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The Takagi–Taupin equations are solved in their simplest form (zero deforma-

tion) to obtain the Bragg-diffracted and transmitted complex amplitudes. The

case of plane-parallel crystal plates is discussed using a matrix model. The

equations are implemented in an open-source Python library crystalpy adapted

for numerical applications such as crystal reflectivity calculations and ray

tracing.

1. Introduction

Almost every synchrotron radiation beamline operating with

hard X-rays makes use of perfect crystals. Most beamlines use

a double-crystal monochromator with flat crystals. Multiple

reflections are used for high resolution (Ishikawa et al., 2005;

Shvyd’ko, 2004). Curved crystals are used in reflection [poly-

chromators for dispersive X-ray absorption spectroscopy

(Tolentino et al., 1988)] or in transmission [single- (Suortti et

al., 1993) or double-crystal Laue monochromators (Ren et al.,

1999)]. Plane crystals plates are used to change the polariza-

tion state of X-rays (Bouchenoire et al., 2003; Detlefs et al.,

2012). In addition, crystal analyzers are used in most spec-

troscopy beamlines [see, for example, Rovezzi et al. (2017)].

Beamline simulation tools used for the design, optimization

and commissioning of synchrotron instrumentation implement

in software the equations to calculate the reflectivity of perfect

crystals. The theory of diffraction [see Authier (2003) for a

complete reference] is the basis of all numeric implementa-

tions.

There are many simulation tools implementing the equa-

tions of the dynamical theory in different forms. This variate

scenario is even more complex if we consider that the calcu-

lation of the crystal structure factor, which is an essential

ingredient for calculating diffracted amplitudes and inten-

sities, is obtained from tabulated scattering functions of

multiple origins. A wide collection of software methods and

tools can be found even in a single application, such as

the OASYS suite (Rebuffi & Sanchez del Rio, 2017), which

provides multiple solutions for calculating diffraction

profiles of crystals [e.g. INPRO (https://github.com/oasys-kit/

xoppy_external_codes/tree/master/src/INPRO), CRYSTAL

(Sanchez del Rio et al., 2015), X-RAY Server (Stepanov,

2004)], as well as beamline simulation tools [based on the ray-

tracing code SHADOW (Sanchez del Rio et al., 2011)] and

physical wave-optics simulations with SRW (Chubar &

Elleaume, 1998; Sutter et al., 2014). Most ray-tracing codes

used for synchrotron applications incorporate models for

https://doi.org/10.1107/S160057752400924X
https://journals.iucr.org/s
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20diffraction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=perfect%20crystal&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=dynamical%20theory%20of%20diffraction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=crystalpy%20software%20package&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=crystalpy%20software%20package&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=crystal%20optics&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:guigay@esrf.eu
mailto:srio@esrf.eu
https://github.com/oasys-kit/xoppy_external_codes/tree/master/src/INPRO
https://github.com/oasys-kit/xoppy_external_codes/tree/master/src/INPRO
http://crossmark.crossref.org/dialog/?doi=10.1107/S160057752400924X&domain=pdf&date_stamp=2024-10-29


crystal diffraction, like SHADOW (Sanchez del Rio et al.,

2011), RAY (Schäfers, 2008; Baumgärtel et al., 2019), XRT

(Chernikov & Klementiev, 2017; Klementiev & Chernikov,

2023). This scenario has inherited decades of advancements

and has witnessed the evolution of several generations of

synchrotron radiation sources. Our research aims to tackle this

challenge by consolidating the resources for crystal diffraction

calculations. We have two primary objectives: deducing the

equations governing crystal reflectivity from first principles

and integrating them into a thoroughly documented open-

source software library.

The Takagi–Taupin equations are a powerful tool in Bragg

diffraction by deformed crystals for diverse forms of the

incident monochromatic wave. They are applied here to the

simple particular case of plane parallel crystals and plane

incident waves. We derive results found in the conventional

dynamical theory described in textbooks (Zachariasen, 1994;

Pinsker, 1978; Authier, 2003). Therefore, there are no new

physical results in the present paper. However, the method

presented here is mathematically well defined and simple. It

is general in the sense that it deals directly with absorbing

crystals. We believe that it represents a valuable and useful

shortcut to the conventional method.

In Section 2 we derive the Takagi–Taupin (TT) equations

(Takagi, 1962; Taupin, 1964; Taupin, 1967). In Section 3 we

solve the TT equations for a plane undeformed-crystal. Given

known complex amplitudes at the entrance surface, the

complex amplitudes along the incident and diffracted direc-

tions at the back surface are calculated via a transfer matrix

(Section 3.2). For the Laue case, the transfer matrix is directly

used to compute the diffracted and forward-diffracted (or

transmitted) complex amplitudes (Section 3.4). For the Bragg

case (Section 3.5) the transfer matrix is used to obtain the

scattering matrix, which gives the diffracted and transmitted

complex amplitudes. Section 4 is dedicated to the software

implementation of the library crystalpy. A final summary and

conclusions are in Section 5.

2. Takagi–Taupin equations

The scalar time-independent X-ray wave equation in a perfect

crystal is the Helmholtz equation,

��þ k2
�
1þ �ðrÞ

�
�ðrÞ ¼ 0; ð1Þ

where �ðrÞ is the wavefunction, k = 2�/�, with � the wave-

length, �ðrÞ is the electric susceptibility [refractive index n =

(1 + �)1/2] that can be expanded in a Fourier series,

�ðrÞ ¼
X

h

�h expði h:rÞ; ð2Þ

where the sum goes over all reciprocal lattice vectors h with

(hkl) Miller indices. The spacing of the (hkl) reflection is dhkl =

2�/h, where h = jhj.

Let us consider an incident plane wave exp i k0:rð Þ in

vacuum. Its wavevector k0, with modulus k = jk0j, is close to

the Bragg condition for the diffraction vector h. In the ‘two-

beams case’ of Bragg diffraction, considered in this paper, we

define kh � k0 þ h, of modulus kh = jkhj. In general, the

direction of kh does not correspond to the Bragg-diffracted

wavevector in vacuum, and kh is slightly different from k. The

deviation from the exact Bragg position is expressed by the

parameter � (� � 1), defined as

� ¼
k2 � k2

h

k2
¼

k2 � jk0 þ hj2

k2
¼ �

h2 þ 2k0:h

k2
: ð3Þ

The wavefield �ðrÞ in the crystal is set empirically as the sum

of ‘two modulated plane waves’,

�ðrÞ ¼ D0ðrÞ exp i k0:rð Þ þDhðrÞ exp i kh:rð Þ; ð4Þ

in which the amplitudes D0;hðrÞ are considered as ‘slowly

varying functions’, thus neglecting their second-order deriva-

tives in ��ðrÞ,

�
�
D0;hðrÞ exp i k0;h:r

� ��
¼

�
2i k0;h:rD0;h þ ðk

2 � k2
0;hÞD0;h

�
exp i k0;h:r

� �
;

thus giving

��þ k2� ¼ exp i k0:rð Þ
�
2i k0:rD0

�

þ exp i kh:rð Þ
�
2i kh:rDh þ ðk

2 � k2
hÞDh

�
: ð5Þ

In the product �ðrÞ�ðrÞ, using the equations (2) and (4), we

write separately the terms containing either exp i k0:rð Þ or

exp i kh:rð Þ, and do not consider the other terms,

�� ¼
�
�0D0 þ �� hDh

�
exp i k0:rð Þ

þ
�
�hD0 þ �0Dh

�
exp i kh:rð Þ þ . . . : ð6Þ

Inserting equations (5) and (6) into (1), we obtain the TT

equations,

2i k0:rD0 þ �0k2D0 þ �� hk2Dh ¼ 0; ð7aÞ

2i kh:rDh þ ð�þ �0Þ k
2Dh þ �hk2D0 ¼ 0: ð7bÞ

We can use the oblique coordinates (s0, sh) in the diffraction

plane (the plane containing k0 and h, as well as kh), with origin

O on the crystal surface and unit vectors ŝ0 and ŝh along k0 and

kh, respectively. A generic spatial position r = ðs0; sh; stÞ should

include a third coordinate st along an axis ŝt non-coplanar with

k0 and kh. We can choose ŝt to lie on the crystal entrance

surface and be perpendicular to the intersection line of the

diffraction plane and the crystal surface. The chosen direction

of ŝt implies n:ŝt = 0. The equation of the crystal surface is

�0s0 + �hsh = 0, with �0;h = n:ŝ0;h � cosð�0;hÞ the director

cosines with respect to n, the unit inward normal vector to the

entrance plane surface.

The relation ds0 = rs0:dr = rs0:½ds0ŝ0 þ dshŝh þ dst ŝt�

implies rs0:ŝ0 = 1 and rs0:ŝh;t = 0. Similarly, rsh:ŝh = 1 and

rsh:ŝ0;t = 0. Therefore,
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ŝ0:rD ¼ ŝ0:
@D

@s0

rs0 þ
@D

@sh

rsh þ
@D

@st

rst

� �

¼
@D

@s0

; ð8aÞ

ŝhrD ¼
@D

@sh

: ð8bÞ

Using the approximation1

kh:rDh ¼ k 1 � �ð Þ
1=2 @Dh

@sh

’ k
@Dh

@sh

; ð9Þ

we obtain from equation (7),

@D0

@s0

¼
ik

2

�
�0D0 þ �� hDh

�
¼ iu0D0 þ iu� hDh; ð10aÞ

@Dh

@sh

¼
ik

2

�
ð�0 þ �ÞDh þ �hD0

�
¼ iðu0 þ �

0ÞDh þ iuhD0;ð10bÞ

where we used the notation

u0;h;� h ¼
k

2
�0;h;� h; ð11aÞ

�0 ¼
k

2
�: ð11bÞ

Our formulation is written for the case of �-polarization. For

the case of �-polarization, it is sufficient to replace �h and �� h

with C�h and C�� h with C = cosð2�BÞ. An equivalent form

of the TT equations (10) is obtained in Appendix A, using

oblique axes along the directions of the geometrical Bragg law,

and applying a crystal rotation.

3. Solutions of TT equations for a plane wave incident

on a crystal with plane entrance surface

It is interesting to consider first the effects of refraction and

absorption without Bragg diffraction. Setting u� h = 0 in

equations (10a), we obtain the following equation for the

refracted amplitude,

@D ref
0

@s0

¼ iu0D ref
0 : ð12Þ

Its solution satisfying the boundary conditions D ref
0 = 1 for

�0s0 + �hsh = 0 (equation of the crystal surface) is D ref
0 =

exp
�
iu0ðs0 þ sh�h=�0Þ

�
= expðiu0sÞ where

s ¼ s0 þ
sh

b
; b ¼

�0

�h

: ð13Þ

We now consider the solutions of the equations (10)

depending on the single variable2 s, which means @D0/@s0 =

D 00ðsÞ and @Dh/@sh = D 0hðsÞ=b. The equations (10) become

D00ðsÞ ¼ iu0D0ðsÞ þ iu� hDhðsÞ; ð14aÞ

D0hðsÞ ¼ ib u0 þ �
0ð ÞDhðsÞ þ ibuhD0ðsÞ: ð14bÞ

It is convenient to use the functions B0, h(s) by setting

D0;hðsÞ ¼ exp
�
is

u0 þ bðu0 þ �
0Þ

2

�
B0;hðsÞ

¼ exp
�
isðu0 þ !Þ

�
B0;hðsÞ; ð15Þ

with

! ¼
bðu0 þ �

0Þ � u0

2
: ð16Þ

Equations (14) become

B00ðsÞ ¼ � i!B0ðsÞ þ iu� hBhðsÞ; ð17aÞ

B0hðsÞ ¼ i!BhðsÞ þ ibuhB0ðsÞ: ð17bÞ

They have special solutions of the form3 B0ðsÞ = expðiasÞ and

BhðsÞ = � expðiasÞ, which, introduced in equation (17), give

� = buh /(a � !) = (a + !)/u� h and

a2 ¼ buhu� h þ !
2: ð18Þ

The general solution of equation (17) is

B0ðsÞ ¼ c1 expðiasÞ þ c2 expð� iasÞ; ð19aÞ

BhðsÞ ¼ c1

aþ !

u� h

expðiasÞ þ c2

! � a

u� h

expð� iasÞ: ð19bÞ

From the case s = 0, we obtain

c1 ¼ B0ð0Þ
a � !

2a
þ Bhð0Þ

u� h

2a
;

c2 ¼ B0ð0Þ
aþ !

2a
� Bhð0Þ

u� h

2a
:

ð20Þ

Consequently

B0ðsÞ ¼ B0ð0Þ
ða � !Þ expðiasÞ � ðaþ !Þ expð� iasÞ

2a

þ Bhð0Þu� h

expðiasÞ � expð� iasÞ

2a
;

BhðsÞ ¼ B0ð0Þbuh

expðiasÞ � expð� iasÞ

2a

þ Bhð0Þ
ðaþ !Þ expðiasÞ � ð! � aÞ expð� iasÞ

2a
;

or, in terms of D0, h(s) [equation (15)] in a more compact form,

exp
�
� isðu0 þ !Þ

�
D0ðsÞ ¼ cosðasÞ � i

!

a
sinðasÞ

h i
D0ð0Þ

þ i
u� h

a
sinðasÞDhð0Þ; ð21aÞ

exp
�
� isðu0 þ !Þ

�
DhðsÞ ¼ ib

uh

a
sinðasÞD0ð0Þ ð21bÞ

þ cosðasÞ þ i
!

a
sinðasÞ

h i
Dhð0Þ:

3.1. Expressions of a, x and a as functions of the angles

Note that h = 2k sin �B, �B being the geometrical Bragg

angle, and k0:h = � kh sin �, with � the glancing angle of k0 on

the reflecting planes. From equation (3) we obtain
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1 If the approximation in equation (9) were not used, the coefficients of D0, h in
(10b) should be multiplied by (1 � �)� 1/2’ 1 + �/2 + . . . ; since �0, �h and � are

much smaller than 1, we neglect the high-order terms.
2 For any point r = ðs0; sh; stÞ, s is the path length inside the crystal along ŝ0: the
ray through r enters the crystal at the point of coordinates (s00, sh, st) such that
�0s00 + �hsh = 0, so that s = s0 � s00 = s0 + sh/b.

3 These solutions are the Ewald wavefields discussed in detail by Authier
(2003) using the dispersion surface.



� ¼ 4 sin �Bðsin � � sin �BÞ ’ 2ð� � �BÞ sinð2�BÞ: ð22Þ

Our definition of � [equation (3)] was made in such a way that

� increases when � increases.4 The approximated value of � is

not valid far from the Bragg position or when �B approaches

�/2 (normal incidence); therefore equation (3) is used in the

crystalpy software.

�0 [equation (11)] and ! [equation (16)] are

�0 ¼ 2k sin �Bðsin � � sin �BÞ ¼ hðsin � � sin �BÞ; ð23Þ

! ¼
bh

2
sin � � sin �Bð Þ þ

b � 1

2
u0: ð24Þ

The ‘corrected Bragg angle’ �c, that differs from �B because of

the effect of refraction, is obtained as the � value such that

Re! = 0, or

sin �c � sin �B ¼
1 � b

bh
Re ðu0Þ; ð25Þ

which, under the usual conditions [sin �c � sin �B ’

ð�c � �BÞ cos �B], reduces to

�c ’ �B þ
1 � b

2b sinð2�BÞ
Re ð�0Þ: ð26Þ

From equations (24) and (25), the value of ! has a simple

expression as a function of �c and �,

! ¼
bh

2
ðsin � � sin �cÞ þ i

b � 1

2
Im u0: ð27Þ

Note that, in our representation [using waves of the form

expði k:rÞ], we have Im u0 � 0. Equations (21) are expressed in

terms of a, but they depend only on a2. Using equation (27) in

equation (18) we obtain

Re a2 ¼ bh
sin � � sin �c

2

� �2

�
b � 1

2
Im u0

� �2

þRe ðbuhu� hÞ;

ð28aÞ

Im a2 ¼
bðb � 1Þ

2
h ðsin � � sin �cÞ Im u0 þ Im ðbuhu� hÞ:

ð28bÞ

Note that a can be expressed in terms of a2 as

a ¼ � sgn Im a2
� � ja2j þ Re a2

2

� �1=2

þ i
ja2j � Re a2

2

� �1=2
" #

:

ð29Þ

3.2. The transfer matrix of a parallel crystal slab

The front and back surfaces of a crystal parallel slab

correspond to s = 0 and s = tc /�0 = T, respectively, with tc the

‘usual’ thickness of the crystal. We can express the fields at the

back surface (D0(T), Dh(T)) in terms of those at the front

surface (D0(0), Dh(0)) in matrix form,

D0ðTÞ

DhðTÞ

� �

¼ M
D0ð0Þ

Dhð0Þ

� �

¼
m11 m12

m21 m22

� �
D0ð0Þ

Dhð0Þ

� �

: ð30Þ

According to equation (21), the elements of the ‘transfer

matrix’ M are

m11 ¼ cosðaTÞ � i
!

a
sinðaTÞ

h i
exp½iTðu0 þ !Þ�; ð31aÞ

m12 ¼ i
u� h

a
sinðaTÞ exp½iTðu0 þ !Þ�; ð31bÞ

m21 ¼ ib
uh

a
sinðaTÞ exp½iTðu0 þ !Þ�; ð31cÞ

m22 ¼ cosðaTÞ þ i
!

a
sinðaTÞ

h i
exp½iTðu0 þ !Þ�: ð31dÞ

The determinant of the matrix M is detðMÞ =

exp½2iTðu0 þ !Þ�. Its modulus |det(M)| � 1. It is 1 for a non-

absorbing crystal (u0 and ! are real). This is in agreement with

the expected energy conservation. It can be verified that

M(T1 + T2) = M(T2)M(T1) and M(� T) = [M(T)]� 1. Last, but

not least, equation (30) is valid for both Bragg and Laue cases

(with adequate values of b, a and !).

3.3. The transfer matrix for the case of a ‘thick crystal’

Equations (21) and (31) are expressed in terms of a, but

they depend only on a2. It is possible to write them as

M ¼
exp

�
i ðu0 þ !þ aÞT

�

2a

a � ! u� h

buh aþ !

� �

þ
exp

�
i ðu0 þ ! � aÞT

�

2a

aþ ! � u� h

� buh a � !

� �

; ð32Þ

where the two terms are interchanged when a is changed in

� a. They correspond to the two roots of a2. They also corre-

spond to the two branches of the dispersion surface [see, for

example, Authier (2003)]. The real part of the argument of the

exponential factors, � T½Im u0ðbþ 1Þ=2 � Im a�, is related to

the absorption. When Im a< 0, the absorption is less than

exp½� T Im u0ðbþ 1Þ=2� for the first term, and more than that

for the second one. Similarly, for Im a> 0 the two matrices

present opposite behaviour. If TjIm aj is large (for example

TjIm aj>� 5), we can keep only the largest term in equation

(32),

M thick ’

exp½iðu0 þ !þ aÞT�
2a

a � ! u� h

buh aþ !

� �

;

with the choice Im a< 0;

exp½iðu0 þ ! � aÞT�
2a

aþ ! � u� h

� buh a � !

� �

;

with the choice Im a> 0:

8
>>>>>>>><

>>>>>>>>:

ð33Þ

A beam, that would be absorbed without Bragg diffraction if

T Im u0 � 1 may partially go through the ‘thick crystal’ in the

condition of Bragg diffraction. Equation (33) is a clear

expression of the Borrmann effect.
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4 Our � has the opposite sign to the � defined in equation [3.114b] of
Zachariasen (1994).



3.4. Reflection and transmission amplitudes in the Laue case

In this case, b > 0. The boundary conditions are

(D0(0), Dh(0)) = (1, 0). The reflection and transmission

amplitudes, rL = Dh(T) and tL = D0(T), respectively, are

directly written from the matrix equation (30),

r L ¼ m21 ¼ ibuh

sinðaTÞ

a
exp½iTðu0 þ !Þ�; ð34aÞ

t L ¼ m11 ¼ cosðaTÞ � i!
sinðaTÞ

a

� �

exp½iTðu0 þ !Þ�: ð34bÞ

The reflecting power isR = jr Lj
2P, where P = |b|� 1 is the ratio

of the cross sections of the reflected and incident beams

(Zachariasen, 1994). Its plotRð�Þ as a function of the angle of

incidence is the diffraction profile, often referred to as the

rocking curve. Rð�Þ and T ð�Þ = jtLð�Þj
2 are hereafter called

reflectance and transmittance, respectively. An example is

shown in Fig. 1.

It is also interesting to consider the case of incidence along

the direction of kh (diffraction vector � h), for which

(D0(0), Dh(0)) = (0, 1). It is directly seen from equation (30)

that the transmission and reflection amplitudes are �t L =

DhðTÞ = m22 and �r L = D0ðTÞ = m12 (note that the reflection

power factor is P = |b| in this case). These results can be

written as

t L �r L

r L
�t L

� �

¼
m11 m12

m21 m22

� �

¼ M: ð35Þ

This means that, for the Laue case, the matrix M can be

considered not only as the ‘transfer-matrix’ of the crystal slab

but also as the ‘scattering-matrix’ (S-matrix) which relates the

vacuum waves leaving the crystal to the vacuum waves

entering it, in analogy with the S-matrix used in general

scattering theory.

The exponential factor in equation (34) gives a damping

factor, which is {using u0 + ! = [(b + 1)u0 + b�0]/2 from

equation (16), and noting that �0 is real}

exp
�

Re ½iTðu0 þ !Þ�
�
¼ exp � T

bþ 1

2
Im ðu0Þ

� �

: ð36Þ

The Pendellösung effect is due to the oscillations of j sinðaTÞ j2

= sin2ðRe aTÞ þ sinh2ðIm aTÞ. The Pendellösung distance

(depending on �) along s0 is thus equal to �=jRe aj =

�=jRe b�h�� h þ w2
� �1=2

j, where w = (�/�)!. At � = �c,

b�h�� h þ w2 = b�h�� h � ½ðIm �0ðb � 1Þ=2�2. In the symmetric

Laue case (b = 1) we obtain the well known formula of the

Pendellösung distance along the direction normal to the

crystal surface [see, for example, equation (3.48) of Pinsker

(1978)],

� ¼
� cos �B

Re �h�� hð Þ
1=2

�
�

�
�
: ð37Þ

3.5. Reflection and transmission amplitudes in the Bragg

case – the S-matrix

In this case, b < 0. We set D0(0) = 1 and Dh(T) = 0 (which

means no beam entering the crystal slab on the back surface).

The reflection and transmission amplitudes are rB = Dh(0) and

tB = D0(T), respectively. Equation (30) is

tB

0

� �

¼
m11 m12

m21 m22

� �
1

rB

� �

; ð38Þ

from which we obtain

rB ¼ �
m21

m22

¼
� ibuh sinðaTÞ

a cosðaTÞ þ i! sinðaTÞ
; ð39aÞ

tB ¼ m11 þm12rB ¼
a exp½iTðu0 þ !Þ�

a cosðaTÞ þ i! sinðaTÞ
: ð39bÞ

These solutions, as well as those for Laue in equations (34),

can also be obtained by direct integration of the TT equations

(17) using Laplace transforms (see Appendix B). Similarly,

in the case of incidence on the crystal back side along the

direction kh (diffraction vector � h), we set Dh(T) = 1, D0ðTÞ =

�rB, D0(0) = 0 and Dhð0Þ = �tB. Therefore, equation (30) gives

�rB

0

� �

¼
m11 m12

m21 m22

� �
0
�tB

� �

; ð40Þ

from which we obtain

�tB ¼
1

m22

¼
a exp½� iTðu0 þ !Þ�

a cosðaTÞ þ i! sinðaTÞ
; ð41aÞ

�rB ¼ m12
�tB ¼

iu� h sinðaTÞ

a cosðaTÞ þ i! sinðaTÞ
: ð41bÞ
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Figure 1
Calculated reflectance (a) and transmittance (b) for a 10 mm-thick Laue
Si 111 crystal at 8 keV, with 65� of asymmetric angle. The Bragg angle
is �B = 14.31�.



Consequently, the S-matrix for the Bragg case, defined as

D0ðTÞ

Dhð0Þ

� �

¼ S
D0ð0Þ

DhðTÞ

� �

; ð42Þ

is

S ¼
tB �rB

rB
�tB

� �

¼
m11 �

m12m21

m22

m12

m22

�
m21

m22

1
m22

� �

: ð43Þ

The diffraction profile (reflectance) is Rð�Þ = jrBð�Þj
2P, with

P = 1/|b|, and the transmittance is T ð�Þ = jtBð�Þj
2. An example

is shown in Fig. 2.

The field inside the crystal, i.e. D0(s) and Dh(s), can be

calculated using equation (19), with D0(0) = 1 and Dh(0) = rB

from equation (39a) we obtain

DhðsÞ ¼
ibuh sinðas � aTÞ

a cosðaTÞ þ i! sinðaTÞ
exp½isðu0 þ !Þ�

¼ rB

sinðaT � asÞ

sinðaTÞ
exp½isðu0 þ !Þ�; ð44aÞ

D0ðsÞ ¼
a cosðaT � asÞ þ i! sinðaT � asÞ

a cosðaTÞ þ i! sinðaTÞ
exp½isðu0 þ !Þ�:

ð44bÞ

An example of simulation of the field inside the crystal using

equation (44) is shown in Fig. 3. For the Laue case, also shown
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Figure 2
Calculated reflectance (a) and transmittance (b) of a symmetrical Bragg
Si 111 crystal with 10 mm thickness at 8 keV.

Figure 3
Calculations for a symmetric Si 111 at 8 keV with thickness tc = 50 mm. The graphs show the electric field intensity inside the crystal as a function of the
deviation angle � � �B and penetration ratio � s/T (equivalent to a depth ratio � t /tc), for (a) Bragg |Dh|2, (b) Bragg |D0|2, (c) Laue |Dh|2, (d) Laue |D0|2.



in this figure, we observe that the field at coordinate s is simply

calculated by the equations (34) replacing T by s.

Fig. 3(b) shows that the penetration of the incident wave

inside the crystal is small in a limited interval around �c. In

Fig. 4 we fitted the intensity profile of |D0(s)|2 versus depth for

each value of � � �B. The fact that for a thick crystal in Bragg

geometry |D0(s)|2 has significant values only in the vicinity of

the crystal surface, in the central region, can be explained from

equation (44). The moduli of the functions sinðaT � asÞ

and cosðaT � asÞ are approximately proportional to

exp½ðT � sÞjIm aj� if the argument of this exponential function

is sufficiently large. Consequently, |D0(s)|2 is nearly propor-

tional to expf� s½2jIm aj þ ðbþ 1Þ Im u0�g. Writing jD0ðsÞj
2 =

exp½� s=sext�, with sext = ½ð2jIm aj þ ðbþ 1Þ Im u0Þ�
� 1 the

extinction length (measured along the s0 axis), we obtain for

the Bragg symmetric (b = � 1) case,

sext ¼
1

2jIm aj
: ð45Þ

3.5.1. Reflection amplitude for a thick absorbing crystal

in the Bragg case

In the case of thick (or semi-infinite) Bragg crystal, the

reflection amplitude, given by equation (39), takes the form

[using M from equation (33)]

rthick
B ¼ �

m21

m22

¼
�

buh

aþ!
¼ !� a

u� h
; with the choice Im a< 0;

buh

a� ! ¼
!þa
u� h
; with the choice Im a> 0:

(

ð46Þ

Both equations are equivalent assuming that the sign in

a = �(a2)1/2 is correctly selected. The condition on Im ðaÞ in

equation (46) is in accordance with the physical condition that

|rB| goes to zero when j sin � � sin �cj is large. The condition

Im a< 0 [Im a> 0] is equivalent5 to sgnðRe aÞ = sgnðRe!Þ

[sgnðRe aÞ = � sgnðRe!Þ] for large values of j sin � � sin �cj.

Equation (46) is a useful result, as most crystal mono-

chromators used in synchrotron radiation are thick crystals in

Bragg (reflection) mode.

3.5.2. Reflection amplitude for non-absorbing crystals in

the Bragg case

In this case u� h = u�h; ! [see equation (16)] and a2 =

!2 � jbjuhu�h are real. We can distinguish two cases.

If a2 � 0, or !2 � jbjuhu�h, then a = i jbjuuu�h � !
2

� �1=2
;

therefore, according to equation (46),

r
thick;transparent
B ¼

1

u�h
!þ i jbjuhu�h � !

2
� �1=2

h i
: ð47Þ

If a2 > 0, or !2 > jbjuhu�h,

r
thick;transparent
B ¼

1

u�h
! � sgnð!Þ !2 � jbjuhu�h

� �1=2
h i

: ð48Þ

Equation (48) represents the tails of the reflection profile. As

discussed previously, the sign selection is such that |rB| tends to

zero for large values of |!|. Equation (47) corresponds to the

zone of total reflection. The reflectance is

R
transparent;thick
B ¼

1; if jyj � 1;
�

y � y2 � 1ð Þ
1=2�2

; if jyj> 1;

�

ð49Þ

with y = != jbjuhu�h
� �1=2

:

3.6. Calculation of reflection and transmission amplitudes

using the transfer matrix

The matrix method permits the complex reflection and

transmission amplitudes of a crystal made by layers of

different crystals (or the same crystal with different orienta-

tions) to be obtained. For that, (i) construct the transfer matrix

of the total crystal by multiplication6 of the transfer matrices

of the different layers [each one calculated using equation

(31)]; (ii) if the geometry is Laue, obtain reflection and

transmission amplitudes using the coefficients m21 and m11,

respectively, of this matrix [equation (34)]; otherwise (Bragg

geometry), compute the scattering matrix using equation (43)

and the reflection and transmission amplitudes are given in the

matrix terms s21 and s11 [equation (39)], respectively.

A first example shows how simple is the application of this

recipe of multiplication of transfer matrices to obtain the

reflectance of a simple two-layer crystal. Consider a bilayer of

two identical crystal layers of thickness T and transfer matrix

M for each one. Using matrix analysis, the transfer matrix of

the bilayer is [M(T)]2 = M(2T) from which it is easy to

compute the reflectivity in Bragg geometry [equation (39)].

Otherwise, if this result would be obtained via the reflectivities

(r and �r) and transmittivities (t and �t) of the single layer (S-

matrix), the reflectivity of the bilayer results from an infinite

series as shown in Fig. 5.

A second example is the Bragg reflection of a crystal layer

on a thick substrate. The transfer matrix is calculated as
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Figure 4
Fit of |D0|2 versus t of Fig. 3(b) with a function expð� t=textÞ to obtain the
extinction depth text. This result is compared with the calculated value
from equation (45) that gives text = sin �Bsext = sin �B=ð2jIm ajÞ.

5 To see this, suppose sin � � sin �c > 0; this implies [equation (27)] Re! < 0
(note that b < 0 for the Bragg case) and [equation (28a)] Re a2 > 0, therefore
[equation (29)] Re a > 0 if Im a2 > 0. Similarly, supposing sin � � sin �c < 0, we
obtain Re! > 0 and Re a2 < 0, therefore Re a < 0 if Im a > 0.

6 The multiplication should be done from bottom to top, i.e. M =
MnMn� 1 . . . M2M1.



M 0 ¼ Mthick �M; ð50Þ

with Mthick the transfer matrix of the substrate and M the

transfer matrix of the thin layer. We are interested in the

Bragg reflectivity or

rB ¼ �
m021

m022

¼ �
mthick

21 m11 þmthick
22 m21

mthick
21 m12 þmthick

22 m22

: ð51Þ

This can be expressed as a function of the substrate reflectivity

rS = � mthick
21 =mthick

22 giving

rB ¼
rSm11 � m12

m22 � rSm11

: ð52Þ

The method of transfer matrix multiplication can also be used

for analysing distorted and bent crystals and will be explored

in a future work.

3.7. The direction of the diffracted wave in vacuum

In some applications, as in ray tracing, it is essential to know

the diffracted wavevector kout that exits from the crystal. As

mentioned before, the choice of k0 in equation (4) is somewhat

arbitrary. In our choice, k0 corresponds exactly to the

wavevector of the incident plane wave. The vector kh (see

Section 2), defined as kh = k0 þ h, does not correspond in

general to the wavevector of the outgoing ray or wave outside

the crystal. kout has the form

kout ¼ kh þ �n;

with n the unit vector along the inward normal to the crystal

exit surface. The (real) coefficient � is obtained by writing that

the modulus of kout is equal to k,

jkoutj
2 ¼ jkh þ �nj2 ¼ k2:

Note that jkhj
2 = k2ð1 � �Þ and kh:n = �hk 1 � �ð Þ1=2, from

which we obtain the equation

k2 ¼ k2ð1 � �Þ þ 2�k�h 1 � �ð Þ
1=2
þ�2:

Its solutions are

� ¼ � k�h 1 � �ð Þ
1=2
� k �þ �2

hð1 � �Þ
� �1=2

;

where the� sign is chosen in such a way that � = 0 when � = 0

(i.e. positive for �h > 0 and negative for �h < 0).

4. The crystalpy library

Crystalpy is a Python library that performs calculations on

diffraction from perfect crystals using the formalism intro-

duced in the previous chapters.

The motivation of crystalpy was to create a modern,

extensible, well documented and friendly library to overcome

the difficulties of integrating ancient software tools based on

the dynamical diffraction theory. It is specifically designed

for two objectives: support for new versions of the crystal

diffraction codes delivered in platforms like OASYS (Rebuffi

& Sanchez del Rio, 2017), and to provide a core for ray-tracing

simulations with crystals. The crystalpy library is written in the

Python language and uses standard libraries (NumPy and

SciPy). It makes use of vector calculus and stack operations to

accelerate the calculations. Therefore, it is adapted for being

used in ray-tracing tools, such as the future SHADOW

(Sanchez del Rio et al., 2011) versions.

To simulate a diffraction experiment using a perfect crystal,

crystalpy offers functions that implement the theory described

previously. Two input objects must be prepared: (i) the inci-

dent wave(s) or photon ray(s), and (ii) the information on the

crystal (diffraction setup). The objects representing these two

entities are described here.

The Photon class is a minimum class for a photon,

containing the energy (in eV) and a unit direction vector,

implemented in the Vector class. It deals with the storage

and operations (addition, scalar product, cross product,

normalization, rotation around an axis, etc.) of a 3D vector.

A superclass of Photon is ComplexAmplitudePhoton,

that contains the scalar complex amplitude for � and �

polarizations). These classes (Vector, Photon and

ComplexAmplitudePhoton) can hold stacks (the internal

storage is done with arrays to speed-up vector operations).

The ComplexAmplitudePhoton class has a corresponding

ComplexAmplitudePhotonBunch superclass, decorated
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Figure 5
Example of calculation of the reflection amplitude r2 of a Si 111 crystal of
2 mm thickness from the amplitudes of the half-layer (1 mm). The
reflectivity of the bilayer r2 can be obtained as an infinite sum r2 = rþ rt�t
+ rt�tðr�rÞ + rt�tðr�rÞ2 + . . . = r½1þ t�t

P1
n¼ 0ðr�rÞ

n� = rf1þ ½t�t=ð1 � r�rÞ�g.
Calculations done with crystalpy for a photon energy of 8 keV.



with methods to deal with multiple waves or beams (bunches

or sets of photons).

The information on the crystal itself (e.g. particular crystal

material and crystal structure), its preparation (crystal cut)

and related physical parameters (like the structure factor) are

managed by the DiffractionSetup classes. crystalpy

allows multiple options to retrieve the crystal structure

and the scattering functions needed to calculate the struc-

ture factors. The DiffractionSetupAbstract class

defines the methods to access the basic information

of the crystal (defined as a string, e.g. ‘Si’) such as

angleBragg, dSpacing and unitCellVolume, and to

compute the structure factors: F0, FH, FH bar. These

parameters can be obtained from several libraries external

to crystalpy. We implemented three options: (i)

DiffractionSetupXraylib using the xraylib library

(Schoonjans et al., 2011), (ii) DiffractionSetupDabax

that uses the dabax library (Sanchez del Rio, 2021),

and (iii) using an ad hoc generated data file. This

modular structure permits disconnecting the calculation

part from the access to optical and physical constants.

Indeed, when using ad hoc data files we do not have to

import xraylib or dabax packages. We implemented this

for the crystal material files of the SHADOW

(Sanchez del Rio et al., 2011) code in the traditional

version (DiffractionSetupShadowPreprocessorV1),

and in a version supporting d-spacing crystals

(DiffractionSetupShadowPreprocessorV2). The

DiffractionSetup classes handle the information about

the crystal setup and collect all the parameters needed

to fully define the physical system we are modelling:

geometry type (among BraggDiffraction,

BraggTransmission, LaueDiffraction and

LaueTransmission), crystal name (a string, e.g. Si,

Ge), thickness (crystal thickness in SI units [m]),

miller h, miller k, miller l (the Miller indices) and

asymmetry angle [angle in degrees between the crystal

surface and the planes hkl as definedby Sanchez del Rio et al.

(2015)].

The determination of crystal structure factors (necessary to

compute �h, �� h and thus uh and u� h) is not trivial, and

requires the list of the crystallographic parameters (basically

the cell parameters and a list of the atoms of the unit cell, with

their occupation and coordinates). Both dabax and xraylib

libraries use similar methods that are detailed by Yu et al.

(2022). This implementation allows any possible crystal

structure. Complex crystals such as alpha-quartz (Sutter et al.,

2022; Sutter et al., 2023), or YB66 (Yu et al., 2022) are

considered. However, some particularities regarding chirality,

strong anisotropy or temperature dependence may not be

included accurately and are sometimes modelled by

phenomenological parameters.

To perform the main calculations (reflectivities, transfer

matrices, diffracted photons, etc.) several methods in the

Diffraction class are used, getting the crystal setup and

the photon bunch as inputs. For the moment, only flat perfect

crystals are coded (in the PerfectCrystalDiffraction

class) which directly implements the formulation and theory

in Section 3. For completeness, crystalpy also includes the

equations of Zachariasen (Zachariasen, 1994) and can be used

instead of the formalism described in this paper. Typical angle

or photon scans, as shown in Fig. 2, are calculated defining

a ComplexAmplitudePhoton entity for each point,

grouping them in a ComplexAmplitudePhotonBunch

and then calculating the diffraction by the crystal using

calculateDiffractedComplexAmplitudes.

A user-friendly application has been written in the OASYS

environment to compute diffraction profiles using crystalpy

(Fig. 6). The applications automatically generates a script that

can be used for further batch calculations.

In the ray-tracing SHADOW4, all calculations related to

crystal optics are delegated to crystalpy. Ray-tracing permits

simulations of beamline optics including a realistic description

of the source. It also allows the simulation of curved crystals,

under the assumption that the local reflectivity of the curved

crystal is the same as for the flat crystal. This assumption is not

always granted and has to be verified before performing ray-

tracing simulations including curved crystals.

5. Summary and conclusions

We have presented a theoretical and numerical description of

dynamical diffraction in perfect crystals. In the first part of this

paper we presented a new perspective of the well known

dynamical theory of diffraction applied to undeformed perfect

crystals. We deduced the equations of diffraction amplitudes

(as well as intensity reflectance and transmittance) starting

from basic principles via the solution of the Takagi–Taupin

equations. We calculated the transfer matrix, useful to

compute the diffraction of stacked crystal layers, and also the

scattering matrix, of interest for the Bragg case. For comple-

teness, our results are compared with those presented in the

well known textbook by Zachariasen (1994) (see Appendix

C). In the second part we presented crystalpy, a software

library completely written in Python that implements the

theory previously discussed. This open source tool can be used

to predict the diffraction properties of any crystal structure,

like Si, Ge or diamond typically used in synchrotron beam-
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Figure 6
Interactive application for computing the perfect crystal diffraction
profiles using crystalpy and available in OASYS.



lines, but also for any other crystal provided its crystalline

structure is known. This library is intended to replace multiple

scattered pieces of software in packages like OASYS (Rebuffi

& Sanchez del Rio, 2017) and is designed to be the kernel of

the crystal calculations in version 4 of the SHADOW (Sanchez

del Rio et al., 2011) ray-tracing code. The crystalpy library and

its documentation are available from https://github.com/

oasys-kit/crystalpy.

APPENDIX A

Derivation of the TT equations for a rotating perfect crystal

In the ‘rotating crystal mode’, the crystal is rotated around an

axis perpendicular to the ‘diffraction plane’ which contains the

diffraction vector h and the wavevector k0 of the fixed incident

plane-wave in vacuum. The crystal rotation from the exact

geometrical Bragg position may be viewed as a special kind of

crystal deformation. We propose to use the Takagi–Taupin

approach for the deformed crystal to derive the basic results of

the dynamic theory for perfect crystal diffraction. The X-ray

wavefield inside the crystal is set as

�ðrÞ ¼ exp i k0:rð Þ A0ðrÞ þ exp i hB:rð ÞAhðrÞ
� �

¼ A0ðrÞ exp i k0:rð Þ þ AhðrÞ exp i khB:rð Þ: ð53Þ

hB is the position of the diffraction vector when the crystal is in

the exact Bragg condition for the fixed incident wavevector k0.

The vector khB = k0 + hB is therefore such that jk0j = jkhBj =

k = 2�=�. The Fourier coefficients �h of the perfect crystal

susceptibility are replaced by the function �h exp½i�ðrÞ�, in

which �ðrÞ = � hB:uðrÞ, with uðrÞ the displacement field of the

deformed crystal. In such conditions, the following form of the

TT equations,

2i k0:rA0 þ �0k2A0 þ �� hk2 expð� i�ÞAh ¼ 0;

2i khB:rAh þ �0k2Ah þ �hk2 expðþi�ÞA0 ¼ 0;

is obtained by inserting equation (53) into (1), with the

following approximations: the second-order derivatives of

A0, h, supposed to be slowly varying amplitudes, are neglected

and only the terms containing exp i k0:rð Þ in the product �� are

considered. Introducing oblique coordinates (s0, sh) in the

diffraction plane, along the directions of k0 and khB, so that

k0:rA0 = k@A0=@s0 and khB:rAh = k@Ah=@sh, the TTequations

are

@A0

@s0

¼
ik

2
�0A0 þ �� h expð� i�ÞAh

� �
;

@Ah

@sh

¼
ik

2
�0Ah þ �h expðþi�ÞA0

� �
:

Performing the transformation A0 = D0 and expði�ÞAh = Dh,

we obtain

@D0

@s0

¼
ik

2
�0D0 þ �� hDh

� �
; ð54aÞ

@Dh

@sh

¼
ik

2
�0 þ

2

k

@�

@sh

� �

Dh þ �hD0

� �

: ð54bÞ

This is identical to equation (10) considering that � =

ð2=kÞð@�=@shÞ, for which a demonstration follows.

A1. Demonstration of a = (2/k)(@����/@sh)

Let i0;h be unit vectors along the fixed directions of k0 and

khB; the crystal rotation transforms i0;h into j0;h. A position

vector s0i0 þ shih is transformed into s0 j0 þ sh jh. The displa-

cement field is uðs0; shÞ = s0ð j0 � i0Þ + shð jh � ihÞ; hB =

kðih � i0Þ. Hence

�ðs0; shÞ ¼ hB:u ¼ ks0ðih � i0Þ:ð j0 � i0Þ þ kshðih � i0Þ:ð jh � ihÞ:

We note that

i0:j0 ¼ ih:jh ¼ cos ��B;

i0:jh ¼ cosð2�B þ��Þ;

ih:j0 ¼ cosð2�B � ��Þ;

i0:ih ¼ cos 2�B;

and therefore

2

k

@�

@sh

¼ 2ðih � i0Þ:ð jh � ihÞ

¼ 2ðcos �� � cosð2�B þ��Þ � 1þ cos 2�BÞ

¼ 2½ðcos �� � 1Þð1 � cos 2�BÞ þ sin 2�B sin ���

¼ 4 sin �B½sin �Bðcos �� � 1Þ þ cos �B sin ���

¼ 4 sin �B½sinð�B þ��Þ � sin �B� ¼ �:

APPENDIX B

Solutions of TT equations (17) using the Laplace transform

B1. Laue solution based on Laplace transform

Let us denote �FðpÞ the Laplace transform of a function F(s)

�FðpÞ ¼

Z1

0

ds expð� psÞFðsÞ:

Applying the Laplace transform to equations (17) we get

ð pþ i!Þ �B0ð pÞ � iu� h
�Bhð pÞ ¼ 1;

ð p � i!Þ �Bhð pÞ � ibuh
�B0ð pÞ ¼ 0:

The solutions are

�B0ð pÞ ¼
ð p � i!Þ

p2 þ a2
;

�Bhð pÞ ¼
ibuh

p2 þ a2
;

with, as previously defined, a2 = !2 + buhu� h, a = (!2 +

buhu� h)1/2, hence one retrieves the same results of equations

(34) using the fact that (p2 + a2)� 1 and p(p2 + a2)� 1 are the

Laplace transforms of sinðasÞ=a and cosðasÞ, respectively.
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B2. Bragg solution based on Laplace transform

By Laplace transform of equation (17), and calling r 0 =

Bh(0), we obtain

ð pþ i!Þ �B0ð pÞ � iu� h
�Bhð pÞ ¼ 1;

ð p � i!Þ �Bhð pÞ � iuh
�B0ð pÞ ¼ r;

or

�B0ð pÞ ¼
p � i!þ iru� h

p2 þ a2
;

�Bhð pÞ ¼
r ð pþ i!Þ þ ibuh

p2 þ a2
;

with (the same as before) a2 = !2 + buhu� h. Hence,

B0ðsÞ ¼ cosðasÞ þ i ðru� h � !Þ
sinðasÞ

a
;

BhðsÞ ¼ r cosðasÞ þ i!
sinðasÞ

a

� �

þ ibuh

sinðasÞ

a
:

r and then the reflected and transmitted amplitudes are

obtained using the condition Dh(T) = Bh(T) = 0. With some

calculation, we obtain the results of equations (39).

APPENDIX C

Equivalence of amplitudes in equation (39) and (34) with

Zachariasen’s formulation

The diffracted and transmitted intensities (not the amplitudes)

are derived in the book of Zachariasen (Zachariasen, 1994)

(first edition published in 1944). It is shown hereafter that the

amplitudes can be easily derived from Zachariasen’s form-

alism. For that purpose, we use Zachariasen’s notation and

equations.

In the Laue case, using equations [3.127] and [3.128] of

Zachariasen (1994), we obtain

tL ¼ c1D 00 þ c2D 000 ¼
c1x2 � c2x1

x2 � x1

; ð55aÞ

rL ¼ x1c1D 00 þ x2c2D 000 ¼ x1x2

c1 � c2

x2 � x1

: ð55bÞ

Similarly, in the Bragg case, using Zachariasen’s equations

[3.127] and [3.135], we obtain7

tB ¼ c1D 00 þ c2D 000 ¼ c1c2

x2 � x1

c2x2 � c1x1

; ð56aÞ

rB ¼ x1D 00 þ x2D 000 ¼ x1x2

c2 � c1

c2x2 � c1x1

: ð56bÞ

The symbols c and x are

c1 ¼ expð� 2�ik0�
0
0t=�0Þ;

c2 ¼ expð� 2�ik0�
00
0 t=�0Þ: ð57Þ

�0 (�h) is the direction cosine of the incident (diffracted) wave

and the other quantities are defined as

� 00
� 000

� �

¼
1

2
�0 � z� Xð Þ;

x1;2 ¼
� z� X

� �H

;

z ¼
1 � b

2
�0 þ

b

2
�Z;

�Z ¼
1

jk0j
2
jBHj

2 þ 2k0 � BH

� �
;

with X = (q + z2)1/2, q = b�H� �H , �H is the Fourier component

of the electrical susceptibility �0 and b = �0 /�h is the asym-

metry factor.

It is easy to see that x2 � x1 = 2X=� �H , x1x2 = � b�H=� �H .

Introducing the variables c = exp½� 2�ik0ð�0 � zÞt=ð2�0Þ� and

m = � 2�k0Xt /(2�0), we have

c1 � c2 ¼ c
�

expðimÞ � expð� imÞ
�
¼ 2ic sinðmÞ;

and

x2c1 � x1c2 ¼
c

� �H

� ðX þ zÞ expðimÞ � ðX � zÞ expð� imÞ½ �

¼
2c

� �H

�
� X cosðmÞ � iz sinðmÞ

�
:

Replacing in equation (56) the terms obtained here we finally

get

r Z
L ¼ icb�H

sinðmÞ

X
;

t Z
L ¼ c cosðmÞ þ i

z

X
sinðmÞ

h i
:

For the Bragg case, we pre-calculate

x2c2 � x1c1 ¼
c

� �H

�
� ðX þ zÞ expð� imÞ � ðX � zÞ expðimÞ

�

¼
2c

� �H

�
� X cosðmÞ þ iz sinðmÞ

�
;

that we introduced in equation (56) and we finally get
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Table 1
Correspondences of notation in this work and Zachariasen (1994).

Zachariasen This work
expð� 2�i k0:rÞ exp i k0:rð Þ
k0 = 1/� k = 2�/�
�Z � �
�0 �0

�H �h

z � (�/�)!
X (�/�)a
t0 tc = T/�0

m aT
c exp½iTðu0 þ !Þ�

7 Note that in equation (56b) we write (c2 � c1) rather than (c1 � c2) in
Zachariasen’s equation [3.137]. This does not affect the result shown by
Zachariasen as the amplitudes are squared to give intensities. However, for
calculating the amplitudes, the correct sign (as shown here) is important.



r Z
B ¼ ib�H

sinðmÞ

� X cosðmÞ þ iz sinðmÞ
; ð58aÞ

t Z
B ¼

� cX

� X cosðmÞ þ iz sinðmÞ
: ð58bÞ

Considering the equivalence of notations between this work

and Zachariasen’ book (see Table 1), we can verify that

equations (55) are identical to (34) and, similarly, equations

(56) are identical to (39).
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Baumgärtel, P., Grundmann, P., Zeschke, T., Erko, A., Viefhaus, J.,
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