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Small-angle-scattering tensor tomography is a technique for studying aniso-

tropic nanostructures of millimetre-sized samples in a volume-resolved manner.

It requires the acquisition of data through repeated tomographic rotations about

an axis which is subjected to a series of tilts. The tilt that can be achieved with a

typical setup is geometrically constrained, which leads to limits in the set of

directions from which the different parts of the reciprocal space map can be

probed. Here, we characterize the impact of this limitation on reconstructions in

terms of the missing wedge problem of tomography, by treating the problem of

tensor tomography as the reconstruction of a three-dimensional field of func-

tions on the unit sphere, represented by a grid of Gaussian radial basis functions.

We then devise an acquisition scheme to obtain complete data by remounting

the sample, which we apply to a sample of human trabecular bone. Performing

tensor tomographic reconstructions of limited data sets as well as the complete

data set, we further investigate and validate the missing wedge problem by

investigating reconstruction errors due to data incompleteness across both real

and reciprocal space. Finally, we carry out an analysis of orientations and

derived scalar quantities, to quantify the impact of this missing wedge problem

on a typical tensor tomographic analysis. We conclude that the effects of data

incompleteness are consistent with the predicted impact of the missing wedge

problem, and that the impact on tensor tomographic analysis is appreciable but

limited, especially if precautions are taken. In particular, there is only limited

impact on the means and relative anisotropies of the reconstructed reciprocal

space maps.

1. Introduction

Small-angle X-ray scattering tensor tomography (SAXSTT) is

a promising method for probing anisotropic nanostructures of

macroscopic samples in a volume-resolved manner (Liebi et

al., 2015, 2018; Schaff et al., 2015; Guizar-Sicairos et al., 2020).

It has been applied to the study of a variety of biological

materials, including bone, tendon and myelin (Georgiadis et

al., 2021; Casanova et al., 2023; Grünewald et al., 2023; Silva

Barreto et al., 2024). In the absence of very strong real-space

uniformity and reciprocal space symmetry constraints (Stri-

beck et al., 2006; Skjønsfjell et al., 2016), SAXSTT requires

a more general acquisition scheme than traditional scalar

tomography, such as rotating the sample while subjecting the

axis of rotation to a series of tilts (Schaff et al., 2015; Liebi et

al., 2015, 2018), carrying out measurements over part of a

sphere of rotation. Such acquisition schemes are generally

geometrically constrained to a tilt of up to 45�, since the
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rotation stage will obstruct the beam at greater tilt angles.

Nielsen et al. (2023), using this measurement scheme with

simulated data, observed that the degree of correlation with

the original reciprocal space maps (RSMs) approached lower

values than what should be theoretically attainable in terms of

the RSM representations used in the simulations and recon-

structions, even at very low noise levels. This can likely be

attributed in part to the so-called missing wedge problem, a

common data incompleteness problem in tomography (e.g.

Liu et al., 2018). While a limited investigation into the effect of

reduced data was carried out by Liebi et al. (2018), a thorough

examination of the effects of data incompleteness is still

outstanding. A deeper understanding of data incompleteness

in SAXSTT is a crucial component of the development of

approaches to counteract this incompleteness, similar to those

used in other tomography methods, as in, for example,

Trampert et al. (2018), Ding et al. (2019) and Moebel &

Kervrann (2020).

Here, to investigate these effects under real experimental

conditions, we present a scheme utilizing sample remounting

to yield two incomplete data sets, each measured using the 0�–

45� tilt scheme, which when combined form a complete data

set. The scheme was applied in measurements on a sample of

human trabecular bone. For the reconstruction, we employed

an RSM representation which uses local Gaussian radial basis

functions on a spherical grid to interpolate measured data.

This reconstruction is closely related to the spherical integral

geometric tensor tomograph (SIGTT) approach (Nielsen et

al., 2023) but replaces the model for the RSM with local

functions, which avoids artifacts due to the spherical harmonic

Gibbs phenomenon (Gelb, 1997). Both models have in

common that the only symmetry enforced is Friedel symmetry,

and thus allow for reconstruction of complex textures. In

addition, the use of local radial basis functions permits the

problem of SAXSTT to be analyzed as a set of scalar tomo-

graphy problems, which allows the application of the frame-

work of standard tomographic analysis. By carrying out

reconstructions from the two separate data sets, as well as the

combined data set, and comparing the reconstructions, this

work seeks to investigate whether imperfect reconstructions in

limited-angle small-angle X-ray scattering tensor tomography

can indeed be attributed to missing wedges. In addition, we

aim to provide insight into the impact of this effect on

SAXSTT analysis. We conclude that the differences between

complete and partial data sets are consistent with the

predicted effects of the missing wedge problem. These effects

impact typical SAXSTT analysis in a non-trivial but manage-

able way, and suggest strategies for mitigation. In particular,

two important scalar quantities, the means and relative

anisotropies of the reconstructed RSMs, show relatively little

impact from the missing wedges.

2. Theory

The RSM measured by small-angle X-ray scattering (SAXS)

in a small volume may be written as

RSMðq; rÞ ¼

Z Z Z

dV ~� r0 � rð Þ exp � iq � r0 � rð Þ½ �
� �

; ð1Þ

where ~� ðr0 � rÞ is the auto-correlation function of the electron

density over the small volume, r is the position of the center of

the volume, r0 is the point of integration within the volume and

q is the reciprocal space vector. For a small scattering angle,

such that the scattered intensity travels approximately the

same path as the transmitted intensity, and assuming that the

total amount of scattering is small enough to not significantly

influence the transmission, we can probe the RSM by

measuring the small-angle scattering intensity with a small

beam, and correcting by the transmitted intensity as

Zpend

p0

dp RSMðq; j; k; pÞ /
ISðq; j; kÞ

ITð j; kÞ
; ð2Þ

where IS(q, j, k) is the measured scattering intensity at reci-

procal space coordinates (q, �, �) and real-space coordinates

( j, k). Here, ( j, k) are two Cartesian coordinates which give

the position of the beam relative to the sample in the plane

orthogonal to the incident beam direction, and IT is the

transmitted intensity (Liebi et al., 2015). The location of the

RSM is given in the experimental system coordinates ( j, k, p),

where p is the coordinate of the direction in which the X-ray

beam travels, see Fig. 1(a).

The subset of RSM(q), which is possible to measure at a

given sample orientation under the small-angle approxima-

tion, lies on a great circle given by

Cð’; �; �Þ ¼ cosð’Þ q0ð�; �Þ þ sinð’Þ q90ð�; �Þ; ð3Þ

where ’ is an angle on the detector, q0(�, �) and q90(�, �) are

two unit vectors in the sample coordinate system aligned with

the 0� and 90� direction of the detector, respectively, (�, �) are

two angles which give the sample orientation as a sequence of

rotations about two axes â (the main tomographic rotation

axis) and b̂ (the tilt axis used for tensor tomography) ortho-

gonal to the direction of the impinging beam, see Fig. 1(a). In

Fig. 2, the general relationship between directions on a sphere

(the direction of the impinging beam) and their unique

orthogonal great circle (probed part of reciprocal space) is

illustrated.

The sample is mounted on a rotation stage such that the first

rotation R� also rotates â, and a sequential rotation of the

sample may therefore be described by the composite rotation

R�R�. At each tilt and rotation, a raster scan over a square

grid spanned by the coordinates ( j, k) is carried out, yielding a

two-dimensional image mapping in which each pixel corre-

sponds to a measured diffraction pattern. We choose the

sample coordinate system such that it coincides with the

experimental coordinate system when �, � = 0, see the initial

sample mounting in Fig. 1(b). To simplify this analysis without

loss of generality, we will parameterize the measured reci-

procal space vector as â = q90ð0; 0Þ and b̂ = q0ð0; 0Þ. Then, the

coordinate system of the sample will be subject to the

composite rotation Rq0
ð�ÞRq90

ð�Þ, and the direction of the
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impinging beam in the sample coordinate system thus changes

according to

pð�; �Þ ¼ RT
q90
ð�ÞRT

q0
ð�Þ pð0; 0Þ; ð4Þ

where pð0; 0Þ is the direction of the beam in the sample

coordinate system prior to any rotation or tilt of the sample.

We can understand the values taken by pð�; �Þ as points on a

sphere of projection, which is a unit sphere consisting of all

unique measurement directions up to Friedel symmetry, see

Fig. 1(d). Equation (4) also applies to q90 and q0.

A composite rotation of the projection vector about the two

axes Rq0
ð�ÞRq90

ð�Þ may be described as a single rotation

around a third axis {̂, which lies on C(’, �, �). Consequently,

this direction is a rotational invariant with respect to said

composite rotation. This means that RSMðkqk {̂; rÞ can be

regarded as a scalar quantity for the purpose of tomography,

and standard tomographic analysis can therefore, in principle,

be applied to the reconstruction of this component. Although

carrying out the experiment in practice requires a third rota-

tion axis when remounting, as it is not possible to tilt the

sample by more than 45�, it is possible to specify all points

on the sphere of projection using rotations about only two

orthogonal axes. Any component of the rotation that occurs

about the axis of projection can be discounted in this analysis,

since it does not change the information contained in the

projection. The following line of reasoning is therefore also

valid when combining data from the the two measurements.

According to the projection-slice theorem, the Fourier trans-

form of a projection along p constitutes a slice orthogonal to

p in Fourier space (e.g. Garces et al., 2011). Tomographic

reconstruction can therefore be understood as the problem of

interpolating between slices in Fourier space. This implies that

a set of sufficiently densely placed projections along a great

semicircle on the sphere of projection must be measured for a

reconstruction of good quality of any given point on the RSM.

This leads to the so-called missing wedge problem, where the

absence of projections along any section of this great semi-

circle leads to a missing wedge in the Fourier transform of the

reconstruction, and thus a blurring in that direction.

In Fig. 3, projections of reconstructions from data set 1

[Fig. 1(d)] along the y-direction of the absorbance as well as

the RSM amplitude in three different directions are shown,

along with the discrete Fourier transform of each projection.

The absorbance of each projection can be defined as

að j; kÞ ¼ � log
ITð j; kÞ

I0ð j; kÞ

� �

;

where IT is the transmitted intensity at each point in the raster

scan, and I0 is the incident intensity, where we use the

projection-wise approximation I0ð j; kÞ ’ max ITð j; kÞ, since

each measurement includes some air, which has a very small
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Figure 2
Examples of vectors defining directions on a sphere, and their respective
orthogonal great circles. The three vectors labeled v1 (blue), v2 (red) and
v3 (yellow) each have a unique orthogonal great circle C1, C2 and C3.

Figure 1
SAXSTT measurement setup and probed directions. (a) Full setup with detector, goniometer with sample mounted on a pin, X-ray source and
measurement coordinate system. (b) Initial sample mounting during first measurement and initial orientation of sample coordinate system. (c) Initial
sample mounting during second measurement. (d) Points on the sphere of projection probed during first measurement. (e) Points probed during second
measurement. The points on the sphere of projection give the coordinates of the projection direction p in the sample coordinate system spanned by
x, y and z.



absorbance. The absorbance is a scalar quantity and therefore

very accurately reconstructed without missing wedges. Hence,

it is included for comparison. This projection direction, along

the y-axis (or equivalently for data set 1, the main tomo-

graphic axis â), is not part of the measurement of data set 1, as

seen in Fig. 1(b), which is why it is useful in illustrating missing

wedges. The x- and z-components of the RSM shown in

Figs. 3(b) and 3(d) can be regarded as measurements which

are missing from the data; the y-component in Fig. 3(c) would

not actually be measured along this projection direction but

does not suffer from missing wedges, because it is measured

from every orthogonal direction [the measurements which lie

on the line where y = 0 in Fig. 1(d)]. We can observe how the

amplitudes in Figs. 3(b) and 3(d), which are those of RSM

components orthogonal to â, are smeared out in the directions

orthogonal to the RSM component compared with Figs. 3(a)

and 3(c). Equivalently, the discrete Fourier transforms are

attenuated in the directions of smearing, relative to the more

symmetric Fourier transforms in Figs. 3(e) and 3(g). The

attenuated segments of the discrete Fourier transforms

correspond to missing orthogonal projections, per the

projection-slice theorem.

A set of reconstruction constraints similar to those given by

the projection-slice theorem exist for the general case of

three-dimensional projections in the form of John’s equation

(e.g. Ma et al., 2017), which has been generalized to the case of

arbitrary-rank symmetric tensor fields, resulting in additional

smoothness constraints on the components of the tensor field

(Sharafutdinov, 2012; Nadirashvili et al., 2016). Therefore, to

treat this problem more generally, and not just for discrete,

precisely measured RSM components, we need to assume that

the RSM does not change too quickly across real and reci-

procal space dimensions. Then, given the existence of the

invariant axis {̂, we can define a sampling quality factor on the

reciprocal space sphere based on the density of sampling on

the sphere of projection. To accomplish this, we define a

Friedel symmetric sampling density �½pð�; �Þ� as

�
�
pð�; �Þ

�
¼

1; if the direction pð�0; � 0Þ of the

nearest measurement satisfies

�
�
pð�; �Þ; pð�0; � 0Þ

�
< �;

0; otherwise;

8
>>>>>><

>>>>>>:

with pð�; �Þ being defined by equation (4), and where �ðv; uÞ

is the Friedel symmetric great-circle distance, defined as

�ðv; uÞ ¼ arccos
jv � uj

kvkkuk

� �

; ð5Þ

where v and u are two vectors. The precise choice of the

threshold parameter � depends on assumptions about both the

real and reciprocal space continuity of the sample, the size of

the sample, as well as the chosen reconstruction method. We

chose � under the assumption that our sampling density in well

sampled regions was sufficient to obtain a good tomographic

reconstruction. This was chosen over more quantitative

thresholds such as the great-circle distance implied by the

Nyquist–Shannon sampling theorem applied to tomographic

reconstruction (Natterer & Wübbeling, 2001) for several

reasons. First, we carry out the reconstruction under

smoothness and sparsity constraints, which reduce the

required number of samples. Second, John’s equation for

tensor tomography complicates the assumptions based on

which standard sampling factors are calculated, since they will

also depend on smoothness in reciprocal space (Nadirashvili et

al., 2016), and consequently using standard measures would
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Figure 3
Illustration of the missing wedge problem in SAXSTT. Panels (a)–(d) show a projection along the y-direction of the component of reconstructions of
(a) the absorbance and (b), (c) and (d) the RSM aligned with the the x-, y- and z-directions, respectively. Panels (e)–(h) show the amplitudes, normalized
by the zero frequency component, of the discrete Fourier transforms of the projections as functions of the discrete frequency !. Smearing of (b) and (d)
occur in the z- and x-directions, respectively, but no smearing can be seen for (a) or (c).



give a misleading impression of certainty about the required

number of samples. Therefore, to avoid over-complicating the

analysis, we prefer to use � ½pð�; �Þ� as a relative measure of

sampling density.

Because we sample points on the reciprocal space sphere

orthogonal to the respective points on the sphere of projec-

tion, we can compute a quality factor by evaluating the Funk–

Radon transform, i.e. the normalized integral over the

orthogonal great circle (Funk, 1913), of the sampling density �.

In other words, the quality factor can be computed as

F½��ð�; �Þ ¼
1

2�

Z 2�

0

d� �
�
Cð�; �; �Þ

�
; ð6Þ

where (�, �) specifies a direction in reciprocal space and

C(�, �, �) is defined as in equation (3). Although we defined

C(�, �, �) as giving the directions in reciprocal space

measured, given a real-space direction, the symmetry of this

relationship means that we can invert it to give real-space

directions to measure, given a reciprocal space direction that

we wish to probe. The relationship between directions on a

unit sphere and their unique orthogonal great circle is shown

in Fig. 2. Applying equation (6), the value of the quality factor

at, for example, v1 would be defined by the integral of � over

all directions in C1. Using this quality factor, which lies in the

range [0, 1], where 0 means the lowest possible quality and 1

means the highest possible quality, we may predict the quality

of the tomographic reconstruction at any point in reciprocal

space.

In order to obtain a reconstruction suitable for the analysis

of the missing wedge problem, we want to represent the RSM

on the sphere using smooth local functions on the sphere

which can be projected into our measurement basis. The

locality of the representation is important, since non-local

artifacts (such as the spherical harmonic Gibbs phenomenon)

could otherwise affect the evaluation of the reconstructions in

an unpredictable fashion. We also want to reduce the

measured data into azimuthal bins in order to keep the data

size manageable, and this reduction can be represented by

integrating IS½kqkCð’; �; �Þ; j; k� [equation (2)] over segments

of ’ [as in, for example, Bunk et al. (2009)]. Schaff et al. (2015)

utilized the existence of an invariant point in the RSM for any

given rotation, referring to this point as a ‘virtual axis’.

However, Schaff et al. (2015) employed only limited reduction

of the measured RSM, necessitating extensive sorting of

measurements according to their nearest virtual axis, and

processing of a large number of separate tomographic

problems, followed by subsequent composition and analysis

of the separate reconstructions. De Falco et al. (2021) also

utilized rotational axis invariance, and carried out a recon-

struction using the component of the SAXS measurement

orthogonal to the main axis of rotation to study a subpopu-

lation of mineral particles within a sample. These approaches

utilize the separability of measurements in order to simplify

the tomographic reconstruction problem. However, azimuthal

binning reduces this separability, unless the bins are made very

small, which would work against the purpose of reducing data

size. Thus, rather than aiming to carry out reconstructions at

specific points in reciprocal space and subsequently fitting a

function to these points, we define a grid of Gaussian basis

functions on the unit sphere. This basis set forms a local

representation of spherical functions which is used to inter-

polate measured data into a smooth function on the sphere

(Fornberg & Piret, 2008). Gaussian radial basis functions have

an advantage over the spherical harmonic representation used

by Nielsen et al. (2023) because they do not suffer from the

Gibbs phenomenon or other non-local artifacts (Gelb, 1997).

We define a set of projection matrices from the spherical RSM

to the detector by left-multiplication as

Gi;nm ¼
1

Nn ’
0
m

Z’mþ1

’m

d� exp
� 1; �n; �nð Þ;C �; �i; �ið Þ
� �2

2�2

( )

;

ð7Þ

where Nn is a normalization factor, [’m, ’m+1) parameterizes

the mth detector segment on the unit circle, ’ 0m = |’m � ’m+1|,

(�i, �i) gives the sample orientation, (1, �n, �n) is a unit vector

expressed in spherical coordinates giving the location of the

mode of basis function n, � parameterizes the width of each

basis function, �(u, v) for any two vectors (u, v) is the great-

circle distance defined by equation (5), and finally C(�, �i, �i)

is defined by equation (3), with � being an integration variable

that parameterizes the integration over each segment. The

normalization factor Nn, which evens out irregularities in the

distribution of grid points, is given by the sum of all rows in an

auto-projection matrix Gnn 0 , which can be expressed in a

similar form as equation (7) but evaluated only at one point

rather than integrated over,

N n ¼
X

n0

Gnn0 ¼
X

n0

exp
�
�

1; �n; �nð Þ; 1; �n0 ; �n0ð Þ
�2

2�2

( )

;

where n and n0 both run the indices of all basis functions. In

this work, the basis functions have been distributed on a

modified Kurihara mesh (Kurihara, 1965), with an approxi-

mately equal distribution over the unit sphere. See Fig. S2 of

the supporting information for an illustration of the Gaussian

kernel representation. The modified Kurihara mesh depends

on an integer scale parameter s which determines the number

of basis functions on the hemisphere, according to N = 2s2. The

width parameter was chosen based on a simple heuristic for

smooth and non-oscillatory interpolation, � = �=2s. We chose

s = 9 as the scale parameter, thus yielding N = 162 basis

functions and width parameter � = �=18. These choices yield

smoothly interpolated functions without oscillations, and a

density of basis functions greater than the density of detector

segments, but smaller than the density of projection directions.

For more details on the modified Kurihara mesh and the basis

functions, see Supplementary Note S2. Since Gaussians do not

have compact support, i.e. they do not fall off to zero, the

kernels are local only in a non-strict sense – the vast majority

of the amplitude of each basis function is located within a

small area around its mode, assuming the standard deviation �

is at least a few times smaller than �=2. Because of this locality
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property, we expect the reliability of the coefficient of the

basis function located at (�n, �n), considered across real space,

to be related to the value of the quality factor F [�](�n, �n)

given by equation (6).

Completing the description of the forward model requires

the definition of a John transform matrix for tensor tomo-

graphy, which is treated in greater detail by Nielsen et al.

(2023). The John transform is also known as the X-ray

transform. The resulting set of matrices Pi together define a

transform of a tensor field in three-dimensional space into a

tensor field in projection space, with each i indicating a

projection direction, similarly to how Gi [equation (7)]

describes a transform between detector space and spherical

space. This allows us to describe the system of equations to be

solved for each projection i as

PiXGi ¼ Di; ð8Þ

where Di is matrix of data measured from a single projection.

3. Methods

3.1. Formalism

In order to improve the rate of convergence of the system in

equation (8), we compute a series of weight and precondi-

tioning matrices. Each weight matrix is computed as

Wi ¼ ðPiUGiÞ
�ð� 1Þ

;

where U is a matrix filled with the value 1 everywhere and

A�(� 1) denotes a relaxed element-wise multiplicative inverse

of A,

A�ð� 1Þ
� �

ij
¼

A� 1
ij ; if Aij � �;

�� 1; otherwise;

�

for some predefined � > 0. Similarly, each preconditioning

matrix is computed as

Ci ¼ ðP
T
i VGT

i Þ
�ð� 1Þ

;

where V is a matrix filled with the value 1 everywhere. We may

now write the system to be solved for each projection i as

Ci � PT
i Wi � PiXGið Þ
� �

GT
i

� �
¼ Ci � PT

i Wi �Dið ÞGT
i

� �
;

where � denotes the Hadamard or elementwise product. This

is analogous to the weights and preconditioner used in the

SIRT algorithm for scalar tomography [see, for example,

Gregor & Fessler (2015)], which was utilized by Schaff et al.

(2015) in the separate reconstructions about each virtual axis.

This weight and preconditioner pair serves to normalize the

gradient by accounting for the number of voxels that contri-

bute to each pixel, and the number of projections that

contribute to each voxel. This normalization is done for each

detector segment and each RSM basis function, accounting

also for the detector-to-sphere mapping of equation (7). This

system is then solved through least-squares Nestorov-accel-

erated gradient descent, subject to coefficient-wise total

variation and L1 norm regularization, optimized in the Huber

approximation of each (Huber, 1964), using existing imple-

mentations in the mumott package (Nielsen et al., 2023, 2024).

The reconstruction of the full data set took 630 s, and the

reconstruction of each partial data set took 380 s, on a work-

station using an Nvidia RTX 3060 GPU, an 8-core AMD

Ryzen 7 3700X CPU and 64 GB DDR4 2666 MHz RAM.

3.2. Computations

The integral in equation (7) was computed by quadrature

utilizing the adaptive Simpson’s rule (e.g. Lyness, 1969),

terminating when the largest change in a matrix element,

relative to the largest element in the matrix, fell below 10� 5.

Analysis of the orientation (Fig. 8), the Funk–Radon trans-

form [equation (6)] and computation of the scalar quantities

in Fig. 7 requires transforming the spherical function repre-

sentation from a local Gaussian kernel representation to a

spherical harmonic representation. This is done by Driscoll–

Healy quadrature (Driscoll & Healy, 1994), sampling the

function by evaluating the representation on a dense curvi-

linear grid. The mean amplitude, and the relative anisotropy,

are defined as in Nielsen et al. (2023), i.e. as the spherical mean

and the spherical standard deviation normalized by the mean.

These figures of merit are similar to the ‘symmetric intensity’

and ‘degree of orientation’ used by, for example, Bunk et al.

(2009). The fiber symmetry factor is given by

SðaÞ ¼

P
‘¼ 1

P‘

m¼ � ‘ F½a�
m
‘ Ŷ m

‘ ð�; �Þ
� �1=2

P
‘¼ 1

P‘

m¼ � ‘ F½a�
m
‘

� �1=2 P
‘¼ 1

P‘

m¼ � ‘ Ŷ m
‘ ð�; �Þ

� �1=2
;

ð9Þ

where a is the spherical harmonic representation of a RSM,

F[·] is the Funk–Radon transform, Ŷ m
‘ is a spherical harmonic

basis function and (�, �) is the orientation of the RSM, as

given by the minimal eigenvector of its rank-2 tensor repre-

sentation. This figure of merit evaluates how similar the RSM

is to an ideal ring function (which has all of its amplitude at a

great circle consisting of the points orthogonal to its orienta-

tion). Consequently, it quantifies the extent to which an RSM

exhibits the equatorial symmetry expected from diffuse

mineral scattering in bone.

The orientation error is computed as �(v, u) [equation (5)],

where v and u are two orientation vectors. The orientation

error is thus the angle subtended by the two orientation

vectors, accounting for the Friedel symmetry of orientation

vectors.

3.3. Implementation

The version of mumott used in this work can be found at

https://doi.org/10.5281/zenodo.10708583 (Nielsen et al., 2024).

New versions of mumott are continuously made available

at https://zenodo.org/doi/10.5281/zenodo.7919448. The John

transform in mumott is implemented using a bilinear inter-

polation algorithm which supports multiple channels per voxel

and pixel, written using the CUDA API of the Python package

Numba (Lam et al., 2015). The algorithm employed is based on

the work of Xu et al. (2010) and Palenstijn et al. (2011). Other
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computations were carried out using the Python packages

NumPy and SciPy (Harris et al., 2020; Virtanen et al., 2020).

Two-dimensional plots were created using the package

Matplotlib (Hunter, 2007). The color maps used in this work

are from the package ColorCET (Kovesi, 2015, 2020). The

experimental setup render in Fig. 1 was created using Blender

(Blender Online Community, 2018). All other 3D renders in

this work were created using ParaView (Ahrens et al., 2005).

The two data sets were aligned using the cross-correlation

algorithm of Guizar-Sicairos et al. (2008), and rotated by

modifying the set of vectors used to define the reconstruction

geometry in mumott. The rotations were first determined by

eye and then refined by comparing absorptivity reconstruc-

tions in ParaView.

4. Experiment

The sample chosen for this study was trabecular bone fixed

and embedded in polymethyl methylacryate (PMMA). A cube

was extracted from the bulk and subsequently milled into a

cylinder of diameter 1.2 mm and height 1.2 mm using a

custom-made lathe system (Holler et al., 2020). The sample

was measured at the cSAXS beamline of the Swiss Light

Source (SLS) at the Paul Scherrer Institut (PSI), Switzerland.

The X-ray energy was set to 12.4 keV using a Si(111) double-

crystal monochromator, and the scattering patterns were

recorded on a Pilatus 2M detector placed at a sample-to-

detector distance of 2.17 m. A flight tube, approximately 2 m

in length, was placed in between the sample and detector to

reduce the air scattering. A 1.5 mm steel beamstop inside the

flight tube blocked the directly transmitted beam. The fluor-

escence signal from the beamstop, proportional to the inten-

sity of the impinging X-rays [IT in equation (2), was measured

by a Cyberstar (Oxford Danfysik). This allowed the relative

X-ray transmission through the sample to be measured. The

sample was measured with a beam that had a full width at half-

maximum of 12 mm � 24 mm as measured by a knife-edge

scan. The raster scan used a step size of 25 mm in both the

vertical and horizontal directions, with continuous fly scanning

in the vertical direction. The experimental setup is illustrated

in Fig. 1(a). Two sets of small-angle X-ray scattering tensor

tomography measurements were carried out, each consisting

of 224 scanning SAXS images. The two sets of measurements

are shown on the sphere of projection in Figs. 1(d) and 1(e),

where each marker indicates the direction of the X-ray beam

[given by p(�, �) in equation (4)] in the sample coordinate

system.

During the first set of SAXSTT measurements, the base of

the cylinder sample was glued to the end of a PMMA needle,

using a hot water-soluble glue (Norland Blocking Adhesive

107). Before the second SAXSTT experiment, the sample was

glued with UV-glue (Norland Optical Adhesive 81) to a

second pin, before detaching the first pin by placing the

sample in hot water. The second pin was placed at approxi-

mately 90� to the first pin, measured around the axis of the

initial direction of the beam, see Fig. 1. In total, 1716960

scattering images were measured. The measurement of the

first data set took 1218 min, and the measurement of the

second data set took 1364 min.

Figs. 4(a)–4(c) show the directions of measurement on the

unit hemisphere of projection while Figs. 4(d)–4( f) show the

quality factor F defined by equation (6) on the reciprocal

space hemisphere. Note that Friedel symmetry is accounted

for in the hemispheric representation. The reciprocal space
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Figure 4
Points on the hemisphere of projection and theoretical quality factors. (a) Probed points on the sphere of projection in first measurement. (b) Probed
points in second measurement. (c) Combined points from both measurements. (d) Quality factor in reciprocal space from first data set. (e) Quality factor
from second data set. ( f ) Quality factor from combined data sets. The dotted lines show great circles at longitudes 0�, �30� and �60� with the y-axis as
the meridian. The dashed lines show small circles with elevations of 0�, �30� and �60� with the x-axis as the equator.



quality factors follow the expected symmetry, where

measurements along the entirety of a great semicircle result in

a quality factor of 1 at the point orthogonal to this semicircle.

The lowest obtained quality factor is 0.5, since the lowest

possible coverage (for data set 1) of a great semicircle occurs

when the semicircle lies at a single longitude and varies only in

latitude. Such a semicircle is still covered by measurements at

a fixed longitude, the latitude (tilt, for data set 1) of which span

the range [� 45�, 45�] — thus, in the worst-case scenario, half

of the semicircle’s total arc length of 180� is covered.

For the reconstruction and analysis, a q-range of 0.597–

0.607 nm� 1 was used, corresponding to a d-spacing range of

10.36–10.53 nm. This range was used due to artifacts in the

second measurement at lower q-ranges, possibly due to the

water-soluble glue penetrating the outer layer during the

remounting of the sample; see Supplementary Note S3, as well

as Supplementary Figs. S4 and S5, for details.

5. Results

The results of comparing a reconstruction of the full data set,

which combines data sets 1 and 2, with reconstructions that

include, respectively, only data set 1 or 2, are shown in Fig. 5.

Valid voxels for comparison, i.e. voxels containing trabecular

bone sample, were identified based on the mean amplitude of

each RSM in the full dataset reconstruction. The location of

each marker in Figs. 5(a) and 5(b) corresponds to the mode of

a RSM basis function, see equation (7), while the color of the

marker corresponds to the error computed from comparing

the coefficients of that basis function to the corresponding

coefficients of the full dataset reconstruction. The markers are

overlaid on the reciprocal space quality factor. In Figs. 5(c)

and 5(d), the error for the amplitude at each point on the

reciprocal space sphere is shown. The distribution of errors

in the reciprocal space amplitude follows the quality factor

closely, with errors above approximately 0.1 occurring exclu-

sively in the region where the quality factor is smaller than 1.

The errors for the basis set coefficients in Figs. 5(a) and 5(b)

are larger than the errors of the amplitude in Figs. 5(c) and

5(d), which is especially apparent when comparing the upper

region of Fig. 5(a) with the same region in Fig. 5(c). This is

explained by the fact that the basis set functions are not

orthogonal but overlap. This means that some variations in the

basis set coefficients cancel out when the amplitude of each

RSM function is evaluated for the calculation of the error.

In Fig. 6 the reconstructed RSMs can be seen in a spherical

function glyph render for data set 1 only [Fig. 6(a)], data set 2

only [Fig. 6(b)] and the full data set [Fig. 6(c)]. Each rendered

glyph shows the RSM reconstructed in that voxel, colored by

its amplitude, and scaled by the Funk–Radon transform of the

amplitude. Because the scattering at this q-range is dominated

by diffuse equatorial mineral scattering, deforming each glyph

by the Funk–Radon transform allows its shape to visually

indicate the orientation of the underlying nanostructure.

As illustrated in the insets [Figs. 6(d) and 6(e)], which show

the error distribution on the RSM, data set 1 has the best

sampling and therefore the most reliable reconstruction along

the y-axis, i.e. along the main tomographic axis (Fig. 1). Data

set 2 has the smallest error along the x-axis. The effect of this

on the reconstructed 3D RSM is illustrated in the enlarged
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Figure 5
Error distribution for each RSM basis function. (a) Coefficient errors for data set 1. (b) Coefficient errors for data set 2. (c) RSM errors for data set 1.
(d) RSM errors for data set 2. The markers have been placed over the corresponding theoretical quality factor from Fig. 4. The errors in (a) and (b) were
calculated by computing the overall Pearson correlation coefficient for each basis function coefficient when comparing the partial and full data sets. In (c)
and (d) the correlation coefficients were computed for the RSM amplitude at each coordinate. The correlation factors for the coefficients and the RSM
amplitudes are not the same, since the Gaussian radial basis functions of the basis set overlap. The dotted lines show great circles at longitudes 0�, �30�

and �60� with the y-axis as the meridian. The dashed lines show small circles with elevations of 0�, �30� and �60� with the x-axis as the equator.
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http://doi.org/10.1107/S1600577524006702


views below each render. The respective upper enlarged views

shows RSMs that are better reconstructed by data set 1, as

data set 2 has difficulty reconstructing the amplitude near the

y-axis, leading to increased asymmetry in the equatorial

scattering due to missing wedges. The lower enlarged views

show RSMs which are better reconstructed by data set 2, as

data set 1 has difficulty reconstructing amplitudes near the

x-axis, introducing additional texture in the equatorial scat-

tering. Both data sets have some difficulty reconstructing

amplitudes that lie along the z-axis, but the difficulty is overall

greater for data set 1, as indicated by the distribution on the

spherical inset [Fig. 6(d)], compared with the spherical inset

[Fig. 6(e)], which shows the amplitude error from Figs. 5(c)

and 5(d), respectively, rendered on a spherical surface.

It is likely that the primary explanation for this larger error

is that the measurements close to the x-axis on the sphere of

projection which result in the large errors near the z-axis must

pass through the thickest part of the sample. This means that

the transmission is small, around 4%, compared with values of

20–50% for thinner parts of the sample. Consequently, noise in

the transmission will have a relatively large impact on these

measurements, see equation (2).

Three scalar quantities for each of the three reconstructions

can be seen in Fig. 7: the mean RSM amplitude, the relative

anisotropy (similar to quantities often referred to as degree of

orientation) and a fiber symmetry factor. The fiber symmetry

factor quantifies the degree to which the scattering is equa-

torial, see Section 3 and equation (9) for details. These

quantities are of interest in evaluating the RSMs, and there-

fore their similarity between partial and full data set recon-

structions are of importance in evaluating the impact of the

missing wedge problem. The mean amplitude in the top row

shows no large variations, except for slightly higher values at

the edges of protrusions in data set 2, which may be due to

the leeching of water-soluble glue into the sample during

remounting, see Supplementary Note S3. The mean amplitude

is an important scalar value which is used for q-resolved

reconstruction and further analysis of nanostructure infor-

mation contained in the SAXS curve (Liebi et al., 2021;

Casanova et al., 2023; Silva Barreto et al., 2024). The relative

anisotropy is also very similar for all three reconstructions,

with almost no discernible differences. Somewhat greater

differences can be seen in the fiber symmetry factor, especially

in the right-hand-side interface region where the insets in

Fig. 6 are located. The full data set has a high fiber symmetry

factor in this area except at the very center of this interface,

whereas the partial data sets appear to have a lower factor

around the edges. Thus, the fiber symmetry factor is more

sensitive to missing wedges than the ordinary relative aniso-

tropy. This can also be seen in Fig. 6, where additional texture

within the ring of the equatorial scattering appears as an

artifact of the missing wedge. For quantitative plots of the

distribution of the quantities, see Supplementary Note S4.

One of the most important properties that can be retrieved

from a SAXSTT measurement is the local orientation, and it is

therefore of interest to see how much uncertainty the missing

wedge problem introduces in determining this. Fig. 8 shows

glyph renders of the orientation error for each partial recon-

struction. The orientation error is defined in Section 3, using

equation (5). Most orientations are determined to within an
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Figure 6
Spherical function glyph render of reconstructions. (a) Partial data set 1 and a reciprocal space sphere showing the error distribution compared with the
full data set. (b) Partial data set 2 and a reciprocal space sphere showing the error distribution compared with the full data set. (c) Full data set. (d) Error
distribution in reciprocal space for data set 1. (e) Error distribution in reciprocal space for data set 2. The color of each spherical function indicates the
RSM amplitude, whereas the shape indicates the orientation. The shape is computed from the Funk–Radon transform of the RSM amplitude. The insets
show two sets of RSMs that the partial reconstructions each have difficulty reconstructing, compared with the full data.
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error of no more than 10�, as seen qualitatively for the blue

and green colors in Figs. 8(a) and 8(b) and quantitatively in

the density plots Figs. 8(c) and 8(d). The enlarged areas shown

in green and orange rectangles show a region in the trabecular

bone where differently oriented domains are intersecting. This

is the region where the orientation error is the largest in both

partial data sets. Comparing with Figs. 7(d)–7(i), it can be seen

that the larger orientation errors lie in regions where both the

relative anisotropy and the fiber symmetry are small. This

means that the orientation is less well defined, and may

include multiple orientations within a voxel. This is consistent

with the region containing an interface of domains of different

orientation. The same tendency is seen in the overall RSM

error which is largely similar to the distribution of the orien-

tation errors (see Supplementary Note S1).

Fig. 9 illustrates a single slice from the enlarged region in

Fig. 8 with larger errors, as well as low values of relative

anisotropy and fiber symmetry. The Funk–Radon transform of

the RSM shows that in this interface region multiple orien-

tations are present inside single voxels. The reconstruction

with a model which does not impose strong symmetries, such

as the grid of Gaussian radial basis functions used here, opens

up the possibility to extract multiple orientations in each

voxel. However, comparing datasets 1 and 2, as well as the full

data set illustrates that the missing wedge problem influences

the accuracy of the reconstructed RSM in the partial data

set reconstructions. The partial data set reconstructions in

Figs. 8(a) and 8(b) have more voxels with apparent multi-

orientation, and with a greater relative amplitude in the

secondary orientation when compared with the full data set

reconstruction in Fig. 8(c). This is likely due to missing-wedge

smearing of certain parts of the RSM amplitude across real

space. Thus, while multi-orientation analysis can be used to

precisely localize this interface in a full-data reconstruction,

the missing wedge problem makes this localization much more

difficult in partial-data reconstructions.

6. Conclusions

In this work we have devised a scheme for complete acquisi-

tion of SAXSTT data, and applied it to the analysis of a

sample of trabecular bone. Reconstructing incomplete as well

as complete data sets and comparing them across both real

and reciprocal space, we conclude that the understanding of
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Figure 7
Volume renders of scalar quantities. Panels (a)–(c) show the mean amplitude of the RSMs for partial data sets 1 and 2, as well as for the full data set.
Panels (d)–( f ) show the relative anisotropy of the RSMs. Panels (g)–(i) show the fiber symmetry factor of the RSMs.
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data incompleteness in terms of the missing-wedge problem,

as indicated by the computed quality factor, is consistent with

the observed errors in the reconstruction. Analyzing the

orientations as well as scalar quantities, we find that the impact

of the missing-wedge problem in a typical SAXSTT analysis is

limited, but appreciable in edge and interface areas. In parti-

cular, the impact on mean RSM amplitude and relative

anisotropy is very limited, except for apparent artifacts in the

mean. Moreover, we observe that the impact of errors can be

reduced by choosing the sample orientation during acquisition
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Figure 8
Orientation errors. (a) Glyph render of orientations and errors of partial data set 1 (b) Glyph render of orientations and errors of partial data set 2.
(c) Probability density plot of orientation errors of partial data set 1. (d) Probability density plot of orientation errors of partial data set 2. The color of
the glyph indicates the orientation error in that voxel compared with the full data set, with each glyph being scaled by the relative anisotropy in the
partial reconstruction. The insets highlight an interface area where the different tendencies of the orientation errors for (a) and (b) can be seen, with (a)
showing larger errors for orientations closer to the y-axis and (b) showing larger errors orientations closer to the x-axis. The density plots show the
orientation errors for high (greater than 0.6) and low (less than 0.6) relative anisotropy, showing that the error is greater in low relative anisotropy
regions.

Figure 9
Multiple orientations in interface region. (a) Data set 1, renders of Funk–Radon transform of anisotropic part of the RSM. (b) Data set 2. (c) Full data
set. (d) Location of interface region in the sample. Maxima in the Funk–Radon transform indicate the orientation of each RSM, and voxels with multiple
local maxima appear to have multiple orientations. There are more apparent multi-orientation voxels in the partial reconstructions in (a) and (b), which
is likely due to missing-wedge smearing of certain parts of the RSM amplitude across real space.



in a way that takes into account the missing wedge problem,

i.e. by orienting the sample such that as much scattering as

possible is close to the main axis of rotation. Prior under-

standing of the nanostructure and expected RSM of a sample,

such as acquired by scanning SAXS, is crucial in this process.

This understanding could also be employed in various

measures to reduce the impact of the missing wedge problem,

e.g. by enforcing a particular RSM symmetry. Such symmetries

can be encoded in the SAXSTT basis set [as in Liebi et al.

(2018), which used a spherical harmonic model that enforced

rotational symmetry about an axis]. One disadvantage of

encoding symmetries in the basis set is that more complex

textures (such as the multi-orientation investigated in this

work) cannot be captured. However, symmetries can also be

selectively enforced (based on a robust quantity, such as the

relative anisotropy) in a post-processing step, or encouraged

through regularization.

The further exploration of these possibilities and their

impact on reconstruction quality is an interesting avenue for

future research. Finally, we remark that the complete acqui-

sition scheme devised in this work is likely to be useful for

specialized applications, such as the analysis of interface

regions with overlapping domains of multiple orientations, or

the reconstruction of especially complicated RSMs.
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