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The phase problem in the context of focusing synchrotron beams with X-ray

lenses is addressed. The feasibility of retrieving the surface error of a lens system

by using only the intensity of the propagated beam at several distances is

demonstrated. A neural network, trained with a few thousand simulations using

random errors, can predict accurately the lens error profile that accounts for all

aberrations. It demonstrates the feasibility of routinely measuring the aberra-

tions induced by an X-ray lens, or another optical system, using only a few

intensity images.

1. Introduction

It is well known that the performances of the optical elements

in a synchrotron beamline are limited by surface errors

(Yabashi et al., 2014; Schroer & Falkenberg, 2014; Cocco et al.,

2022). Surface errors originate aberrations in the X-ray beam,

modifying its properties and limiting the required capabilities

(usually focusing, but also affecting collimation and even

energy resolution). Moreover, with the advent of a new

generation of storage-ring sources (like the EBS-ESRF) and

X-ray free-electron lasers, the requirements on the optics

are more and more demanding, as beam quality (small emit-

tance, beam coherence) dramatically improves. Now, beam

degradation originating from any defect (either from fabri-

cation, surface errors or from contamination) is amplified with

a coherent source. The optics must accomplish its role in

preserving the good qualities of the wavefront (Cocco et

al., 2022).

Whenever possible, surface errors must be minimized

during the fabrication process. After fabrication, they are

measured by metrology laboratories available at most

synchrotron facilities – see, for example, Assoufid et al. (2005)

and Rommeveaux et al. (2005, 2007). This ex situ character-

ization is fundamental for acceptance of the optics before

installation in the beamline, but in many cases is not sufficient

to determine the aberrations that will be produced in the

X-ray beam. This is because the optical elements are dynamic

and can move (e.g. bendable mirrors) or their configuration

changes (e.g. transfocators that use a large number of X-ray

lenses). Moreover, it is always useful to measure the errors

using the same probe (light wavelength) that will be used in

operation: X-rays. It is therefore convenient to make in situ

(or at-wavelength) beamline measurements for the char-

acterization of optical errors. This can be done using direct or

indirect measurements. Examples of direct methods are

wavefront sensors (Mercere et al., 2005; Mikhaylov et al., 2020)

or X-ray phase-sensitive techniques such as speckle-tracking
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(Berujon et al., 2020a,b) or ptychography (Schropp et al.,

2013). All of them require a dedicated infrastructure and

experimental plan to retrieve the phase of the wavefront that

encodes the information of the surface deformation profile

(thus the errors). That means solving the ‘phase problem’,

i.e. to determine the phase of a wave based on measurements

of its intensity.

Indirect methods retrieve the wavefront aberration from

the intensity images of a good quality beam, without using a

specific instrument or technique. Examples of indirect

measurements are the retrieval of an optical surface using

images from a scanned slit (Zhang et al., 2013), or looking at

the beam evolution recording images at different positions

like the beam caustics presented by Celestre et al. (2022).

Indirect measurements of surface errors are much less accu-

rate than direct in situ measurements or characterization from

metrology laboratories but have the advantage that they can

be obtained in a short time using only instrumentation avail-

able at the beamline. They are also limited in spatial resolution

(highest spatial frequency), which depends on the quality of

the beam used as a probe and the detector point spread

function. However, the main problem with indirect measure-

ments is the difficulty obtaining a good representation of the

surface deformation profile (thus the errors) from intensity

images. The optical surface errors are encoded in the wave-

front phase, which is not directly measurable. The aberrations

are related to wavefront deformation, therefore produced by

surface errors and also encoded in the wavefront phase. Phase

retrieval, or determination of the phase, requires the use of

different techniques and algorithms, and several intensity

images.

We analyze here an optical system to focus a synchrotron

beam using X-ray lenses. It is derived from a typical beamline

configuration at ESRF, in particular for ID18. This system was

the object of previous investigations (Sanchez del Rio et al.,

2022). We solve the problem of phase retrieval from a

collection of images measured at different distances around

the focus by using a trained neural network. This work, based

on simulations, demonstrates the feasibility of measuring the

aberrations originated by the X-ray lenses using only intensity

measurements in the neighborhood of the focal position. For

that, we train a convolutional neural network (CNN) with

synthetic profiles obtained from random variations of some

generation polynomials. The shape of these profiles is

compatible with what is generally found for embossed 2D

lenses (Roth et al., 2017) regardless of their radius or curva-

ture (Celestre et al., 2020, 2022; Seiboth et al., 2020; Dhamgaye

et al., 2020).

Machine learning is ubiquitous and used in large facilities,

like in tokamaks (Degrave et al., 2022), accelerator control

(Edelen et al., 2020) for synchrotron radiation, setting inser-

tion device parameters (Sheppard et al., 2022), etc. It is also

quite popular for the analysis of aberrations with wavefront

sensors (Nishizaki et al., 2019; Möckl et al., 2019; Vanberg et

al., 2019). In particular, the analysis of aberrations with deep

learning for 3D microscopy applications (Saha et al., 2020) has

inspired and guided us in our research.

2. Methods

2.1. Description of the optical system

The optical configuration studied here consists of a single

X-ray lens illuminated by a monochromatic X-ray beam

emitted by an undulator in the EBS-ESRF storage ring. It is

a simplified part of the future EBSL1 beamline. The X-ray

source is a U18 undulator (period �u = 18 mm) with Nu = 138

periods placed in the center of a straight section of the EBS

storage ring.1 The gap is tuned to have the first harmonic at

E = 7 keV (deflecting parameter K = 1.851). We consider a Be

compound refractive lens (CRL) with parabolic profile and

overlapping error profile (described later). The lens is located

at a distance p = 65 m from the source. A first CRL imple-

ments a single lens with radius at the apex R = 50 mm ( f =

3.952 m at 7 keV), and the aperture (diameter) is a = 1500 mm.

A second CRL tested uses ten lenses of the same radius and

aperture, therefore with a focal distance ten times shorter.

Observation screens are placed in the vicinity of the geome-

trical focus, at an approximated distance f downstream of

the lens.

The beamline also included other elements that, for

simplicity, are not simulated. Two pairs of slits are not

included. The first one at 36 m from the source (primary slits)

selects the central cone of the undulator or part of it. We

directly simulate the full central cone, therefore this slit is not

needed. Another set of slits is at 65 m from the source (CRL

entrance slit). It is considered fully open. The beamline CRL

is for a monochromatic beam, meaning that a double-crystal

monochromator (DCM) is placed upstream from the CRL.

The typical Si 111 DCM has a resolution of approximately

�E/E ’ 10� 4, therefore less than 1 eV at the used energy of

7 keV. The chromatic aberrations within this small bandwidth

are negligible; therefore it is reasonable to use strictly

monochromatic wavefronts, as we do. In theory, the mono-

chromator does not modify the focusing if the crystals have

the ideal (plane) optical surfaces. However, the thermal load

makes the surfaces non-planar, thus introducing aberrations.

The monochromators are designed to minimize these errors to

limits to produce an irrelevant loss in energy resolution that is

typically accompanied by no change in focusing. In the

eventual case that there is some residual curvature, it would

mostly affect the radius of curvature (defocus, which can be

corrected) and not the other aberrations with higher spatial

frequency.

2.2. One-dimensional wavefront model of the system

The complexity of modeling accurately and realistically a

synchrotron system resides in the fact that the beam is

partially coherent. Completely incoherent beams can be

simulated using ray tracing, and fully coherent beams with

wavefront propagation. Partial coherence uses wavefront

simulations, but considering multiple wavefronts. Two
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1 We used the electron beam sizes and divergences �x = 29.7 mm, �x0 =
4.37 mrad, �y = 5.29 mm, �y0 = 1.89 mrad, corresponding to beam emittances "x =
130 pm rad, "y = 10 pm rad and beta functions �x = 6.8 m, �y = 2.8 m.



methods are used: multielectron Monte Carlo simulation

(Chubar et al., 2011) and coherent mode decomposition (Glass

& Sanchez del Rio, 2017). We recently discussed an interest in

studying the system in one dimension and demonstrated

the possibility of performing coherent-mode decomposition

(Sanchez del Rio et al., 2022) using fewer computer resources.

We decided to first use this 1D method to study the system

in the vertical direction. The intensity distribution of the

refracted beam is recorded at NP different propagation posi-

tions (downstream from the lens) in an interval around the

focal length f � �d, which for the single-lens CRL is

3.592 m � 0.5 m and for the multi-lens CRL is 0.359 m

� 0.05 m. The CRL is simulated by applying the thin element

approximation (Celestre et al., 2020; Sanchez del Rio et al.,

2022), using the cumulated profile of the CRL (adding one or

ten parabolic profiles for the single-lens CRL and the multi-

lens CRL, respectively) plus the error profile (that considers

the cumulated error of all lens interfaces). The OASYS

(Rebuffi & Sanchez del Rio, 2017) simulation workflow is

shown in Fig. 1.

2.2.1. Sampling error profiles. In a simulation, a thin layer

of the lens material (Be) with a given profile is added to the

parabolic profile of the lens. Lens refraction is simulated using

the thin object approximation [see, for example, Celestre et al.

(2020) and Sanchez del Rio et al. (2022)]. Our main objective

is to retrieve this profile from the refracted beam intensities. In

the thin element approximation, the error profile in projection

approximation �z is directly proportional to the phase � it

impinges on the wavefront: � = � ð2�=�Þ ��z, where � is the

wavelength and � is the index of refraction decrement as in

n = 1 � �. Hence, obtaining the error profile from intensity

measurements can be seen as a way of addressing the phase

problem (Taylor, 1981; Klibanov et al., 1995). To do that, we

will train a CNN, but for that we need a large collection of lens

error profiles. We describe here how to parametrize and

sample the error profiles to have realistic sampled data. In

terms of machine learning [see, for example, Chollet (2017)],

this is part of the feature engineering, a process of using your

knowledge about the data and the CNN to make the algorithm

work better by applying hardcoded (non-learned) transfor-

mations to the data before it goes into the model. Our

experience measuring and analyzing 2D lens profiles indicated

that, although their topography looks complex, they can be

fitted with great accuracy using Zernike polynomials – see

comparisons in Fig. 5 to 8 of Celestre et al. (2020). In practical

terms, it allows expressing our 2D mesh data by only a few

Zernike coefficients applied to the polynomial basis (the

Zernike polynomials). There are other benefits when using

Zernike polynomials: they have some physical meaning, as

most of them are associated with a usual aberration (e.g.

spherical aberration, coma, etc); and they are orthonormal,

thus facilitating the expansion of any profile by just projecting

onto the bases (Mahajan, 2011). In this expansion, the coef-

ficients are non-correlated. Zernike coefficients are often used

in deep learning experiments in optics to parametrize the

aberrations, typically for wavefront sensing [e.g. Saha et al.

(2020)] or in the alignment of the optics [e.g. with Kirkpatrick-

Baez mirrors (Luiz et al., 2022)].

Error profile samples are created by defining a set of

Zernike coefficients with random values. In our case, using

Noll notation (Noll, 1976), we consider the first 15 polynomials

excluding the four first ones (piston, horizontal tilt, vertical tilt

and defocus) but adding the secondary and tertiary spherical

aberrations (Noll numbers 22 and 37). In our case, for 1D

simulations in the vertical plane, we are not interested in those

with azimuthal dependency, thus ending with seven poly-

nomials2 [6, 8, 10, 11, 14, 22, 37] – these include astigmatism,

trefoil, coma, quadrafoil and primary spherical aberrations.

For each one, a random coefficient should be created. Instead

of applying uniform sampling for all of them in the same

interval [as done by Saha et al. (2020)], we prefer to customize

the ranges and distributions for using empirical experience.

We thus sample coefficients using the distributions [n, n, n, u,

n, u, u] (n = normal, u = uniform) and intervals [� = 0.5, � = 0.5,

� = 0.5, �2.3, � = 0.05, �1.0, �0.5] � F micrometres, with the

factor F = 5. We sampled NP 2D mesh surfaces and wrote the

vertical profile to a file, to be used in our wavefront simula-

tions.

The Zernike coefficients are orthonormal on a domain that

is a disk of radius unity. If we limit the domain to another
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Figure 1
OASYS workspace containing a flowchart with a single beamline simulation.

2 In fact, polynomial 12 has been removed as it looks to be easily represented
by the others (in the Gram-Schmidt process this was reproduced with a lot of
noise).



shape (e.g. rectangle), or, in our case, we reduce the dimen-

sionality (1D vertical cuts), the Zernike polynomials no longer

form an orthonormal set of polynomials. To solve this incon-

venience, to inject into the CNN a consistent input, we

orthogonalized our base of 1D cuts of Zernike polynomials

using the Gram-Schmidt method, to obtain a new orthonormal

1D basis. Therefore, the coefficients to be passed to the CNN

are those of the Gram-Schmidt base, and not those of the 1D

Zernike cuts. This does not change the sampled error profiles

used in the wavefront simulations, but changes the target

values used to train and test the CNN.

2.3. Deep learning system

Once a collection of NS sampled profiles has been prepared,

the wavefront simulation is run for each one. For each sample,

we calculate the intensity distribution at the NP propagation

images. Each simulated intensity plot has 1500 points. To save

data volume, we reduce the number of points by interpolation

to NA = 256 points (making sure we do not miss characteristic

features, structures or artifacts in the intensity distribution).

Therefore, the NS runs of the wavefront simulator produce a

stack of NS � NP � NA float number values, that constitute

the data for the CNN. The target data is a stack of NS � 7

values, containing the Gram-Schmidt coefficients. The data

stack is saved in an .hdf5 file and the target data in a .txt file to

be passed to the CNN. Running the wavefront simulations for

NS = 5000 lasted about 2 h in a CPU using a single coherent

mode. For partial coherence simulations, we propagated ten

coherent modes that contain more than 99% of the total

intensity; therefore it takes about ten times more running

time. Fig. 2 shows an example of how the data look for the first

sample (defined with no deformation) and for another run. It

can be appreciated that ‘big’ changes in profile always corre-

spond to ‘small’ changes in the intensity profile. The deep

learning method should be able to detect these small differ-

ences and exploit them to retrieve the correct profiles.

We constructed a CNN using Keras (Chollet et al., 2015),

inspired by the architecture of PHASENET (Saha et al., 2020).

Our CNN comprises five blocks stacked together. Each block

contains two convolutional layers sized 3 � 3, with a stride of

1, and the number of channels doubling in each block, starting

with 8. Additionally, each block includes a max-pooling layer

applied only along the lateral dimensions. Following these

convolutional layers, two dense layers with 64 channels each

are incorporated, followed by a final dense layer with the same

number of neurons as the Gram-Schmidt coefficients to be

predicted (which is seven in our scenario). We utilized the

ReLU activation function for all layers, except for the last

layer, where linear activation was applied. This configuration

results in a relatively concise CNN model containing a total of

430655 parameters.

To prevent overfitting, we looked at the accuracy of the

training and validation data (a 20% fraction) and verified a

uniform parallel increasing accuracy on the training and

validation sets. If needed, we rerun the training with increased

NS. The possibility to increase more and more NS (i.e. having

an unlimited number of samples) is the great advantage of

using synthetic data for training the CNN, and makes the use

of regularization techniques to avoid overfitting unnecessary.

We minimize the mean squared error between predicted

and ground truth coefficients and train each model for NE

epochs and batch size 64 on a GPU (NVIDIA Tesla V100-

SXM2-32GB) using the RMSprop optimizer with learning rate

10� 4 for a total training time of less than 1 h.

The design and optimization of a deep learning system is

more an art than a science (Chollet, 2017) and the experience

is a real asset. We describe here our procedure, which follows

the experience found in the literature. As discussed before, we
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Figure 2
Examples of lens error profiles and intensity profiles. (a) Three error
profiles, (b) their corresponding intensities at the center of the propa-
gation interval, and (c) propagation or caustic plot in the full interval for
error profile number 5 (color in log scale). The CRL is made of a single
lens, and only the first coherence mode is used.



started with a model similar to PHASENET (Saha et al., 2020)

with some differences to fit our needs:

(i) We use a 1D propagation model, therefore our input

data has dimensions (NP, NA) = (64, 256) instead of

(32, 32, 32). We then use Conv2D instead of Conv3D layers.

(ii) Our simulation process based on wavefront propagation

is more complex and CPU-demanding; therefore it has been

uncoupled from the training. Therefore, we run first the

simulations in a CPU, and then the training in a GPU.

(iii) We use relu instead of tanh activation (a preliminary

run showed much better convergence).

We use (2/3)NS samples for training (80% for true training

and 20% for validation) and (1/3)NS for testing.

3. Results for the 1D propagation model

3.1. Results for a CRL made of a single lens

The accuracy of the training and validation data is shown in

Fig. 3 versus the number of epochs. We made the first run with

NS = 1000. It can be appreciated in Fig. 3(a) how the learning

slope reduces at about 300 epochs. The accuracy of the vali-

dation data reaches only 79%. Clearly, more samples are

needed. We then run NS = 5000 samples. The accuracy of the

test data improved to 93% [Fig. 3(b)]. We consider that this

CNN model works satisfactorily and label it as our standard

configuration. Further tests will follow to study how some

changes in the configuration and parameters may influence

the results.

3.2. Results for a CRL made of ten lenses

This case implements ten lenses, with a shorter f. The

accuracy of the training and validation data is shown in

Fig. 3(c). A much worse accuracy (73%) as compared with the

case of a single lens (93%) cn be seen. The number of samples

has been raised to NS = 10000. The reason for the worse

training is due to the higher absorption of the CRL in the

multi-lens CRL case: the cumulated absorption over the ten

lenses reduces significantly the tails of the intensity distribu-

tion to almost zero, thus the system does not respond to

changes in the error profile in this zone. This will be further

discussed in the next section.

4. Discussion

We analyze here the influence of several parameters,

concerning the learning procedure and also the influence of

some physical aspects, like the use of a partially coherent

beam.

4.1. Use of an orthonormal basis

The question is whether the use of an orthonormal basis for

expressing the target coefficients is important. We tested the

system using as targets in the training procedure the Zernike

1D coefficients instead of the Gram-Schmidt ones. As

expected, the results are not so good: although accuracy is

only 2% lower (91% instead of 93%), the predicted profiles

agree visually less well with the true profiles (Fig. 4). However,

a system using decomposition in non-orthogonal coefficients

also works well.

4.2. Capacity of the CNN

We analyzed the possibility of reducing the capacity of the

CNN. Our 1D model is much simpler than the full 2D model of

Saha et al. (2020), thus each sample requires fewer data (we

have NP � NA = 64 � 256 float-numbers instead of 323 in

PHASENET). The question is whether we can strongly reduce

the capacity of the CNN. The answer is yes, but we would need

more samples to obtain the same accuracy as in our standard

configuration. If we remove the last convolutional block

(which has the highest capacity) we obtain for the CRL system

with a single lens an accuracy value of 86% (instead of 93%

for the standard configuration).
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Figure 3
Accuracy of the training data and validation data, for (a) a single-lens
CRL, NS = 1000, (b) a single-lens CRL, NS = 5000, and (c) a multi-lens
CRL, NS = 10 000.



4.3. Effect of the number of image planes and their position

Thinking about the possible experimental realization of the

system discussed here, it is important to economise the

number of images to be acquired (NP), and also the scanning

interval. Ideally, the highest NP and the higher the interval, the

better. However, the experimental setup limits the interval,

and the recording time limits NP. This is also discussed by Saha

et al. (2020), who show that a reduction in the number of

images is possible at the price of a poorer quality learning and

the minimum number of images is somehow related to the

number of target coefficients in use. We trained the CNN with

fewer image planes by just picking the calculated data with

frequency 2 (NP = 32) and 4 (NP = 16), resulting in an accuracy

of 84% and 85%, respectively (compared with the initial

93%). We also looked at what happens if we scan the image

plane out of focus. We used the calculations on the 32 planes

downstream from the focus, and obtained good accuracy

(92%) but with a much different learning curve with a step-

down at about 700 epochs. Stopping the learning at this point,

we obtained an accuracy of 90%, also showing that the system

still works well.

4.4. Partial coherence

The quality of the intensity images (the features in our

CNN) is extremely important. The presence and detectability

of some structures are fundamental to retrieving the target

profile. Consequently, a beam with less quality will produce

worse images and therefore slow down the CNN learning

(thus requiring more cycles or more data). In the limit, if the

quality of the beam is too bad, the system simply does not

work.

Several physical factors define the quality of the beam. We

are affected by the emittance and coherence. In most works

related to wavefront sensors the beam is ‘prepared’ to record

the point spread function. Usually, this is achieved using a

pinhole that will produce something that approximates a point

source. In our case, we do need a pinhole or slit, and we can

use the direct synchrotron beam due to the low emittance of

the fourth generation of synchrotron storage rings. The other

parameter to look at is the coherence. Synchrotron radiation

is not fully coherent, and is less and less coherent with

increasing photon energy. In the case analyzed here, the

coherent fraction in the vertical direction of the undulator

source at 7 keV is about 0.6 [see Sanchez del Rio et al. (2022)

for a full discussion], therefore the beam cannot be considered

fully coherent. An analysis of the coherence can be made

using coherent mode decomposition (ibid). This means that

the source is decomposed into a number of coherent modes

(wavefronts) that should be propagated one by one and their

individual contributions added to the intensity of the image.

We re-run the simulation using partial coherence. Ten modes

are enough to model the partially coherent beam with high

quality (representing more than 99% of its intensity).

Although the volume of data created for the CNN training is

the same, the calculation requires more than ten times more

time. The new results are used to train the CNN with the same

parameters as the standard model. In Fig. 5 we can see the

learning curves, manifesting a clear underfitting, but arriving

at an accuracy value of 92%. Increasing more and more (up to

25000) the number of epochs we see that the system improves.

It is about NE = 10000 when the accuracy of the training and

validation sets cross. However, although the accuracy on the
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Figure 5
Accuracy of the training data and validation data, for partial coherence
calculations using NS = 5000, 64 planes downstream from focus, 25 000
epochs. The inset shows the crossing point around 10 000 epochs.

Figure 4
Some original and fitted (predicted) profiles from samples in the test data.
In dashed blue the original profile. In dotted orange the standard model
NS = 5000 (accuracy on test data 93%) using Gram-Schmidt bases. In
dotted green the same model was trained with targets using non-ortho-
gonal 1D Zernike bases (accuracy on test data 91%). Note that, although
the difference in accuracy is only 2%, there are appreciable differences in
the profiles. Each profile has been shifted vertically for clarity, and the
corresponding horizontal shifted axis is displayed.



validation set no longer increases, it does not decrease, ending

in a value of 97%. Fig. 6 shows some of these profiles for

comparison.

Therefore, the use of a partially coherent beam (instead of a

fully coherent beam) just slows down the learning process but

it is not a limiting factor for retrieving the target coefficients

with high accuracy. Although it is dangerous to extrapolate

this conclusion to different systems, it is very useful to know

that simulations with full coherence are good approximations

to model the system. Thus, they can be used for creating

synthetic training data with a much reduced computational

cost.

4.5. Effect of the abscissas interval in the error profiles

The learning process for the CRL with ten lenses is worse

[see Fig. 3(c)] than for the single lens [Fig. 3(b)]. This is related

to the illuminated area. Indeed, the larger absorption of the

ten lenses means that the illumination just after the CRL is

smaller for the multi-lens CRL as compared with the single-

lens CRL. Obviously, the CNN is not sensitive to the changes

in the error profiles in the zone that has no intensity. To test

this, we adjusted the abscissas interval of the generated

random profiles to better match the illuminated area. As

expected, we obtained better results (see Fig. 7).

4.6. Zernike coefficients from full random recipe

The algorithm samples the coefficients for the different

Zernike polynomials using a phenomenological model

resulting from the analyses of experimental error profiles

made in previous works. We tested this model against the full

random model (all coefficients are created using a random

uniform distribution in [0, 5 mm]). The algorithm based on the

phenomenological recipe works better (72.6% accuracy) than

a fully random generation of the coefficients from uniform

distributions (56.2% accuracy). This is because our model

weights in some way the error profile with the transmitted

intensity profile. This is true for the 1500 mm window which, as

discussed before, includes non-illuminated areas. If we reduce

the window, both algorithms produce similar results.
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Figure 7
Five original (dashed blue) and fitted or predicted (dotted) profiles from samples in the test data for the multi-lens CRL case. (a) Error profiles defined
over a window of 1500 mm; accuracy on test data 72.6%. (b) Error profiles defined over a window of 800 mm; accuracy on test data 84.7%. Each profile
has been shifted vertically for clarity, and the corresponding horizontal shifted axis is displayed.

Figure 6
Some original and fitted (predicted) profiles from samples in the test data.
We used here multimode partial coherence. In blue, the original profile; in
orange, the predicted profiles using 1500 epochs (accuracy on test data
92.3%); in green, the predicted profiles using 24 000 epochs (accuracy on
test data 96.7%). Each profile has been shifted vertically for clarity, and
the corresponding horizontal shifted axis is displayed.



4.7. Effect of inaccuracies in error profiles on the

propagated images

We have always measured the accuracy of the CNN by

comparing the estimated error profile with the true error

profile. Even when the accuracy is not excellent, for example

in Fig. 7(a), the guessed profile usually separates from the true

profile only at the edges. In these areas the transmitted

intensity is low and therefore the effect of this discrepancy is

small in the propagated intensity profiles. To illustrate this

phenomenon, we compared the propagated wavefronts using

the true error profile and the estimated error profile for the

middle profile in Fig. 7. The results show a very similar

intensity distribution (Fig. 8).

5. Conclusions

Relying solely on the intensity of the propagated beam at

different distances, we have illustrated how neural networks

could accurately predict the surface error of a lens system.

While this methodology has been demonstrated in other fields,

such as 3D microscopy [see, for example, Saha et al. (2020)],

we not only expanded this approach into the X-ray range but

also investigated the influence of the synchrotron radiation

partial coherence. Furthermore, we examined the significance

of utilizing aberration coefficients from an orthonormal basis

to consistently train the neural networks.

The trained CNN is a robust model that works satisfactorily

in many conditions. Many tuning parameters that can be

changed in the CNN and also physical phenomena like the

number of planes used or the effect of partial coherence have

been analyzed and, although showing more or less sensitivity

to the accuracy of the results, they always produce reasonably

good results. This feasibility study opens the way to other

more complete analyses. The next effort will consist of dealing

with 2D wavefronts and images. The usefulness of the CNN

trained with synthetic data and being fed with experimental

images will be addressed in a future work. Last, but not least,

this methodology is not restricted to refractors (our X-ray

lenses) but can also be applied to any focusing system with

reflectors and diffractors, and is independent of the multiple

origins of the surface shape errors (fabrication process,

clamping and gravity sag, thermal load deformations).

6. Data availability

Data underlying the results presented in this paper are

publicly available at https://github.com/oasys-esrf-kit/

Paper_JSR_zt5005.
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Figure 8
Intensity distributions for the multi-lens CRL at the central plane of the
propagation interval for the middle profile in Fig. 7. The three distribu-
tions refer to the true sampled profile, the guessed profile for a window of
1500 mm, and the guessed profile for a window of 800 mm. We only
observe minimum differences in the intensity distributions.
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