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Autonomous methods to align beamlines can decrease the amount of time spent

on diagnostics, and also uncover better global optima leading to better beam

quality. The alignment of these beamlines is a high-dimensional expensive-to-

sample optimization problem involving the simultaneous treatment of many

optical elements with correlated and nonlinear dynamics. Bayesian optimization

is a strategy of efficient global optimization that has proved successful in similar

regimes in a wide variety of beamline alignment applications, though it has

typically been implemented for particular beamlines and optimization tasks. In

this paper, we present a basic formulation of Bayesian inference and Gaussian

process models as they relate to multi-objective Bayesian optimization, as well

as the practical challenges presented by beamline alignment. We show that the

same general implementation of Bayesian optimization with special considera-

tion for beamline alignment can quickly learn the dynamics of particular

beamlines in an online fashion through hyperparameter fitting with no prior

information. We present the implementation of a concise software framework

for beamline alignment and test it on four different optimization problems for

experiments on X-ray beamlines at the National Synchrotron Light Source II

and the Advanced Light Source, and an electron beam at the Accelerator Test

Facility, along with benchmarking on a simulated digital twin. We discuss new

applications of the framework, and the potential for a unified approach to

beamline alignment at synchrotron facilities.

1. Introduction

Synchrotron light sources are invaluable scientific tools that

allow the probing of materials across bulk, micrometre and

nanometre scales. These facilities perform a wide variety of

research, with applications in the study of catalysis, biological

function and materials science. Several next-generation

synchrotron and free-electron laser facilities are scheduled to

receive upgrades which will increase their brilliance by several

orders of magnitude (Borland & Blednykh, 2018; Chenevier &

Joly, 2018; Galayda, 2018; White et al., 2019). However, more

advanced experiments will require more precise and complex

optical setups.

Beamlines consist of a large number of optical components

(e.g. mirrors, magnets, apertures), each with many degrees of

freedom (corresponding to e.g. motors that translate, rotate

and bend the components; see, for example, Fig. 4). These

degrees of freedom can be highly correlated or degenerate,

making beamline alignment in essence a high-dimensional

(D >
� 10) and highly nonlinear optimization problem.
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This is typically done manually, and the design of optical

systems is typically done to separate some of these dimensions

and make manual alignment more feasible, e.g. by prefocusing

and refocusing with a secondary-source aperture and a pair

of Kirkpatrick–Baez mirrors. Nevertheless, as the complexity

and precision of beamlines grow, the development of efficient

and robust automated alignment methods is necessary for the

efficient operation of light sources now and in the future. Such

methods allow us to reach an acceptable level of alignment

more quickly and robustly than with manual methods when

realignment is necessary, saving preparation and commis-

sioning time which could be used for experiments. They

further allow us potentially to find better global optima than

an operator could discover manually by considering all

dimensions of the beamline simultaneously. They also repre-

sent the first step toward a fully autonomous beamline

(Maffettone et al., 2023).

Some attempts at beamline alignment apply methods like

genetic and differential evolution (Xi et al., 2015, 2017; Rakitin

et al., 2020; Zhang et al., 2023), attempt to match beamline data

to an online model (Nash, Abell, Nagler et al., 2022; Nash,

Abell, Keilman et al., 2022) or use families of commonly used

optimization algorithms (Breckling et al., 2022; Morris et al.,

2022). These approaches are limited in that they give no

guarantee of convergence to a global optimum. They also

make no consideration of minimizing the number of function

evaluations, and beamline optimization almost universally

involves a prohibitively expensive-to-sample function, both on

the real beamline (relying on the movement of precise motors,

which can be slow) and on simulated digital twins [relying on

computationally intensive ray-tracing (Sanchez del Rio et al.,

2011) or Fourier-based methods (Chubar et al., 2013)],

meaning that their use is intractable for large numbers of

dimensions.

In contrast to the classical methods above, algorithms based

on machine learning construct and fit a model to understand

the effects of changing the parameter inputs, as well as the

interaction of the output beam qualities (e.g. flux, spatial

resolution, energy resolution, polarization, coherence),

leading to a more efficient search of the parameter space.

Some machine learning methods like reinforcement learning

(Velotti et al., 2022) suffer from similar drawbacks to the

methods above in that they may take too long to learn enough

to be useful, by which point beamline parameters and hyper-

parameters may have drifted substantially. From a practical

point of view, then, we should greatly prefer alignment

methods that converge as quickly as possible and rely on little

to no prior input.

A machine learning framework well suited for expensive-

to-sample functions is Bayesian optimization, which performs

well with no prior information on optimization problems that

are expensive-to-sample, high-dimensional and potentially

very noisy. Bayesian optimization has been applied in a wide

variety of contexts such as synchrotron light sources (Rebuffi

et al., 2023; Morris et al., 2023), free-electron lasers (Duris et

al., 2020), particle colliders (Cisbani et al., 2020) and laser

plasma-based ion sources (Dolier et al., 2022). These imple-

mentations, however, are typically applicable to single

experiments; indeed, much of the difficulty in implementing

machine learning solutions to any problem is the trade off of

specificity and generality, where an algorithm that is specific

enough to be effective in some context is too specific to be

applied generally.

Bayesian optimization is highly generalizable in the choice

of the kernel model used to describe the parameter space, and

the fact that many facilities are moving toward shared soft-

ware environments and shared data acquisition protocols like

Bluesky (Allan et al., 2019; Rakitin et al., 2022) suggests the

benefit of a general agent. This paper demonstrates an

implementation of a Bayesian agent that can learn the

dynamics and idiosyncrasies of a particular beamline and can

thus be deployed across many different beamlines with rela-

tively little implementation cost by applying the same code to

a range of optimization problems at different synchrotron and

non-synchrotron facilities.

In Sections 2, 3 and 4 we present a general but brief

formulation of multi-objective Bayesian optimization with

Gaussian process regression as it relates to this work [for a

more thorough introduction see Frazier (2018)]. Section 5

addresses beamline-specific considerations for Bayesian opti-

mization and Section 6 presents their implementation in a

software package. Section 7 describes the application of the

code on beamlines across the National Synchrotron Light

Source II and Accelerator Test Facility at Brookhaven

National Laboratory and the Advanced Light Source at

Lawrence Berkeley National Laboratory, and presents the

results of benchmarking on a simulated digital twin. Finally,

Section 8 discusses the future development of the algorithm.

2. Bayesian optimization

Consider an expensive-to-sample black-box function f(x) with

d-dimensional inputs x 2 Rd. In finding the right input x to

achieve the maximal value of f(x), it is untenable to utilize

optimization methods that rely on lots of function samples. We

can address this by treating the function as a stochastic process

(which describes a distribution over all possible realizations of

the function) and using Bayesian inference to construct a

posterior distribution p(f), i.e. describing how likely it is that

every possible function f is the true function.1 If we sample the

function at points x = {x1, x2, . . . , xn} and observe values y =

{f(x1), f(x2), . . . , f(xn)}, then we can use Bayesian inference to

write our posterior belief about f given that we observe x and y

as

pðf j x; yÞ ¼
pðy j f ; xÞ pðf Þ

pðy j xÞ
; ð1Þ

where the quantity p(y j f, x) (called the likelihood) is the

probability of observing values y at inputs x for a given

function f, the quantity p(f) (called the prior) is our knowledge

about the probability of a given function f before we have seen
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1 In the case of no noise, the support of p(f j x, y) consists of only those
functions f for which f(x) = y.



any data, and the quantity p(y j x) (called the marginal like-

lihood), represents the distribution of y after marginalizing

over the distribution of f. We know that the marginal like-

lihood must be

pðy j xÞ ¼

Z

pðy j f ; xÞ pðf Þ df ð2Þ

because the sum of all the probabilities in the posterior must

sum to unity.

A representation of conditioning a prior on observations to

construct a posterior is shown in Fig. 1. Each iteration of

Bayesian optimization then consists of three steps:

(i) Estimate the posterior p( f j y, x) from some historical

observations (x, y).

(ii) Use the posterior to find the most desirable point x?

within some predefined bounds.

(iii) Sample that point and add it to our historical obser-

vations.

Constructing a posterior from observations in the first step

is almost always done with a Gaussian process (GP), the

particulars of which are described in Section 3. Quantifying

the desirability of candidate points in the second step is done

using acquisition functions which are described in Section 4. A

concrete example of an iteration of Bayesian optimization as

applied to minimizing the Himmelblau function is shown in

Fig. 2, using a GP model and an acquisition function that

computes the expected improvement in the cumulative

maximum by sampling each candidate point.

3. Gaussian process models

A GP is a stochastic process where every collection of vari-

ables y has a multivariate normal distribution; for notational

simplicity and without loss of generality, we assume

throughout this paper that all of our processes are zero mean.

The GP is described entirely by the covariance matrix �

describing the observations y. A GP model consists of

assigning a covariance matrix to a set of sample data y at

inputs x and computing the posterior mean and posterior

variance at every other input. In practice, the covariance of the

process is not known a priori and is approximated by

constructing and fitting a kernel.

3.1. Kernels and hyperparameter optimization

We model the covariance matrix with a kernel matrix

K(x, x0, �), where

Kij ¼ kðxi; xj; �Þ; ð3Þ

where k is a kernel function, xi and xj are two inputs, and � is a

set of hyperparameters which tune k. The only constraint on a

kernel matrix K is that it is positive definite (i.e. it is a

symmetric matrix whose eigenvalues are all strictly positive).

A simplifying assumption is to require that the kernel is

stationary, that is, that the correlation of the function at two

inputs depends only on their distance,

kðxi; xj; �Þ ¼ kðjxi � xjj; �Þ: ð4Þ

To construct our kernel, we take the hyperparameters which

maximize the marginal likelihood

� ? ¼ argmax
�

p f ðxÞ j �ð Þ: ð5Þ

For a GP, the marginal likelihood is given by

p y j x; �ð Þ ¼ exp
n
�

1

2

�
yyKðx; x; �Þ

� 1
y

� log det Kðx; x; �Þ þ n log 2�
�o
; ð6Þ

pðyÞ ¼
1

ð2�Þ
n
j�j½ �

1=2
exp �

1

2
yyKðx; x; �Þ

� 1
y

� �

: ð7Þ

3.2. Posterior estimation

Once we have our kernel K(xi, xj, �) and optimized hyper-

parameters � ?, we can use GP regression to construct

posteriors. Given our measurements y at points x, our
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Figure 1
The prior distribution, noiseless posterior distribution and noisy posterior distributions for a GP with covariance h f(xi) f(xj)i = M5/2(| xi � xj | /4), where
M�(r) is the Matérn function as defined in equation (19). For each distribution, we draw four random functions (colored lines). The black line represents
the mean of each distribution, while the dark- and light-shaded regions represent the 1� and 2� intervals, respectively.



posterior estimate of the distribution of the process at points

x� is a Gaussian distribution with posterior mean h f ðx�Þi =

Af(x) and posterior covariance h f ðx�Þ � f ðx�Þi = B, where

A ¼ Kðx�; x; � ?ÞKðx; x; � ?Þ
� 1
; ð8Þ

B ¼ Kðx�; x�; � ?Þ � AKðx; x�; � ?Þ: ð9Þ

The vector of variances for each individual point is the diag-

onal of the posterior covariance B.

3.3. Noisy models

It may be the case that our observations are noisy, i.e. that

observing the function at points x will yield y = f(x) + � where �

is a random noise term. If we assume that � is homoskedastic

and Gaussian, then we can account for the noise by adding a

constant noise variance �2 to the diagonal of the kernel K. A

small noise level (or ‘jitter’) is desirable even for noiseless GP

models to make the Cholesky decomposition of the kernel a

well conditioned problem.

4. Acquisition functions

The acquisition function AðxÞ is a model of a given objective

over possible inputs which, given a posterior p( f j x, y),

quantifies the desirability of sampling a given input x. For each

iteration of the optimization, we optimize the acquisition

function over the inputs as

x? ¼ argmax
x

A pð f j x; yÞ½ �: ð10Þ

Acquisition functions over posteriors are typically cheap to

compute and so classical algorithms (like LM-BFGS) are used

to optimize them. (In regimes involving large volumes of data,

however, computing and optimizing acquisition functions in

parallel can be computationally expensive. We note the

benefits of GPU-accelerated acquisition function optimiza-

tion, though we do not implement it in this work.) Acquisition

functions can be either analytic or non-analytic; below, we

show benefits and examples of either approach.

4.1. Analytic acquisition functions

Analytic acquisition functions are directly computable from

the posterior; as the posterior for a GP is determined entirely

by the mean � and variance �, they may be expressed as

AðxÞ ¼ f �ðxÞ; �ðxÞð Þ: ð11Þ

The simplest example is the expected mean

EMðxÞ ¼ �ðxÞ; ð12Þ

where on every iteration the algorithm will sample the point

with the largest expected mean. A less risk-averse example is

the expected improvement

EIðxÞ ¼ max f ðxÞ � f ?; 0½ �
� �

; ð13Þ

which is our expectation for how much the cumulative

maximum f ? will increase if we were to sample x. We can

compute this directly as

EIðxÞ ¼

Z1

f ?

y�ðyÞ dy ¼ �ðxÞ �ðzÞ þ z�ðzÞ½ �; ð14Þ

where z = [�(x) � f ?]/�(x), and �(z) and �(z) are the

probability density function and cumulative distribution

function, respectively, of the standard normal distribution.

Because repeated sampling of a point will strictly decrease the

posterior variance, this algorithm will (for well behaved

problems) eventually explore every point in the parameter

space.

4.2. Monte Carlo acquisition functions

Some useful acquisition functions cannot be computed

directly from the mean and variance of the posterior. Acqui-

sition functions that involve sampling from the posterior to

estimate some ensemble are more flexible and often more
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Figure 2
An example of an iteration of a Bayesian optimization algorithm trying to maximize the negated Himmelblau function f(x1, x2) =
� ðx2

1 þ x2 � 11Þ2 � ðx1 þ x2
2 � 7Þ2, whose true global optima are marked as white circles. Using existing data points (far left) and the assumption that the

function is distributed as a GP, we can use Bayesian inference to compute a posterior consisting of a mean (center left) and error (center right), upon
which we can compute an acquisition function (far right) which informs us of the best points to sample. The black-edged diamonds superimposed on the
acquisition function show the best eight points to sample, optimized in parallel and with the optimal routing represented by the red line.



robust. One example of this is in selecting multiple points, as in

when we want to find the best n points to sample given some

analytic acquisition function AðxÞ: presumably they should be

spread out to better cover the parameter space, but there is no

obvious way to quantify and thus compute that analytically.

We address this interdependence with a Monte Carlo acqui-

sition function, where we might evaluate the acquisition of

some collection of points by sampling from the posterior and

taking an ensemble average of the result. There is a large

benefit in sampling multiple points at once for beamline

optimization, as it allows us to find a batch of points to sample

and then optimally route the beamline parameters between

them to reduce travel time.

Note that all analytic acquisition functions have a Monte

Carlo equivalent; an example is shown in the far right-hand

panel of Fig. 2, where we use the q-expected improvement

(q refers to the q-batching formalism used to denote the axis

of Monte Carlo samples) as an acquisition function to find a

parallel set of eight inputs to sample next. Monte Carlo

methods also allow for more sophisticated information theory-

based acquisition functions like predictive entropy search

(Hernández-Lobato et al., 2014), maximum entropy search

(Wang & Jegelka, 2017) or joint entropy search (Hvarfner et

al., 2022).

4.3. Multi-objective optimization

Optimization problems often require managing trade offs.

For example, a common beamline design consists of a

secondary-source aperture (SSA), which cuts off some flux in

the interest of having a smaller and tighter beam. One method

of multi-objective optimization is scalarization, which uses a

function that maps a vector output to a scalar output, leading

to one quantity to be maximized. In this work, we use affine

scalarizations (i.e. assigning a weight to each objective and

summing them) to construct a single fitness function over

which to optimize an acquisition function.

There are, however, are other useful ways to carry out

multi-objective optimization, such as Pareto efficient searches

(i.e. finding the set of inputs where no one objective can be

increased without decreasing some other objective). But while

fully multi-objective methods do allow for more flexibility in

the alignment, that flexibility is not compatible with an

autonomous beamline, which must decide on a single best

beam and thus must collapse the beam to a single fitness

function.

5. Beamline-specific considerations

In this section, we look at beamline-specific considerations

that improve the practical application of Bayesian optimiza-

tion to the automated alignment problem. In this paper, we

consider the common optimization problem of maximizing the

beam power density, defined as

�ðxÞ ¼
�ðxÞ

�xðxÞ �yðxÞ
; ð15Þ

where x represents the beamline inputs to optimize and where

�(x), �x(x) and �y(x) are the input-dependent flux, horizontal

spread and vertical spread of the beam, respectively. These

parameters are inferred from an image of the beam profile,

taken using either an area detector (e.g. Figs. 6 and 8) or a

beam stop and microscope (e.g. Figs. 5 and 9). In practice, it is

better to model the fitness as

log �ðxÞ ¼ log �ðxÞ � log �xðxÞ � log �yðxÞ; ð16Þ

because the distribution in variations in the beam flux and size

are both roughly log-normal and so their logarithms are better

described by a GP. It also preserves the convexity of the

problem and, being inherently dimensionless, allows us to

scalarize affinely many simultaneous objectives as a single GP.

5.1. A kernel for latent beamline dimensions

Input parameters for beamlines can be highly coupled, as

shown in Fig. 3. In fitting GPs to beamline data, we adopt a

kernel of the form

kðxi; xj; �Þ ¼ f D exp Sðxi � xjÞ
�
�

�
�

� �
; ð17Þ

where f(r) is some radial function, D is a diagonal matrix with

positive entries, expð�Þ is the matrix exponential and S is a

skew-symmetric matrix. Because the matrix exponential of a

real skew-symmetric matrix is an orthogonal matrix, this

kernel represents a norm-preserving transformation in the

parameter space by exp(S) and a scaling of each dimension in

research papers

1450 T. W. Morris et al. � Autonomous alignment of beamlines J. Synchrotron Rad. (2024). 31, 1446–1456

Figure 3
(Upper left) The result of changing the positions of two coupled
dimensions of the TES beamline. (Upper right) A quasi-random sample
of 16 points from the ground truth. (Lower left) A non-latent GP fitted to
the parameter space fitted to the sampled points. (Lower right) A latent
GP fitted to the same points, which correctly infers the latent dimensions.



the new basis by D. The hyperparameters � define the entries

of D and S, which for a d-dimensional parameter space have

d and d(d � 1)/2 degrees of freedom, respectively, together

defining a total transformation matrix T = Dexp(S) with

d(d + 1)/2 degrees of freedom.

This kernel design is guaranteed to be positive definite so

long as f is a positive-definite function (from Bochner’s

theorem, a function f is positive definite if it is the Fourier

transform of a weakly positive function on the real line). A

commonly used positive-definite function in kernel construc-

tion is the Matérn function, which can be written as

f ðrÞ ¼ a2 r=‘ð Þ
�
K� r=‘ð Þ; ð18Þ

where K�(z) is the modified Bessel function of the second kind

of order �, and a, ‘, � > 0 are hyperparameters. For our

purposes, ‘ as a lengthscale parameter is redundant and can be

subsumed into the hyperparameters defining T. This leaves us

with a normalized form,

f ðrÞ ¼ M�ðrÞ ¼ a2r�K�ðrÞ: ð19Þ

Bessel functions are expensive to compute for arbitrary �,

so we constrain our kernel to � = nþ 1=2; n 2 Z, for which

equation (19) reduces to the product of a polynomial and an

exponential. Unless otherwise specified, we use � = 5/2

throughout this paper.

5.2. Dirichlet-based validity constraints

The application of Bayesian optimization relies on reliable

diagnostic feedback, which is often not a realistic assumption

for real-life scenarios. Undesirable behavior in the diagnostics

can occur both sporadically (e.g. in the case of a beam dump or

a hardware failure) or systematically (a certain beamline

orientation causes the beam to miss a mirror or detector). We

want to be able to classify regions of the parameter space as

invalid and encode that knowledge into our acquisition func-

tion, but we do not want a single unrepresentative glitch to

rule out an otherwise worthy part of the parameter space. For

this purpose a probabilistic classification model is ideal, and it

is also easily able to adjust expectation- and entropy-based

acquisition functions.

We use the classification method outlined by Milios et al.

(2018) which fits a Dirichlet distribution to the data from

which we can generate class probabilities. This method has the

benefit of avoiding expensive posterior sampling (as in the

case with stochastic variational methods) at the expense of not

being able to quantify uncertainty.

A Dirichlet distribution of order N is defined as

f ðp; �Þ ¼
�
P

i �i

� �

Q
i � ð�iÞ

Y

i

p
�i � 1
i ; ð20Þ

where the vector parameter p = {p1, . . . , pN} describes the

probabilities of classes in an N � 1 simplex (so that
P

i pi = 1)

and the concentration parameters � = {�1, . . . , �N} para-

meterize the concentration of the distribution in that simplex.

We use transformed GPs to model the concentration para-

meter �i for each classification i according to Milios et al.

(2018). As the order-N Dirichlet distribution is the conjugate

prior to the N-categorical distribution, we can obtain the

probability of a beamline input being valid as

�iðxÞ ¼
�iP
�i

; �i ’ Gammað�i; 1Þ; ð21Þ

where Gamma(�, �) is the Gamma distribution and � i are

samples from that distribution. Using this probability, we can

weight any objective-based acquisition function to prefer

inputs that lead to valid outputs. This approach has the added

benefit of being generalizable to any number of classification

labels, which could be made more nuanced than a binary

model of validity.

5.3. Sampling expense

Bayesian optimization is particularly useful when sampling

the objective function f(x) is expensive. This is strictly true for

some beamlines where computing a diagnostic is expensive,

e.g. those that involve intensive data processing or a compli-

cated meta-routine like a knife-edge scan (Ji et al., 2019).

Many beamlines, though, have no latency in the diagnostics

and are only expensive to sample because they are expensive

to move around. This is due to the high precision of the

motors, which must move slowly so as not to damage the

optics, and need time to settle to prevent backlash and make

sure that the equipment is exactly at its setpoint; this is typi-

cally of the order of several seconds.

A good acquisition function, then, should take into account

travel time. A simple solution is to optimize a Monte Carlo

acquisition function over a ‘batch’ of points between which

we can compute the most efficient route using e.g. or-tools

(https://github.com/google/or-tools). Ideally, the acquisition

function would consider the variable time cost of traveling to a

given set of points, but the computational cost of this can

be unwieldy.

5.4. Hysteresis

Another challenge to machine learning-based optimization

is hysteresis, which manifests at beamlines when the actual

position of some input varies from the desired input. This can

happen when the motor approaches the same position from

different directions, primarily from physical backlashes in the

hardware. A core assumption of Bayesian optimization is that

the relevant function f(x) always yields the same output

(modulo some noise). Hysteresis can be mitigated by over-

estimating the noise level, or with a more thorough treatment

of uncertainty in the inputs of the underlying GP (Liu et al.,

2024). We note the benefit of motor encoders, which can lead

to more precise and consistent control of beamline hardware.

5.5. Composite objectives

Even though we combine estimates of the different beam

attributes into a scalar fitness to be maximized, it is still

beneficial to construct and train three separate models for the

flux, horizontal spread and vertical spread, a method typically

referred to as composite optimization. This allows us to take
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advantage of how different inputs affect different outputs;

indeed, many beamlines are designed to separate components

that tune the flux from those that tune the focus. This can

significantly reduce the effective dimensionality of the align-

ment problem.

6. Implementation

6.1. Beamline optimization (Blop)

Our beamline alignment tools are implemented in the Blop

Python package (https://nsls-ii.github.io/blop), relying on the

BoTorch Python package (Balandat et al., 2020). In Blop we

develop a customized kernel which fits to latent beamline

dimensions outlined in Section 5.1 and weight common

acquisition functions by the probabilistic constraint outlined in

Section 5.2. We also use BoTorch for model fitting and

acquisition function optimization. The algorithm is used in

terms of an agent, which we instantiate with motors and

diagnostic equipment. We can ‘tell’ the agent about the values

of pre-defined objectives (e.g. beam height, coherence) and

‘ask’ it for new points to sample. The agent wraps the steps of

Bayesian optimization into a single customizable routine

[implemented in Python as a .learn() method], which

yields a plan accepted by the Bluesky experiment orchestra-

tion system (in effect, a single button that can be pressed to

align the beamline). This routine can be tailored to each

beamline (or to each alignment problem for a given beam-

line). Encapsulating the optimization as a single process

simplifies the alignment from the point of view of the user,

making experimentation more accessible to users who have

less familiarity with a given beamline (i.e. hardware, data

acquisition, control systems) or with software in general.

6.2. Bluesky

Bluesky (Allan et al., 2019; Rakitin et al., 2022; https://

blueskyproject.io/) is a software package that allows for the

orchestration and execution of experiments from Python and

is in the process of being adapted by various light sources. We

have designed Blop with Bluesky in mind, as it can use Bluesky

to automatically take data, analyze it and optimize the inputs

with the same feedback and control systems used for beamline

experiments. This allows the Blop agent both to command and

control the beamline, leading to an easier implementation, but

note that Blop is not limited to Bluesky facilities and can be

made simply to ‘command’ the experiments using only its ‘ask’

and ‘tell’ methods.

Bluesky has mainly been developed by NSLS-II, with a

growing international collaboration at multiple facilities

where it is used and expanded. The adoption of a single

standard for experimental control and analysis across many

facilities allows us to apply the same automated alignment

tools with relatively little effort.

7. Experiments

7.1. Alignment of a Kirkpatrick–Baez mirror system on the

TES beamline

The TES beamline (Northrup, 2019) is a tender X-ray

microspectroscopy beamline at the National Synchrotron

Light Source II (NSLS-II) with an energy range of 2–5.5 keV

and a beam size which can be tuned between 5 and 20 mm. The

X-rays are produced from a bending magnet source and pass

through an Si(111) double-crystal monochromator. A toroidal

mirror prefocuses the beam onto a secondary source aperture

(SSA), after which the beam is refocused onto the sample by a

pair of Kirkpatrick–Baez (K-B) mirrors in the endstation

chamber. A schematic of the beamline is presented in Fig. 4.

We optimize for the flux density on the sample by allowing

each K-B mirror and the toroidal mirror to pitch and translate

into and out of the beam for a total of six degrees of freedom.

Fig. 5 shows an example of the beam feedback provided by the

camera, with the alignment being gradually improved.

7.2. Alignment of a Johann spectrometer on the ISS beamline

The Inner Shell Spectroscopy beamline (ISS, 8-ID) beam-

line (Leshchev et al., 2022) is designed for X-ray absorption

spectroscopy and operando and in situ characterization of

materials. The ISS is a damping wiggler beamline with an

Si(111) monochromator capable of producing energies

between 4.9 and 33 keV. The beamline is currently developing

high-resolution capabilities, with the recent commissioning of

a five-analyzer Johann-type spectrometer where, after hitting

the sample, the beam is reflected back onto an area detector

by several crystals [see Tayal et al. (2024) for an overview of

Johann-type spectrometers]. Maximizing the flux on the area

detector maximizes the resolution of the spectrometer and so

we seek to colocate the reflections of the crystals onto the

same point. We use three crystals to focus the beam onto a
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Figure 4
A schematic of the TES (8-BM) beamline at NSLS-II. This representation shows the many optical components that make up modern beamlines, with
each optical component having many degrees of freedom that must be optimized in concert in order to carry out experiments effectively.

https://nsls-ii.github.io/blop
https://blueskyproject.io/
https://blueskyproject.io/


two-dimensional area detector. Fig. 6 shows the optimization

of the three-crystal system.

7.3. Photon transport optimization on the Advanced Light

Source beamline 5.3.1

Beamline 5.3.1 at the Advanced Light Source at Lawrence

Berkeley National Laboratory is a research and development

beamline. It is a bending magnet beamline, operating in the

tender X-ray regime (2.4–12 keV photon energy range),

where the instrument controls have recently been upgraded to

the EPICS/Bluesky framework.

The photon transport system (Fig. 7) comprises a first

focusing mirror, a monochromator and a few apertures. The

focusing mirror is a vertically deflecting toroidal mirror,

creating an image of the source at the sample. The mirror is

gold-coated with a nominal grazing angle of 5 mrad and

mirror-to-object (p) and mirror-to-image (q) distances of p =

q = 12 m. The corresponding tangential and sagittal radii of

curvature are, respectively, Rt = 2400 m and Rs = 60 mm. The

mirror is bendable along the tangential direction to adjust the

vertical focus position. The monochromator is a channel-cut

double-crystal Si(111) monochromator providing a 25 mm

vertical offset. There are a set of four-jaw slits immediately

after the monochromator to block the straight-through beam

and another set of four-jaw slits immediately before the

sample position (12 m downstream of the toroidal mirror).

For beam measurement, we used a diamond-based X-ray

beam monitor (ClearXCam from Advent Diamond) with

which we computed the flux as the sum of all pixels. We added

a preference for a rounder beam (with some coupling between

horizontal and vertical size) by defining an ‘effective area’

metric as

EAðxÞ ¼ �2
widthðxÞ þ �

2
heightðxÞ: ð22Þ

The full scalarized fitness for the effective power density then

becomes

f ðxÞ ¼ log f ðxÞ � log EAðxÞ: ð23Þ

Manual optimization is rendered difficult by the interplay

between the toroidal mirror angle, monochromator height and

angle, all of them changing the beam height and interfering

with the four-jaw slits. Using the described automated align-

ment, we were able to maximize the power density on the

sample in under 5 min, with a final beam size of 1 mm �

0.3 mm (horizontal � vertical, FWHM), close to the theore-

tical limit calculated by ray tracing (Fig. 8) and with an

improvement in the intensity of more than a factor of two over

our best effort using manual alignment.

7.4. Alignment of an electron beam at the Accelerator

Test Facility

The Accelerator Test Facility (ATF) is a user facility at

Brookhaven National Laboratory offering the combination of

an 80 MeV electron beam synchronized with a terawatt pico-

second carbon dioxide laser (Pogorelsky & Ben-Zvi, 2014).
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Figure 6
Four different beam configurations on the NSLS-II ISS (8-ID) beamline
during automated alignment, where the upper left-hand panel shows the
initial beam and the lower right represents the optimal alignment. In this
alignment test, we adjust the translation of a central crystal and the
translation and pitch of two ancillary crystals for a total of five degrees of
freedom to maximize the flux density of the total beam on the area
detector.

Figure 5
Four different beam configurations on the NSLS-II TES (8-BM) beam-
line, where the upper left-hand panel shows the initial beam and the lower
right represents the optimal alignment. In this alignment test, we adjust
the translation and rotation of each of the horizontal and vertical Kirk-
patrick–Baez mirrors and the pitch and vertical translation of a toroidal
mirror, for a total of six degrees of freedom to maximize the flux density
of the beam.



This gives it the capability to develop cutting-edge electron-

beam techniques, including ultrafast electron diffraction and

microscopy (McDonald, 1988), free-electron laser techniques

including direct laser acceleration, and using Compton scat-

tering as a high-energy X-ray source (Batchelor et al., 1990).

We modulate three bending quadrupole electromagnets and a

solenoid to manipulate the shape of the beam, for a total of

four degrees of freedom.

We employ the alternate fitness function in equation (23)

which was also used to align the ATF. Fig. 9 shows an example

of the beam feedback provided by the in-house beam diag-

nostic, with the alignment being gradually improved.

7.5. Simulated alignment of the TES beamline

The use of most beamlines is extremely competitive, and

benchmarking alignment methods by performing ensembles

of different runs is too time-intensive to be viable. Instead, we

use digital twins of beamlines using the Sirepo–Bluesky back

end (Rakitin et al., 2023), allowing us to optimize the beam

with the same Bluesky-based code used to align real beam-

lines. We use a ray tracing-based beamline simulation program

called Shadow (Sanchez del Rio et al., 2011) to model beam

propagation, which does not recreate diffraction effects but

accurately recreates the behavior of the beam under mis-

alignments. Even this heuristic method is slow, requiring

several seconds per scan and thus many hours for compre-

hensive benchmarking. We note the development of acceler-

ated approximate models of beam propagation under

misalignments, which would aid the efficient development of

automated alignment tools (Nash et al., 2023).

For benchmarking, we consider the digital twin of the TES

beamline at NSLS-II. In the eight-dimensional case, we use

the six degrees of freedom outlined in Section 7.1, but also

allow the toroidal mirror to yaw and translate horizontally for

a total of eight degrees of freedom. Each K-B motor can move

up to �0.25 mm from a fiducial starting point, while the range

of each toroidal motor is bounded by the points where the

misalignment of that motor causes the flux through the SSA to

fall to 50% of the maximum. The results of this benchmark are

shown in Fig. 10.
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Figure 8
Four different beam configurations on the Advanced Light Source
Beamline 5.3.1 during automated alignment. In total, the photon trans-
port has four active degrees of freedom: the focusing mirror pitch and
tangential bend, and the channel-cut crystal angle and height. The upper
left-hand panel shows the initial manually aligned beam and the lower
right the final beam after automated alignment. The upper right and
lower left panels show intermediate points collected in the automated
alignment process.

Figure 9
Four different electron beam configurations at the Brookhaven National
Laboratory ATF at different stages of automated alignment, where the
upper left-hand panel shows the starting beam and the lower right the
optimal beam. In this alignment test, we tune the current of four quad-
rupole electromagnets to maximize the objective in equation (23).

Figure 7
A schematic of beamline 5.3.1 at the Advanced Light Source. The beamline has four degrees of freedom (toroidal mirror pitch and bend, and
monochromator angle and height) and four constraints (four-jaw slits).



A simpler benchmark is shown in Fig. 11, where the agent

realigns the four-dimensional K-B system under small mis-

alignments (up to 0.05 mm) in each mirror’s motors.

8. Further development and discussion

We have applied the same automated alignment tools to

several different facilities and have shown that the same

Python package can effectively align a range of beamlines.

Further refinement of these automated alignment tools will

involve applying them to more beamlines at more facilities,

with different flavors of optimization problems.

How practical automated alignment can be necessitates an

intuitive graphical user interface, from which the configuration

of the optimizer is easy to understand. Further development

also includes the implementation of new features and better

performance in the software. The enabling of Pareto efficient

optimization would give the beamline scientist more control

over the beam quality, and making the agent take into account

the traveling cost of moving the inputs into the acquisition

function would allow for more informed optimization. We also

plan to allow for a decentralized agent, which can run on a

high-performance computing server and communicate with

the control system using a streaming system like Kafka and

feed back to the experiment control using Bluesky-Queue-

server (https://blueskyproject.io/bluesky-queueserver).

Fly scanning, the strategy of sampling while moving para-

meters (instead of stopping and settling at each input),

presents the potential to speed up beamline alignment, as the

sampling expense at most beamlines comes from the accel-

erating and decelerating of components while varying para-

meters. This requires a very accurate synchronization between

the feedback of inputs and outputs (another use of the motor

encoders mentioned in Section 5.4) and is actively being

developed at many light source facilities.

We also note that the largest obstacle to applying auto-

mated alignment to existing beamlines is the difficulty in

constructing robust feedbacks, as many beam diagnostics have

non-negligible backgrounds or malfunctioning pixels. While

an experienced beamline scientist is able to ignore and look

past these artifacts, they may interfere with simpler methods

of estimating beam flux, position and size from an image (e.g.

computing the spread of a profile summed along one dimen-

sion). This is especially significant in the case of Bayesian

optimization, which relies on accurate sampling of the true

objective. This suggests the benefit of more sophisticated

diagnostic methods, using machine learning techniques like

image segmentation.
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Figure 10
The eight-dimensional optimization of the simulated TES beamline,
where the degrees of freedom comprise the toroidal and Kirkpatrick–
Baez mirrors. The colors show different varieties of Bayesian optimiza-
tion algorithms both with and without latent inputs and composite
outputs, with both the cumulative maximum of all individual runs (thin
lines) and the median cumulative maximum (thick line). Each variety
starts out with a quasi-random sampling of 32 points (shaded light blue)
and then performs a Bayesian optimization loop with the expected
improvement acquisition function. The benefit of using both latent inputs
and composite outputs is shown, as we can achieve a better optimum
more robustly and more quickly.

Figure 11
The four-dimensional optimization of just the K-B mirrors, whose motors
are each misaligned by up to 0.05 mm. After an initial quasi-random
sample of 16 points (shaded light blue), the agent is able almost instantly
to return to the optimal alignment.

https://blueskyproject.io/bluesky-queueserver
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