beamlines, the significant

increase in data acquisition rates poses new challenges for

beamline scientists and users in efficiently managing and

analysing the growing volume of data (Blair et al., 2014; Wang

et al., 2018).

The limitations on the efficiency of experiments are no

longer primarily related to data acquisition, but rather to data

processing (Deslippe et al., 2014). This trend is particularly

evident in experimental methods like tomography, ptycho-

graphy and artificial intelligence algorithms based on deep

learning, which are increasingly applied to synchrotron

imaging technologies (Pfeiffer, 2018; Dierolf et al., 2010).

There is a noticeable shift towards data-intensive algorithms.

Addressing the challenge of enhancing data storage and

processing capabilities to accommodate the exponential

growth in dataset size has become an urgent issue that merits

further research (Bicer, 2014; Bicer et al., 2017).
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Over the past decade, GPU-based heterogeneous

computing technology has become widely used for parallel

computing tasks on large-scale general scientific data sets,

owing to its exceptional parallelism and computing capabil-

ities. Its application in tomography and ptychography has also

been explored to a certain extent; however, most existing

methods are optimized for individual processing units (Pelt et

al., 2016) or local multiple processing units (Favre-Nicolin et

al., 2020), without specific optimization for cluster-based

multiple processing units. With the continuous improvement

in the brightness of the light source beam, the disparity in

speed between data acquisition and data processing compo-

nents is becoming increasingly pronounced. These single-

image processor systems are no longer sufficient to meet the

processing requirements of future data-centric computational

imaging applications.

In the field of synchrotron light sources, free-electron lasers

and other large-scale imaging scientific facilities, the prevailing

big data challenges encompass various aspects, including but

not limited to data storage, data transmission and high-speed

data analysis. Large scientific facilities such as the Advanced

Light Source (ALS) (Pandolfi et al., 2018; Dede et al., 2013),

the Advanced Photon Source (APS) (Gürsoy et al., 2014), the

Swiss Light Source (SLS) (Buurlage et al., 2019) and the

European Synchrotron Radiation Facility (ESRF) (Mirone et

al., 2014; Vogelgesang et al., 2012, 2016) have all put foward

their respective solutions to tackle the substantial big data

challenges they currently face.

On the other hand, the nanoprobe beamline has a wide

variety of characterization methods. Thus, for the convenience

of users, it is important to create a platform with a user-

friendly interface that integrates multiple algorithms.

Therefore, we propose a software based on distributed

systems with an intuitive graphical user interface design that

allows users to easily operate and configure the software. This

software integrates multiple imaging methods into a user-

friendly platform. Furthermore, we have adopted a distributed

computing approach to decompose the imaging task into

multiple subtasks and distribute them to multiple computing

nodes for parallel processing. By using an event-driven

programming model, image data can be updated and

displayed. We have also implemented efficient data trans-

mission protocols and compression methods to minimize data

transmission latency, thereby enhancing the parallelism

performance of imaging algorithms.

2. Method

This section provides a detailed description of the software

system architecture (shown in Fig. 1) designed to address the

core objectives of user-friendliness and algorithm integration

as well as the principles and methodologies involved in the

implementation. The discussion includes two main aspects: the

realization of algorithm integration and user-friendliness, and

the implementation of algorithm parallelism optimization.

We applied some classical design principles from the fields

of human–computer interaction (HCI) and user experience

(UX) to enhance the user-friendliness of the software system

(Norman, 2013; Krug, 2000).

Firstly, we simplified the user interface. Because of the

complexity of the computational imaging tasks and the

diversity of imaging algorithm parameters, existing imaging

software tends to employ cumbersome and intricate user

interfaces (Marone et al., 2017). The advantage of such a

design is its capability to offer users fine-grained control over

customization of their imaging tasks. However, for users with

limited exposure to computational imaging, this design intro-

duces significant cognitive load and reduced clarity. Therefore,

simplifying the user interface was our initial step. We designed

an intuitive graphical user interface (GUI) implemented using

Vue.js and Node.js. This GUI offers convenient access to

various system functionalities, including:

Data loading: offering a simplified interface for seamless

data importation.

Data preview: allowing users to preview raw data sets and

processed data sets to effectively understand their character-

istics, structure and outcomes.

Data processing: providing a rich set of data processing

features, including operations such as filtering, denoising and

image reconstruction. These operations are configurable and

adjustable through the user-friendly interface.

As shown in Fig. 2, the user interface for performing

tomographic reconstruction consists of four parts. The top

panel offers users various system-wide functionalities, such

as documentation and token authentication. The left panel

serves as the function selection area, allowing users to switch

between imaging methods and various data processing steps.

The upper right panel is designated for parameter selection,

enabling users to modify or select parameters for data

processing. Finally, the model drawing panel provides a

preview of the results obtained after data processing.
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Figure 1
The architecture of the software system. Three main layers are included:
application layer, middleware and data layer.



Subsequently, in order to reduce the user’s learning curve

and minimize the errors that may be caused by manual

operation, we form a set of generalized data processing

procedures and parameter configurations based on the

summaries of past experimental methods. Algorithm engi-

neers can predefine the algorithms and workflows that users

are likely to use and deploy them to the system. The process of

cluster deployment and execution of algorithms is transparent

to the user, who has no knowledge of the complex computa-

tional processes involved in the imaging task. The user simply

selects the data set, enters the parameters, submits the task,

and then waits for the server to complete the execution. For

our algorithm engineers, maintaining algorithms and config-

uring and deploying workflows for specific imaging methods

are the only necessary tasks. Task submission and execution,

scheduling between multiple algorithms, system response to

the user, and data read/write operations are all transparent to

the algorithm engineers. In short, the user is responsible for

dataset and parameter selection and results analysis; the

algorithm engineer is responsible for algorithm and workflow

maintenance; and all other tasks are handled by the system.

Of course, for those who want to take the data processing

into their own hands, we also provide powerful algorithmic

extension capabilities. This algorithm scalability is achieved

through the abstraction and modularization of the algorithm

operation process. Users can extend the functionality of the

software by directly integrating their own custom processing

algorithms through our modular architecture. This modular

approach allows for the seamless integration of custom scripts

or algorithms written in popular programming languages such

as Python, Shell or similar environments. In terms of algorithm

configuration, as shown in Fig. 3, we provide a visual interface

that allows users to integrate their own algorithms into the

system through simple operations and to easily customize the

algorithm operations already in the system. This approach not

only enhances the flexibility of our software, but also enables

users to independently adapt and optimize their data analysis

pipelines. We also hope to collaborate with experts and peers

in maintaining and developing various parts of the system,

especially the algorithms.

To achieve algorithm integration, two key modules were

introduced: the Imaging module and the Scheduler module.

Imaging module: focused on implementing diverse imaging

algorithms such as tomography and ptychography, supple-

mented by data preprocessing techniques to optimize imaging

results.

Scheduler module: implemented using Apache Dolphin-

Scheduler, serving as a workflow scheduling framework. It

facilitates effective management and scheduling of tasks,

allowing the combination of tasks like shake alignment and

reconstruction into flexible imaging workflows.

To improve the efficiency of the algorithm, we also opti-

mized the parallelism computing method. Parallel computing

involves using multiple processes simultaneously to perform

an imaging task, resulting in a significant increase in compu-

tational efficiency. Most existing imaging software has already

implemented optimizations for GPU computing. However,

optimization for multiple GPUs, especially in a clustered

environment, is still underdeveloped. The existing optimiza-

tions primarily focus on local multiple GPUs, leveraging

advantages such as reduced resource consumption on network

I/O and utilizing memory I/O for higher performance (Yu et

al., 2022). However, local multiple GPUs demand higher

hardware performance and have lower fault tolerance (Dean

& Ghemawat, 2008).

Our system adopts a cluster optimization approach based

on the combination of the Spark engine and the YARN

resource manager. This choice is primarily driven by the

universality of the Spark engine for large-scale data sets,

aligning with the core objective of integrating the system

algorithm. Additionally, YARN facilitates dynamic scheduling

of cluster resources, enhancing resource utilization.

As shown in Fig. 4, taking ptychography as an example,

parallel optimization for ptychography involves five main

steps (Favre-Nicolin et al., 2020):

(1) Scan positions are split to different nodes using the k-

means algorithm from the scikit-learn module (Pedregosa et

al., 2011).

(2) Each node loads a data set.

(3) Initialization of the object and probe in the driver, with

each part mapped among executors.
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Figure 3
Visualization interface for customized data processing.

Figure 2
The user interface for algorithm selection, parameter selection and
display of results.



(4) Independent execution of calculations among different

executors.

(5) Reduce together different parts of the object.

The augmentation of system parallelism performance was

addressed through the design of a critical middleware layer,

comprising:

Service coordination module (ZooKeeper) (Hunt et al.,

2010): playing a crucial role in event listening and distributed

locking within distributed systems, ensuring optimal system

efficiency and collaboration.

Big data computing engine (Spark) (Zaharia et al., 2010):

selected to provide rapid, versatile and scalable capabilities

for big data analytics. Implementation of imaging algorithms

on Spark significantly enhances the parallelism and execution

speed of the imaging process.

Resource scheduling module (YARN) (Vavilapalli et al.,

2013): furnishing the system with a well optimized computing

resource scheduling mechanism, dynamically allocating

resources based on application requirements for effective

utilization.

Application framework (Spring): serving as the founda-

tional framework for the entire software system, providing

robust and flexible support for application development and

management.

The middleware layer efficiently supported various aspects

of the system, including distributed processing, data manage-

ment and application execution.

Through these detailed design and implementation strate-

gies, we successfully realized user-friendliness and algorithm

integration. The improvement of the parallelism efficiency is

tested in the next section.

3. Results and discussion

Based on the methods proposed in the previous section, we

conducted a series of tests to assess effectiveness. In this

section, we outline the testing procedures, results and identi-

fied issues.

The performance and effectiveness of parallel systems or

program parallelization are typically evaluated using various

key indicators, including the following:

Parallel acceleration ratio (PAR) (Benzi & Damodaran,

2008): PAR represents the gain in speed achieved by parallel

execution in comparison with serial execution. It is calculated

as follows:

PARp ¼ T1=Tp: ð1Þ

Here, p denotes the number of processors, T1 is the execution

time of the sequential algorithm and Tp is the execution time

of the parallel algorithm when p processors are utilized.

Parallel efficiency (PEFF) (Benzi & Damodaran, 2008):

PEFF measures the efficiency of parallel execution and is

given by the formula

PEFFp ¼ PARp=p ¼ T1=pTp: ð2Þ

PEFF is typically expressed as the ratio of parallel execution

time to serial execution time. A higher parallel efficiency value

indicates more effective parallel execution.

These indicators provide valuable insights into the perfor-

mance gains achieved through parallelization and help to

gauge the efficiency of parallel computing systems.

We focused on typical algorithms commonly used in the

ptychography imaging process. The choice of ptychography is

particularly relevant given the growing maturity of the

ptychography algorithm, its increasing applications and the

escalating data volumes involved. This algorithm serves as a

representative example of imaging algorithms that demand

substantial computational resources, aligning with the chal-

lenges posed by data-intensive methods such as tomography

and others mentioned earlier. The test was conducted on a

computing cluster fitted with the following hardware config-

uration: two Intel Xeon Gold 6226R processors running at

2.90 GHz each, eight Nvidia A100-PCIE-40GB GPUs, 256 GB

Samsung DDR4 memory modules. All nodes within the

cluster are running the Ubuntu 20.04.5 LTS operating system.
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Figure 4
Illustration of parallel execution of ptychography imaging on a computing cluster with four GPUs.



Throughout the entire experimental process, we maintained

a constant allocation of memory and CPU resources and

utilized the same set of experimental data. Three ptycho-

graphy algorithms were employed in various combinations:

difference map (DM) algorithm, maximum-likelihood (ML)

algorithm and alternating projection (AP) algorithm

(DM*100 means the DM operator cycled 100 times). Within

the same algorithmic combination, the only variable adjusted

was the number of GPUs employed for parallel computation.

From Table 1, we are able to visualize the impact of the

different number of GPUs in parallel on the experiment time,

including data loading, preprocessing and algorithm execu-

tion, when the user performs experiments on SSRF’s hard

X-ray nanoprobe beamline. It can be seen that GPU paral-

lelism has a significant accelerating effect on both the data

loading and preprocessing, and algorithm execution phases.

As shown in Fig. 5, the parallel processing capability (PAR)

of the software system progressively improves as the number

of GPUs engaged in the computation increases. This

enhancement is attributable to the increased capacity of

multiple GPUs to simultaneously execute tasks, efficiently

distributing the computational workload and augmenting the

system’s processing speed. Remarkably, this improvement is

particularly pronounced when the task’s computational load is

relatively high. Therefore, increasing the number of GPUs is

advantageous for enhancing the system’s parallel processing

capability, resulting in reduced task completion times.

However, as shown in Fig. 6, parallel efficiency gradually

decreases as the number of GPUs involved in the computation

increases. This decline can be attributed to the increased

network communication overhead between parallel tasks,

ultimately leading to a reduction in the overall system effi-

ciency. However, in scenarios where the number of GPUs

involved in the computation remains constant, increasing the

computational load of the tasks can still yield improved

parallel efficiency. With an increase in task computational

load, the influence of network communication overhead on

the overall task execution time decreases, resulting in an

overall enhancement of the system’s efficiency with increasing

task computational load.

In practical applications, achieving a balance between

parallel processing efficiency and GPU usage is very impor-

tant. This balance should be determined based on factors such

as the task’s computational load and the available GPU

resources. Specifically, when dealing with substantial task

computational loads, increasing the number of GPUs can be a

viable choice to enhance parallel processing capability.

Conversely, for smaller task computational loads, it may be

more appropriate to reduce the number of GPUs to improve

parallel efficiency.

In addition to the experiments on parallel computing effi-

ciency mentioned above, we also evaluated the improvement

in resource utilization achieved by our multi-GPU computing

framework when executing the same algorithm under identical

hardware configurations. As illustrated in Fig. 7, under the

conditions of eight GPUs, the GPU utilization (UTL)

increased from 100% to 795%, resulting in a 7.95-fold

improvement. Similarly, the GPU memory utilization (MEM)

increased from 3.8% to 88.8%, representing a 23.37-fold

improvement.

Using ‘Old’ to denote the conventional phase retrieval

imaging method that does not support multi-node clusters, and

‘New’ to represent the phase retrieval imaging method opti-
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Figure 5
The influence of the number of processors (p) on the parallel acceleration
ratio (PARp).

Figure 6
The influence of the number of processors (p) on the parallel efficiency
(PEFFp).

Table 1
The influence of the number of GPUs on the experiment time (loading,
preprocessing, algorithm execution).

Algorithm GPUs

Load and
preprocess
time (s)

Algorithm
time (s) All time (s)

DM*100
ML*200

2 976.87 325.43 1302.3
4 627.34 171.24 798.58
6 472.56 120.09 592.65
8 392.51 100.24 492.75

DM*200

ML*400
AP*800

2 2349.07 984.23 3333.30

4 1271.13 503.72 1774.85
6 916.85 347.42 1264.27
8 722.57 267.34 989.91



mized and deployed on a multi-node cluster via our software

system, Fig. 7 illustrates the performance metrics for resource

utilization in a parallel computing environment with identical

algorithm parameters. A comparison was conducted between

the ‘Old’ and ‘New’ software methods using eight GPUs

(GPU0 to GPU7). Only GPU6 is involved in the computation

in the ‘Old’ method, so the GPU memory utilization (MEM)

of the other seven GPUs is only about 1.0%, indicating that

the GPU’s compute unit is not active, but the GPU memory

may still be used to store small amounts of data or to perform

non-compute intensive operations. In contrast, the ‘New’

method achieved 11.1% GPU memory utilization (MEM) on

GPU0 and GPU7, indicating improved GPU memory utili-

zation. The ‘Old’ method underutilized GPUs, with 0% GPU

utilization (UTL), while the ‘New’ method consistently

achieved 100% GPU utilization (UTL) on most GPUs, indi-

cating more effective GPU resource usage. The results of this

experiment demonstrate that our ‘New’ method exhibits a

significant advantage in terms of GPU memory and compu-

tational resource utilization in a parallel computing environ-

ment. This finding holds particular significance for data-

intensive computational imaging algorithms that require high

computational performance.

Indeed, there are several valuable directions for further

enhancing our system. Firstly, it is essential to allocate tasks in

a balanced manner to ensure that each GPU task has a

reasonable computational load. Secondly, it is crucial to

optimize network communication to reduce communication

overhead between parallel tasks. Lastly, implementing a

performance scheduling strategy to dynamically allocate tasks

based on GPU performance disparities can enhance overall

system parallel efficiency. These aspects represent the ongoing

focus of optimization and iteration for our system.

4. Summary

To address the growing data volumes and user requirements at

the nanoprobe beamline, we have designed and implemented

a software architecture. This architecture offers a streamlined,

feature-rich and user-friendly interface to enhance the effi-

ciency of algorithm and user experience. It leverages its

thoughtfully crafted application layer, middleware and data

layer to provide essential support for the efficient operation

of the system. Moreover, the system integrates parallel

computing optimizations, which significantly improve execu-

tion efficiency and resource utilization, especially in scenarios

with complex imaging algorithms. It serves as an efficient,

stable and reliable platform for large-scale synchrotron

radiation data imaging.

In the future, there are several valuable directions to further

enhance our system. Firstly, it is necessary to ensure balanced

task allocation so that each GPU can handle a reasonable

computational load. Secondly, the optimization of network

communication to minimize communication overhead

between parallel tasks is crucial. Lastly, the implementation of

performance scheduling strategies that dynamically allocate

tasks based on GPU performance differences can improve the

overall parallel efficiency of the system. These aspects repre-

sent the focal points for the continuous optimization and

iteration of our system.
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B., Paterson, D., Thånell, K., Bell, P., Erb, D., Weninger, C., Matej,
Z., Roslund, L., Åhnberg, K., Nor. Jensen, B., Tarawneh, H.,
Mikkelsen, A. & Vogt, U. (2021). J. Synchrotron Rad. 28, 1935–
1947.

Krug, S. (2000). Don’t Make Me Think!: a Common Sense Approach
to Web Usability. Pearson Education India.

Leake, S. J., Chahine, G. A., Djazouli, H., Zhou, T., Richter, C.,
Hilhorst, J., Petit, L., Richard, M.-I., Morawe, C., Barrett, R.,
Zhang, L., Homs-Regojo, R. A., Favre-Nicolin, V., Boesecke, P. &
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