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Conic sections are commonly used in reflective X-ray optics. Hyperbolic mirrors

can focus a converging light source and are frequently paired with elliptical or

parabolic mirrors in Wolter type configurations. This paper derives the closed-

form expression for a mirror-centered hyperbolic shape, with zero-slope at the

origin. Combined with the slope and curvature, such an expression facilitates

metrology, manufacturing and mirror-bending calculations. Previous works

consider ellipses, parabolas, magnifying hyperbolas or employ lengthy approx-

imations. Here, the exact shape function is given in terms of the mirror incidence

angle and the source and image distances.

1. Introduction

Shaped mirrors are used in reflective optics for various

purposes. X-ray optics frequently employ conic sections such

as ellipses, parabolas and hyperbolas. An elliptical mirror

provides point-to-point beam focusing, a parabolic mirror can

focus a collimated beam or collimate a diverging beam, and a

hyperbolic mirror can be used in four different configurations.

Generally, a hyperbolic mirror can focus a converging light

source or magnify a diverging light source. More specifically, a

hyperbolic mirror can focus a real image with a virtual source

or defocus (extend or magnify) a beam by generating a virtual

image with a real source. In each case, the mirror–image

distance can be greater or less than the source–mirror

distance, therefore totaling four distinct mirror configurations.

Wolter type (Wolter, 1952) optical systems typically use

hyperbolic mirrors in combination with a parabolic or ellip-

tical mirror. Lider (2019) provides an extensive overview of

Wolter and other common focusing optics. A Wolter type

setup has numerous advantages including reduced aberrations

and improved focusing stability (Pareschi et al., 2021). In

X-ray beamlines, hyperbolic mirrors are frequently seen in

Wolter-like configurations such as for advanced Kirkpatrick–

Baez optics (Yamada et al., 2019) or zoom condensers

(Matsuyama et al., 2021). Though less common in everyday

applications, hyperbolic mirrors can be also be found in

astronomical optics such as the classic Cassegrain telescope

(Schroeder, 2000).

Mathematical descriptions of Wolter optics and mirror

surface profiles in various layouts have been extensively

explored. VanSpeybroeck & Chase (1972) provide one of the

earliest investigations into Wolter type I mirror surface

equations in terms of the source and image distances and

incidence angle. Saha (1987) went on to illustrate numerous

other Wolter configurations useful for telescope design.

Mirror-centered ellipse expressions are numerous; Padmore

et al. (1996) was perhaps the first to derive one as a power
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series approximation. Later investigations by McKinney et al.

(2011) provide exact expressions for ellipses and parabolas.

However, expressions for hyperbolas are difficult to find,

typically encountered only as cursory references (Rah et

al., 1997).

More recently, works on exact mirror-centered expressions

for ellipses (Goldberg, 2022b), parabolas (Goldberg, 2022a)

and magnifying hyperbolas (Goldberg & Sanchez del Rio,

2023) have been published. The derivation method herein

relies on similar techniques described by Goldberg & Sanchez

del Rio (2023).

This report derives a new, closed-form expression for a

focusing plane–hyperbolic mirror surface. The derivation

characterizes a hyperbolic mirror in terms of the optical

source and image distances and incident grazing angle. The

expression describes a mirror-centered arrangement, with zero

slope and the mirror center at the origin. Furthermore, this

report derives expressions for the slope and curvature.

Describing the mirror in this form minimizes the slope along

the shape. These expressions are most convenient for

metrology, mirror manufacturing (Shi et al., 2016) and mirror-

bending calculations. The curvature equation can easily be

used to determine the bending moments necessary to generate

a hyperbolic surface profile on a roughly beam-shaped mirror

(Howells et al., 2000). Such bending allows for dynamic

focusing and correction of surface-shape errors (Zhang et

al., 1998).

2. X-ray mirror parameters

The standard method for specifying a mirror shape uses the

source distance p, image distance q and grazing angle �. In

X-ray beamlines, we typically use focal lengths on the order of

meters, while mirrors typically have lengths from tens of

millimetres up to 1.5 m. The incidence angle � needed for total

external reflection of an X-ray beam depends on the mirror

material and coating. For X-rays, � is usually on the order of

milliradians. Here, the incidence angle is grazing, measured

from the mirror surface. Cited works often use an incidence

angle measured from the normal to the mirror surface.

Additionally, it is common to define the source and image

distances as positive scalars. We may be tempted to define the

virtual image of a defocusing hyperbolic mirror negatively

because it lies upstream of the mirror. However, for hyper-

bolic mirrors, we define p, q > 0 and p 6¼ q.

Each institution has its own coordinate system for

describing the beam direction and the mirror surface. In this

paper, we only consider the planar mirror case in the xy plane.

The beam moves roughly in the � x to +x direction. The x

coordinate describes the position along the mirror surface

(tangential mirror direction), and the mirror surface height (or

shape profile) is a function y(x). There is no variation in the

sagittal mirror (z) direction since we only consider a plane–

hyperbolic mirror.

We use an east–west-opening hyperbola in this coordinate

system. The west (or left) facing hyperbola represents a

focusing hyperbolic mirror, whereas the east (or right) facing

hyperbola represents a defocusing hyperbolic mirror. After

performing the necessary transformations, we find that the foci

of a focusing hyperbola lie in quadrants I and IV (downstream

of the mirror), whereas the foci of a defocusing hyperbola lie

in quadrants II and III (upstream of the mirror).

When we characterize the concavity of an optical mirror

(convex or concave), we apply the polygon concavity defini-

tion (Wikipedia, 2024a) rather than the concavity of a math-

ematical function (Wikipedia, 2024b). A convex mirror has

d2y/dx2 < 0, whereas a concave mirror has d2y/dx2 > 0.

The mirror radius of curvature, a common figure of merit, is

often approximated as the inverse of the second-order deri-

vative, [1/(d2y/dx2)]. The exact radius of curvature, R, in fact

depends on the slope as well,

R ¼
ð1þ dy=dxÞ

3=2

d2y=dx2

�
�
�
�
�

�
�
�
�
�
: ð1Þ

The ramifications of the approximation become evident in

mirror-bending theory, as explored by Mao et al. (2011).

3. Analytical solution

We can construct a hyperbola from a set of points whose

difference of distances from two fixed foci is a constant value

(Wikipedia, 2024c). In other words, for any arbitrary point, P,

on the surface of a hyperbola with focal points, F1 and F2, and

major axis, 2a,

2a ¼ jPF2 � PF1j: ð2Þ

The canonical hyperbola equation depends on terms a and b,

the semi-major and semi-minor axes, respectively,

x2

a2
�

y2

b2
¼ 1: ð3Þ

Particularly for X-ray beamlines, it is more convenient to

define optics in terms of the source and image distances and

incidence angle. Therefore, we let parameters p = PF1 and q =

PF2 such that

2a ¼ jq � pj: ð4Þ

Equation (4) shows why we must have p 6¼ q. A focusing

hyperbolic mirror generates a virtual source with a real image

in two distinct configurations. Fig. 1 shows a concave focusing

hyperbola with q < p. In this configuration, the (real) mirror–

image distance is shorter than the (virtual) source–mirror
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Figure 1
Concave focusing hyperbola.



distance. Such a hyperbolic mirror is typical for a Wolter

type I optical system. The unidirectional arrows depict the

beam path.

Fig. 2 shows a convex hyperbola with q > p. In this config-

uration, the (real) mirror–image distance is longer than the

(virtual) source–mirror distance. Such a hyperbolic mirror is

typical for a Wolter type II optical system. Both configurations

focus the beam to the hyperbola’s focal point, F2. We continue

the derivation from here using the convex hyperbola.

Next, we rotate the hyperbola counterclockwise, and

translate to the desired mirror-centered orientation with

dy/dx(0) = 0 and y(0) = 0 (i.e. the mirror slope is tangent to the

x axis at [x, y] = [0, 0]) as shown in Fig. 3. Another useful

property of hyperbolas becomes evident in this orientation.

The tangent to the hyperbola at the origin (which is now the

tangent to the x axis) bisects the angle between lines PF2 and

PF1, or q and p, respectively. This bisecting angle is the inci-

dence angle �.

We analytically determine the coordinates of the hyperbola

foci relative to the mirror center at the origin as

F2 : ½q cosð�Þ; q sinð�Þ� and F1 : ½p cosð�Þ; � p sinð�Þ�. The real

image is located at F 2, while the virtual source originates

from F1.

From equation (4) we can say

a ¼
q � p

2
: ð5Þ

We let an arbitrary point P on the hyperbola have the coor-

dinates [x, y]. We apply the distance formula for all points P to

satisfy the hyperbola construction from equation (4),

2a ¼
�
y � q sinð�Þ

�2
þ
�
x � q cosð�Þ

�2
n o1=2

�
�
y � ð� pÞ sinð�Þ

�2
þ
�
x � p cosð�Þ

�2
n o1=2

: ð6Þ

Ultimately, we want an expression of the hyperbola shape,

y(x), dependent on terms [�, p, q]. First, we separate the

square roots, square both sides, isolate the remaining square

root and square again (Goldberg & Sanchez del Rio, 2023).

From here on, we suggest employing mathematical software:

we used Wolfram Mathematica (Wolfram Research, 2024).

We can substitute in some intermediary terms, m and n, to

facilitate this process, so we let

m ¼
�
y � q sinð�Þ

�2
þ
�
x � q cosð�Þ

�2
; ð7aÞ

n ¼
�
y � ð� pÞ sinð�Þ

�2
þ
�
x � p cosð�Þ

�2
; ð7bÞ

such that equation (6) becomes

2a ¼ m1=2 � n1=2: ð8Þ

We follow the aforementioned squaring process to expand

equation (8) to

16a4 þ ðm � nÞ
2
� 8a2ðmþ nÞ ¼ 0: ð9Þ

In turn, we find that equation (9) is much easier to manipulate

than equation (6). Returning to our goal of solving for a

function y(x), we substitute the [y, x, �, p, q] terms from

equation (7) and the [p, q] terms from equation (5) into

equation (9). We expand the binomial, factor out similar y

terms and simplify to get a quadratic equation of the form

Ay2 þ Byþ C ¼ 0; ð10Þ

such that

A ¼ 4ðpþ qÞ
2

sin2ð�Þ � 4ðp � qÞ
2
; ð11aÞ

B ¼ � 8ðp � qÞ sinð�Þ
�
2pqþ ðpþ qÞx cosð�Þ

�
; ð11bÞ

C ¼ � 4ðp � qÞ
2
x2 sin2ð�Þ: ð11cÞ

We apply the quadratic formula to y and simplify to obtain a

raw equation for the shape profile of a plane–hyperbola y(x),

dependent on terms [p, q, �],

yðxÞ ¼

 
n

sinð�Þðp � qÞ
�
� 2pqþ ðpþ qÞx cosð�Þ

�o

� 2
�

pqðp � qÞ
2

sin2ð�Þ
�
pqþ x2 � ðpþ qÞx cosð�Þ

��1=2

!

.�
� ðp � qÞ

2
þ ðpþ qÞ

2
sin2ð�Þ

�
: ð12Þ

Recall Figs. 1 and 2; in this form, we must use the negative root

to express the left (concave) hyperbola when q > p because

there is a (p � q)2 term in the root. Similarly, we use the
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Figure 2
Convex focusing hyperbola.

Figure 3
Mirror-centered convex focusing hyperbola.



positive root to express the left (convex) hyperbola when

q < p. However, we can simplify the equation to a more

convenient form by reducing the terms in the root, letting

2a = q � p from equation (5), and letting 2k = q + p,

yðxÞ ¼
a sinð�Þ

k2 sin2ð�Þ � a2
ð13Þ

� pq � kx cosð�Þ � ðpqÞ
1=2
�
pqþ x2 � 2kx cosð�Þ

�1=2
n o

:

By removing the (p � q)2 term from the root, we have an extra

term to provide a sign change depending on the relative values

of p and q. Therefore, with equation (13), we only need the

negative root case to define the shape profile regardless of

whether q < p or q > p. Additionally, we advise keeping the

root products separated to provide a red flag in case one

erroneously uses q, p < 0. If we used q, p < 0 with the root

products combined under a single root [or in the form of

equation (12)], the resulting mirror shape would not function

as intended (in fact we could get an ellipse). Next, we provide

the mirror slope dy/dx and the second derivative d2y=dx2. For

brevity, we describe the derivatives with the following terms,

G ¼
a sinð�Þ

k2 sin2ð�Þ � a2
; ð14aÞ

H ¼ pqþ x2 � 2kx cosð�Þ
� �1=2

; ð14bÞ

dH

dx
¼

x � k cosð�Þ

ðHÞ
; ð14cÞ

d2H

dx2
¼

1 � ðdH=dxÞ
2

ðHÞ
; ð14dÞ

such that

yðxÞ ¼ G
�
pq � kx cosð�Þ � ðpqÞ

1=2
ðHÞ

�
; ð15Þ

dy

dx
¼ G � k cosð�Þ � pqð Þ

1=2 dH

dx

� �� �

; ð16Þ

d2y

dx2
¼ � GðpqÞ

1=2 d2H

dx2

� �

: ð17Þ

As mentioned previously, a focusing hyperbolic mirror with

p < q produces d2y=dx2<0 and is convex. When p > q, then

d2y=dx2 > 0 and the mirror is concave. We can also plug

equations (16) and (17) into equation (1) to calculate the

radius of curvature. Appendix A provides the supplementary

equations for a defocusing hyperbolic mirror.

4. Alternative solutions

Previous works have provided numerically identical or similar

solutions to the equations presented.

Rah et al. (1997) delivered a single expression encom-

passing the mirror-centered shape of an ellipse, parabola and

hyperbola. By choosing an appropriately negative combina-

tion of p, q values (r, r 0 in the paper) and using an incidence

angle measured from the normal (as opposed to a grazing

angle), we can manipulate the expression for a numerically

identical solution. However, the paper stops short of providing

the curvature expression and how to navigate p, q for the four

different hyperbola configurations. Furthermore, they do not

supply a clear explanation or derivation for their expressions.

Goldberg & Sanchez del Rio (2023) also derive a similar

expression for a mirror-centered hyperbola. Nevertheless, the

expression requires switching signs depending on the relative

values of p and q, and the slope and curvature are not

provided. Additionally, Goldberg & Sanchez del Rio (2023)

only derive the equation for a defocusing hyperbola. The

equations here uniquely describe a focusing hyperbola.

5. Conclusions

Hyperbolic mirrors are commonly used in optics to focus a

converging light source. Such mirrors are often paired with

elliptical or parabolic mirrors in a Wolter type configuration

for X-ray beamlines. We have provided a novel, closed-form,

mirror-centered expression for the shape, slope and curvature

of a focusing plane–hyperbolic mirror. The equations depend

on optics terms including incident beam angle, and source and

image distances. Compared with the canonical hyperbola

equation, with eccentricity or semi-axes terms, the expressions

herein are far more convenient for optical design. We also

observe that each of the four possible hyperbola configura-

tions, focusing or defocusing, convex or concave, are uniquely

described by four distinct surfaces. Distinguishing between

these cases can be challenging, particularly when analyzing

grazing angle mirrors. Table 1 in Appendix B concisely

summarizes the different configurations. Previous works have

relied on power series and polynomial approximations to

express similar surfaces, or offer incomplete derivations and

explanations. The succinct, exact expression presented here

renders metrology, manufacturing and mirror-bending calcu-

lations far easier and arbitrarily precise.

APPENDIX A

Defocusing the hyperbolic mirror

In a similar form to equations (14) through (17), the

complementary equations for a defocusing hyperbolic mirror

are as follows,

G ¼
a sinð�Þ

k2 sin2ð�Þ � a2
; ð18aÞ

H ¼ pqþ x2 þ 2kx cosð�Þ
� �1=2

; ð18bÞ

dH

dx
¼

xþ k cosð�Þ

H
; ð18cÞ

d2H

dx2
¼

1 � dH=dxð Þ
2

H
; ð18dÞ

such that

research papers

J. Synchrotron Rad. (2024). 31, 1464–1468 Jean-Pierre Torras � Focusing hyperbolic X-ray mirror 1467



yðxÞ ¼ � G
�
pqþ kx cosð�Þ � ðpqÞ

1=2
ðHÞ

�
; ð19Þ

dy

dx
¼ � G k cosð�Þ � ðpqÞ

1=2 dH

dx

� �� �

; ð20Þ

d2y

dx2
¼ GðpqÞ

1=2 d2H

dx2

� �

: ð21Þ

A defocusing hyperbolic mirror with q > p produces

d2y=dx2 > 0 and is concave. When q < p, then d2y=dx2 < 0 and

the mirror is convex. The real source originates from the

hyperbola focus F1 : ½� p cosð�Þ; p sinð�Þ�, and the virtual

image is focused at F2 : ½� q cosð�Þ; � q sinð�Þ�.

APPENDIX B

Summary of hyperbolas

Table 1 is handy for differentiating between the hyperbola

configurations. Note that we only need two sets of equations:

one for focusing hyperbolas and one for defocusing hyper-

bolas.
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