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X-ray speckles have been used in a wide range of experiments, including imaging

(and tomography), wavefront sensing, spatial coherence measurements, X-ray

photon correlation spectroscopy and ptychography. In this review and experi-

mental comparison, we focus on using X-ray near-field speckle grains as

wavefront markers and numerical methods for retrieving the phase information

they contain. We present the most common tracking methods, introducing the

existing algorithms with their specifications and comparing their performances

under various experimental conditions. This comparison includes applications to

different types of samples: phantoms for quantitative analysis and complex

samples for assessing image quality. Our goal is to unify concepts from several

speckle tracking methods using consistent terminology and equation formalism,

while keeping the discussion didactic and accessible to a broad audience.

1. Introduction

Over the past decades, synchrotron X-ray phase contrast

imaging (PCI) has become a great tool for the non-destructive

study of samples in fields ranging from archaeology to industry

and medicine (Cunningham et al., 2014; Hall, 2021; Westneat et

al., 2008; Momose, 2020; Quénot et al., 2022; Ponchut et al.,

2021). The success of this method, over conventional radi-

ology, is partly due to the possibility of retrieving an image

with enhanced edges in samples with low absorption, and

enhanced contrast between sub-regions characterized by

similar absorption coefficients (Endrizzi, 2018). The most

basic phase contrast technique used at synchrotron light

sources is propagation-based imaging (PBI) (Snigirev et al.,

1995; Cloetens et al., 1996). This in-line phase imaging tech-

nique is rather simple to implement, needing illumination with

a sufficient degree of spatial coherence, the sample and an

imaging film or detector at some distance downstream

(Wilkins et al., 1996). However, experimental conditions and

sample restrictions for which quantitative phase information

can be extracted limits its applications.

Several other PCI techniques also exist: interferometric

methods such as Bonse–Hart interferometry (Bonse & Hart,

1965); variations of the aforementioned free-space propaga-

tion technique (Snigirev et al., 1995; Cloetens et al., 1996);

crystal analyser diffractometry/X-ray Schlieren method

(Förster et al., 1980); diffraction-grating-based imaging (David

et al., 2002; Weitkamp et al., 2005); Hartmann (Mercère et al.,

2003; de La Rochefoucauld et al., 2021) and Shack–Hartmann

(Mayo & Sexton, 2004; Dos Santos Rolo et al., 2018;

Mikhaylov et al., 2020) type sensors and other forms of
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wavefront markers tracking, which include speckle tracking. A

more complete overview on X-ray phase-contrast imaging

techniques is given by Endrizzi (2018) and Weitkamp et al.

(2011); more recently, a review on X-ray in-line imaging by

Gureyev et al. (2024) was published containing a very thor-

ough reference list. Speckle based imaging (SBI) – the topic of

this work – uses static randomly structured modulators to

generate a speckle field – sand paper, filter membranes,

metallic powders and coded masks are often used for that

purpose (Morgan et al., 2012; Zdora, 2018; Berujon et al.,

2020a; Tian et al., 2020a; Qiao et al., 2021; Quénot et al., 2021a;

Labriet et al., 2022; Shi et al., 2023). A very important char-

acteristic of those speckle grains is that in the near-field regime

they preserve shape and size, which permits their use as

wavefront markers (Cerbino et al., 2008; Siano et al., 2021). In

the differential implementation – see x2.1 in Berujon et al.

(2020b) – a sample is introduced into the beam disturbing the

reference speckle pattern in the detector. This is represented

in Fig. 1. The object-induced phase can be numerically

retrieved by comparing the sample and the reference images.

Compared with other techniques, speckle tracking has the

advantage of a very simple set-up transferring the experi-

mental complexity to the numerical phase extraction.

In this article, we will present in detail a non-exhaustive list

of phase retrieval algorithms for SBI. The algorithms can be

sorted into two main categories: explicit tracking based on

surveying the local speckle displacements through error

minimization or cross-correlation; and implicit tracking based

on solving an inverse problem defined by the transport of

intensity equation in each pixel. An emergent third group –

artificial-intelligence-assisted methods (Qiao et al., 2022) – will

not be considered in this work, because at the time of writing

they are still incipient. When discussing the several imple-

mentations, we intentionally leave out the dark field calcula-

tions, as they are outside the scope of this work. The

algorithms are compared under various experimental condi-

tions. Synchrotron and laboratory sources are used to test the

results under different degrees of coherence of the illumina-

tion. Samples include single material lenses and phantoms, to

test for the retrieval of quantitative information, and complex

biomedical tissues. For biomedical samples, the results are

compared when decreasing the radiation dose, measured as

the number of images required for the phase-retrieval.

Reducing data acquisition time, while preserving image

reconstruction quality, is required to minimize motion arte-

facts and increase patient comfort in clinical imaging.

Furthermore, it helps reducing the radiation dose. These are

important factors when foreseeing a clinical translation of the

techniques.

2. Phase retrieval algorithms: explicit tracking

Explicit tracking methods consist of following the local

transverse displacement of the speckle patterns in the detec-

tion plane after the sample is inserted, the general idea being

that a small subset of pixels centred around an arbitrary pixel

(xi, yj) in the sample image(s) and a second set of of pixels in

the reference image(s) will be compared (e.g. through cross-

correlation), calculating the lateral shift D? from the coordi-

nates (xi, yj) that leads to the best matching between the two

sub-sets. This operation is repeated for every pixel (x, y) of the

sample image. Among those algorithms there is a ‘family’ of

methods that was derived from the initial X-ray speckle

tracking algorithm (Bérujon et al., 2012) and another one

based on a different method called unified modulated pattern

analysis (UMPA) (Zanette et al., 2014; Zdora et al., 2017).

Explicit speckle tracking methods have been extensively

discussed by Zdora (2018) and Berujon et al. (2020b).

2.1. X-ray speckle tracking

The earliest SBI algorithm, called simply X-ray speckle

tracking (XST), was first published in 2012 (Bérujon et al.,

2012; Morgan et al., 2012) and is a generalization of a method

developed for attenuation grid imaging by Morgan et al.

(2011). XST requires only one pair of sample/reference

images, which makes this technique particularly interesting for

fast/low-dose applications. The method involves calculating

the 2D cross-correlation between two small windows w

(2m + 1� 2n + 1) centred around the pixels (xi, yj) and (xi + �,

yj + �) in the sample (Is) and reference (Ir) image, respectively.

(�, �) is a vector in a 2D search interval W centred around

(0, 0) that is (2M + 1) by (2N + 1) pixels wide, where M and N

are the largest horizontal and vertical displacements in pixel

units to be considered. The transverse displacement D?(xi, yj)

of the speckle modulations is given by the parameters

�(xi, yj), �(xi, yj) 2 W which maximize the zero-normalized

cross-correlation between the two windows,

research papers

2 of 20 Rafael Celestre et al. � Review of speckle-tracking algorithms J. Synchrotron Rad. (2025). 32

Figure 1
Differential speckle based imaging setup. (a) A reference image (set) is
recorded with the speckle membrane in the beam; (b) the sample is then
placed in the beam, distorting the speckle field. A new image (set) is
recorded. The object-induced phase can be numerically retrieved by
comparing the sample and the reference images. Here zs is the distance
from the source to the speckle modulator, z1 from the membrane to the
sample, and z2 the sample-to-detector distance. D? is the transverse
speckle displacement in the detector plane and � the associated deflec-
tion angle.



D?ðxi; yjÞ ¼ argmax
ð�;�Þ 2W

Z

ðx;yÞ 2wðxi;yjÞ

Z

Sðx; yÞ � Rðxþ �; yþ �Þ dx dy;

ð1Þ

where S = ðIs � �IsÞ=�Is
and R = ðIr � �IrÞ=�Ir

, with the bar

representing the mean within the window w and � the stan-

dard deviation. This template-matching technique is analo-

gous to the 2D Pearson product-moment correlation

coefficient. The procedure described in equation (1) is applied

to each pixel (xi, yj) within the image or a region of interest

(ROI) resulting in 2D maps �(x, y) and �(x, y) of the hori-

zontal and vertical displacements, respectively. The deflection

angles � = (�x, �y) and the transverse displacement maps

D?(x, y) = (�, �) are related geometrically by

k� ¼ k
D?

z2

¼

"
k

z2

�ðx; yÞ;
k

z2

�ðx; yÞ

#

¼ r?�; ð2Þ

where k is the wavenumber and r?� = ð@�=@x; @�=@yÞ is the

phase transverse gradient – this equation is valid under the

paraxial approximation. The phase image �(x, y) can be

obtained by numerical integration of the gradients – see x4 for

more details. To further increase the angular sensitivity of the

technique, several algorithms can be used for sub-pixel peak

detection (Fisher & Naidu, 1996; Sun, 2002). Despite the

procedures in equations (1) and (2) being repeated for each

pixel within a ROI containing the sample, this technique has a

low spatial resolution as this is inversely proportional to the

window size – see Tian et al. (2020a) for a study on the optimal

window size and its influence on the reconstructed phase

lateral resolution. This technique is advantageous because it

requires only a single pair of sample and reference images,

making it particularly suitable for scenarios where reducing

data acquisition time is critical, as mentioned in the Intro-

duction. Additionally, the computational cost is moderate,

which enhances its practicality for short-time (Berujon et al.,

2015; Seaberg et al., 2019) or large-scale applications, e.g.

tomography (Wang et al., 2015). However, the lateral resolu-

tion of this technique is limited by the size of the speckle

grains relative to the detector’s point spread function. Typi-

cally, the speckle grains should span a few pixels, which

imposes a practical constraint on the achievable resolution.

2.2. X-ray speckle vector tracking

The X-ray speckle vector tracking (XSVT) method is a

technique which increases the lateral resolution of XST down

to a pixel and improves its angular resolution (Berujon &

Ziegler, 2015; Berujon & Ziegler, 2016). XSVT is a scanning

technique that consists of taking P image pairs (sample/

reference), each pair at a different (randomly chosen) trans-

verse position p of the speckle generator. The collected images

are organized into 3D stacks, where the index in the third

dimension corresponds to the pth membrane position. A

vector is created from the sample images by reading the

intensity values in a given pixel (xi, yj) along the P dimension,

giving rise to the 1D signal Is(xi, yi, p). Following the same

procedure, a set of 1D vectors is then generated from the

reference images by reading the intensity values Ir(xi + �,

yj + �, p) along P. (�, �) is a translation vector in a search

interval W, as in XST.

The 1D vector Is(xi, yj, p) is correlated with each 1D vector

Ir(xi + �, yj + �, p), thus creating a 2D matrix of correlation

coefficients. The transverse displacement D?(xi, yj) of the

speckle vector is retrieved from the coordinate (�, �) at which

the 2D map of cross-correlation coefficients attains its

maximum,

D?ðxi; yjÞ ¼ argmax
ð�;�Þ 2W

XP

p¼ 1

Sðxi; yj; pÞ � Rðxi þ �; yj þ �; pÞ: ð3Þ

Again, S = ðIs � �IsÞ=�Is
and R = ðIr � �IrÞ=�Ir

with the bar

representing the mean along the P direction and � the stan-

dard deviation. The sub-pixel treatments described by Fisher

& Naidu (1996) and Sun (2002) and phase gradient retrieval

from equation (2) are also applied to the transverse displa-

cement D?(xi, yj) obtained by equation (3). As discussed by

Qiao et al. (2020a), the direct implementation of equation (3)

is very computer intensive, and vectorizing the operation by

using matrix multiplication can speed up the calculations

significantly – see x2.1 of Qiao et al. (2020a). XSVT is a

technique that performs best when a large number P of image

pairs can be acquired, as this improves signal matching and

enhances the accuracy of the results. Therefore, in scenarios

where the number of image pairs is limited, XSVT may not be

the most suitable approach. As long as the window is large

enough to contain the matching signal, XSVT maintains high

lateral resolution even when the search window size is

increased, unlike XST. However, increasing the search

window does result in higher computational demands when

calculating equation (3). Additionally, XSVT is less suited for

applications requiring fast data acquisition, making it

impractical for short time-scale experiments.

2.3. The XST–XSVT hybrid

Let us consider the same dataset as for a classical XSVT

experiment. Instead of calculating the correlation between 1D

vectors, a small window w = (2m + 1 � 2n + 1) is considered

around the pixel (xi, yj) as in an XST analysis: the 3D vector

Is(x, y, p), (x, y) 2 w, is obtained. This 3D vector is correlated

to a set of 3D vectors Ir(x + �, y + �, p), where (x, y) 2 w and

(�, �) is a translation vector in the search interval W = (2M + 1

� 2N + 1), as in XST and XSVT. In this case, equation (3) is

rewritten as

D?ðxi; yjÞ ¼ argmax
ð�;�Þ 2W

XP

p¼ 1

Z

ðx;yÞ 2wðxi;yjÞ

Z

Sðx; y; pÞ ð4Þ

� Rðxþ �; yþ �; pÞ dx dy dp:

The window w is usually kept much smaller than the interval

W for computational reasons. The same post-treatment

dispensed on the XSVT can be applied to the lateral displa-

cement [equation (4)]. This method, called XST–XSVT, was
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first presented by Berujon & Ziegler (2016) as a way of

reducing the number of exposures P of XSVT for imaging

applications, while keeping a high angular sensitivity. The cost

is a small decrease in lateral resolution due to an increased

window size (Tian et al., 2020b). This trade-off makes the

XST–XSVT hybrid particularly useful when a compromise

between number of exposures and resolution is necessary –

see Appendix B. Additionally, the computational cost of this

method is very high, making it suitable for cases where the

trade-off between reduced exposures and increased compu-

tational demand is justified.

2.4. Wavelet X-ray speckle vector tracking (WXSVT)

The wavelet-transform-based speckle vector tracking

method for X-ray phase imaging (WXSVT) was proposed

by Qiao et al. (2020a) as a way of improving noise robustness

and increasing the computational efficiency of the aforemen-

tioned XSVT method – Qiao et al. (2020b) have also produced

a wavelet variation of the classical XST algorithm, which is

not covered in this work. The data collection is essentially

the same as for the XSVT, so are the sample and reference

vectors generation, that is, the 1D signal Is(xi, yi, p) and the

3D data set Ir(x, y, p), which is limited by the sampling

window w.

The WXSVT method relies on applying the discrete wavelet

transform (DWT) to both the sample and reference signals, re-

writing them in terms of DWT coefficients. The DWT is an

orthogonal transform, meaning it preserves the Euclidean

distance between the sample Is(xi, yi, p) and the reference

Ir(xm, yn, p) vectors before and after the transformation – the

Euclidean distance calculation is also an operation that can be

vectorized, which is beneficial to the computational cost of the

calculation. A property of particular interest is that the DWT

allows setting cut-off coefficients enabling the reduction of the

size of the transformed vector, which behave conceptually

similarly to the cut-off frequencies in the Fourier transform.

Up to a limit, reducing the number of detail coefficients not

only improves computation efficiency but also increases the

noise robustness of the method. Alternatively, being more

conservative when setting the cut-off coefficients, one can

reduce the number of P image pairs in the scan while still

retaining good phase retrieval, as demonstrated in x3.4 of Qiao

et al. (2020a). This is obviously positive, from the point of view

of the dose reduction in the sample. Sub-pixel maxima

tracking methods used by XST and XSVT are also applied

in the WXSVT method. Once the transverse displacement

D?(xi, yj) is obtained, equation (2) can be applied to obtain

the phase gradients.

Overall, WXSVT exhibits the same advantages and draw-

backs as XSVT, but with improved noise robustness and

computational efficiency, particularly when the number of

wavelet coefficients is reduced. The computational efficiency

of WXSVT is enhanced by setting cut-off coefficients in the

wavelet transform, which reduces the size of the transformed

vectors.

2.5. X-ray speckle scanning and its variations

X-ray speckle scanning (XSS) (Berujon et al., 2012) and all

its variations – see Zdora (2018) and Berujon et al. (2020b) –

were techniques introduced to achieve a very high angular

resolution at the expense of a highly increased number P of

image pairs (sample/reference) – XSS schemes have been

reported to achieve nanoradian angular sensitivity (Wang et

al., 2015; Kashyap et al., 2016). These techniques require a

much more sophisticated setup (long-term stability and

reproducibility of motors), with the speckle membrane being

scanned with step sizes smaller than the imaging detector pixel

size. While these techniques are well adapted for at-wave-

length metrology (Berujon et al., 2020a), they are ill-suited for

low-dose or clinical applications. XSS methods are out of the

scope of this work.

2.6. Unified modulated pattern analysis

Unified modulated pattern analysis (UMPA) is a data

processing scheme that can be applied to data sets compatible

with the (W- or XST)–XSVT analysis (Zanette et al., 2014;

Zdora et al., 2017). This method is based on modelling the

X-ray interactions with the sample into three distinctive

effects: (i) absorption in the sample reducing the intensity

transmission T ; (ii) refraction causing the distortion of the

speckle field D?(x, y) = (�, �); and (iii) scattering (dark field)

of unresolved features in the sample decreasing the visibility

of the speckle fields D (Zanette et al., 2014; see also the

supplementary material therein). The X-ray beam intensity in

the presence of the sample at the detector plane can be

modelled as

Isðx; yÞ ¼ T ðx; yÞ �
�
I0ðx � �; y � �Þ

þ Dðx; yÞ ��Irðx � �; y � �Þ
�
; ð5Þ

where Ir(x, y) = I0(x, y) + �Ir(x, y) is the reference signal

decomposed into an average-valued signal I0(x, y) and the

fluctuations around this constant value �Ir(x, y). The UMPA

method obtains the signals T , D and the displacement maps

(�, �) by minimizing the sum of squared differences of the cost

function,

Lðxi; yi;�; �; T ;DÞ ¼
XP

p¼ 1

Z

x;y2wðxi;yjÞ

Z n
T ðx; y; pÞ �

�
I0ðpÞ

þ Dðx; y; pÞ ��Irðx � �; y � �; pÞ
�

� Isðx; y; pÞ
o2

dx dy: ð6Þ

Both T and D can be analytically obtained from equation (6)

by simultaneously solving @L=@T = 0 and @L=@D = 0 – see

equations 5 and 6 in the supplemental material of Zanette et

al. (2014) for the formulations. Much like the XST–XSVT

method, the signals Ir and Is are also limited by the window

functions w and W centred around the pixel (xi, yi),
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D?ðxi; yiÞ; T ðxi; yiÞ; Dðxi; yiÞ ¼ argmin
�;�;T ;D2W

Lðxi; yi;�; �; T ;DÞ:

ð7Þ

Sub-pixel algorithms are also employed for increasing the

angular sensitivity in D? and the final conversion from

transverse displacement � and � into phase gradients is done

using equation (2). A very informative overview of the UMPA

numeric implementation as well as latest developments are

given by De Marco et al. (2023). UMPA provides a detailed

analysis by separately modelling absorption, refraction and

scattering effects. However, it shares a significant drawback

with XST–XSVT in terms of computational cost and lateral

resolution worsening for increased window size – see

Appendix B. The high computational demands of UMPA arise

from the complexity of the model and the need to process and

optimize multiple components simultaneously. While UMPA

is valuable for comprehensive modelling of X-ray interactions,

its computational intensity should be considered when

resources are limited.

2.7. Comments on the explicit tracking methods

The methods presented here along with their technical

challenges and algorithmic implementations are described in

more detail elsewhere (Zdora, 2018; Berujon et al., 2020a;

Berujon et al., 2020b; Qiao et al., 2020a). Despite advance-

ments in optimization, a common limitation across these

techniques is their moderate to high computational cost. This

challenge stems from several factors:

XST: involves calculating 2D cross-correlations between

sample and reference images around each pixel. This process

can be computationally intensive, particularly with large

images or extensive search windows.

XSVT: improves resolution by correlating 1D vectors from

multiple image pairs, but it requires significant computational

resources to process the 3D stacks of data.

XST–XSVT hybrid: combines elements of XST and XSVT,

providing enhancements in sensitivity as a trade-off to lateral

resolution. However, it also increases computational

complexity due to the dual processing requirements.

WXSVT: builds on XSVT by incorporating wavelet trans-

forms to improve noise robustness and efficiency. The

computational benefits are most apparent when reducing the

number of wavelet coefficients, but the method still demands

considerable computational power, especially with many

image pairs.

UMPA: offers detailed modelling by separating absorption,

refraction and scattering effects, which enhances accuracy.

However, the method involves high computational demands

due to the need for complex simultaneous optimization of

multiple parameters.

In applications such as tomography, where each projection

undergoes the full phase-retrieval pipeline, these methods can

become impractically slow. Efficient computing resources and

parallelized code are essential to manage the computational

load and reduce processing times for large datasets or

numerous projection.

3. Phase retrieval algorithms: implicit tracking

Implicit speckle tracking is the general name given to a family

of techniques based on solving the transport of intensity

equation (TIE) under different assumptions related to the

sample. For a monochromatic scalar paraxial electromagnetic

wave with intensity I(x, y, z) propagating along the z-direction

(optical axis),

@

@z
Iðx; y; zÞ ¼ �

1

k
r?½Iðx; y; zÞ � r?�ðx; y; zÞ�: ð8Þ

Equation (8) (TIE) can be derived from the paraxial Helm-

holtz equation, meaning it is subjected to the same assump-

tions used in the scalar diffraction theory and the paraxial

approximation in optics (Paganin, 2006; Zuo et al., 2020);

furthermore, it is relevant to mention that the TIE is an

expression of energy conservation, relating the axial intensity

derivative (left-handed side) with the total energy variation in

the transverse plane (right-handed side) (Zuo et al., 2020). A

very complete tutorial on the TIE and its applications together

with several methods for deriving equation (8) and algorithms

for solving it are presented by Zuo et al. (2020).

Equation (8) can be approximated by its finite-difference

form for an X-ray beam flowing through a sufficiently small

distance (i.e. high Fresnel number) dz,

Iðx; y; zþ dzÞ � Iðx; y; zÞ ’ �
dz

k
r?½Iðx; y; zÞ � r?�ðx; y; zÞ�;

ð9Þ

which is also known as the X-ray Fokker–Planck equation (F–

PE) for paraxial imaging (Paganin & Morgan, 2019). This is

the form of the TIE used for deriving the implicit methods

presented here. A generalization of the F–PE accounting

for diffusive paraxial energy transport – similar to what is

conveyed by D in the UMPA method in x2.6 – has been

proposed by Paganin & Morgan (2019). The use of the F–PE

for SBI and retrieval of dark-field signal has been proposed by

Pavlov et al. (2020b) and Pavlov et al. (2021).

3.1. Optical flow algorithm

In 2018, Paganin et al. (2018) proposed applying the finite

difference version of the TIE [equation (9)] adapted to the

SBI problem assuming a perfectly transparent sample (ideal

phase element) distorting the speckle field under a quasi-

coherent illumination (Gureyev et al., 2006),

Irðx; yÞ � Isðx; yÞ ’
z2

k
r?
�
Irðx; yÞ � r?�ðx; yÞ

�
: ð10Þ

The developments that follow, including the equations, were

taken from Paganin et al. (2018). Applying the chain-rule on

the right-handed side of equation (10), one obtains two terms:

½r?Irðx; yÞ � r?�ðx; yÞ þ Irðx; yÞ � r2
?�ðx; yÞ� � z2=k. The first

term is often referred to as the ‘prism’ term and is responsible

for laterally shifting the image at z + dz, while the second term

is called the ‘lensing-term’ (de-)concentrating light. The

lensing-term (or Laplacian term) corresponds to the variations

of intensity known as phase contrast. The term r?�(x, y) in
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equation (10) can be replaced by the relation expressed in

equation (2), resulting in

Irðx; yÞ � Isðx; yÞ ’ r?
�
Irðx; yÞ �D?ðx; yÞ

�
: ð11Þ

It is important to recall that D?(x, y) is of vectorial nature and

is composed of the scalar fields �(x, y) in the x-direction and

�(x, y) in the y-direction. In order to facilitate solving equa-

tion (11), the multiplicative term Ir(x, y) · D?(x, y) is

approximated by the gradient of an auxiliary scalar function

r?�(x, y) – see Paganin et al. (2018) for entailing approx-

imations leading to equation (3) from that publication. This

manipulation allows equation (11) to be rewritten as a

Poisson-type equation,

Irðx; yÞ � Isðx; yÞ ’ r2
?�ðx; yÞ: ð12Þ

A simple way to solve equation (12) and extract the lateral

displacements D?(x, y) is by using Fourier direct and inverse

transforms (F and F � 1) as follows,

D?ðx; yÞ ¼
i

Irðx; yÞ
F � 1 ð�x; �yÞ

FfIsðx; yÞ � Irðx; yÞg

�2
x þ �

2
y

� �

; ð13Þ

where i is the imaginary unity and (�x, �y) are the coordinates

in the Fourier space. After that, equation (2) is used to retrieve

the phase gradients. Equation (13) is the result of applying the

Fourier derivative theorem.

Solving the TIE equation under the assumptions leading to

equation (13), i.e. using the optical flow (OF) method, has two

main advantages: (i) numerically solving equation (13) is very

fast and computationally efficient – only two fast Fourier

transforms (FFT) are necessary; and (ii) only one sample/

reference pair is required, which makes the OF very dose-

efficient.

However, this method assumes a non-absorbing sample,

which is rarely the case for clinical samples with dense struc-

tures. Since the absorption signal cannot be entirely removed

from the dataset, the phase signal retrieved by OF includes

filtered absorption effects, making it impossible to isolate the

phase signal alone. The absorption due to the sample can be

partially estimated and corrected for by blurring Is(x, y) and

Ir(x, y), to reduce the speckle modulation, and by calculating

the ratio of the resulting images. A drawback of the OF

method is that equation (13) approaches a singularity as

�2
x þ �

2
y ! 0. This can be tackled by masking out the singular

point (Paganin et al., 2018) or by applying a Gaussian-shaped

high-pass filter in the signal (Rouge-Labriet et al., 2021a).

Filtering out lower frequencies is detrimental to applications

interested in slow varying changes in the object, e.g. metrology

(Berujon et al., 2020a); generally, high-pass filters are tolerated

for imaging applications.

3.2. Single material object speckle tracking

The single material object speckle tracking (SMOST)

method (Pavlov et al., 2020a) was conceived to extend the OF

algorithm to monomorphous absorbing samples (Gureyev et

al., 2015). It starts by manipulating equation (10) into

Isðx; yÞ

Irðx; yÞ
’ Iobjðx; yÞ �

z2

k
r?
�
Iobjðx; yÞ � r?�objðx; yÞ

�
; ð14Þ

where Iobj(x, y) and �obj(x, y) are the sample transmitted

intensity and phase – refer to Pavlov et al. (2020a) for a

derivation of equation (14). This sample has projected thick-

ness along the optical axis given by �z(x, y) and is composed

of a material with a complex index of refraction n = 1 � � +

i · �. The values for � (index of refraction decrement) and �

(absorptive part) can be found in tables (Hubbell et al., 1975;

Henke et al., 1993) and computer libraries (Brunetti et al.,

2004). If the sample is well approximated by a thin-single-

material object (Paganin, 2006), it induces a phase-shift

�obj(x, y) = � k��z(x, y) and an intensity transmission

Iobjðx; yÞ = exp ½� 2k��zðx; yÞ�. Substituting these two

expressions into equation (17) leads to

Isðx; yÞ

Irðx; yÞ
’ 1 �

z2

2k

�

�
r2
?

� �

exp
�
� 2k��zðx; yÞ

�
: ð15Þ

Equation (15) can be solved for �z(x, y) by

�zðx; yÞ ¼ �
1

�
ln

 

F� 1 FfIsðx; yÞ
�

Irðx; yÞg

1þ z2ð�=�Þð�
2
x þ �

2
yÞ

( )!

; ð16Þ

where � = 2k�. Due to the Fourier transforms involved,

filtering is sometimes employed to reduce low-frequency

artefacts. Unlike the previous methods that retrieve the

transverse displacement D?(x, y), SMOST retrieves directly

the sample thickness in projection approximation �z(x, y),

which is linearly proportional to the phase shift �(x, y) for

fixed energy. As pointed out by Pavlov et al. (2020a), equation

(16) bears strong resemblance with the method of Paganin

et al. (2002) for propagation-based X-ray phase-contrast

imaging.

3.3. Low coherence system algorithm

The assumptions used in deriving the OF algorithm are

quite restrictive and not always attainable for samples of

interest or under common experimental conditions. Although

SMOST already handles absorbing samples, it still relies on a

coherent illumination – this can be seen by the Laplacian

dependency of the phase in equation (15). Relaxation of that

hypothesis in OF or SMOST, namely the necessity of trans-

parent sample and high coherence, leads to the low coherence

system algorithm (LCS) (Quénot et al., 2021b; Quénot et al.,

2021c). To begin with, the sample image in the presence of the

speckle field Is can be corrected by an additional ‘loss term’

Iobj to account for the attenuation due to the sample – this

intensity transmission term has been alluded to in the previous

section. Equation (11) can, then, be re-written as

Irðx; yÞ �
Isðx; yÞ

Iobjðx; yÞ
’ r? Irðx; yÞ �D?ðx; yÞ

� �
: ð17Þ

The manipulation in equation (17) allows the TIE framework

to be extended into absorbing samples. We now expand the

right-handed side of equation (17) using the chain rule,
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Irðx; yÞ �
Isðx; yÞ

Iobjðx; yÞ
’ r?Irðx; yÞ �D?ðx; yÞ

þ Irðx; yÞ � r?D?ðx; yÞ: ð18Þ

We recall that r?D?ðx; yÞ = z2=k � r2
?�ðx; yÞ. Quénot et al.

(2021c) state that, if the system has low coherence, the

Laplacian term could be neglected as the the interference

fringes could not be resolved. This leads to

Irðx; yÞ �
Isðx; yÞ

Iobjðx; yÞ
’ �ðx; yÞ

@

@x
Irðx; yÞ

þ �ðx; yÞ
@

@y
Irðx; yÞ: ð19Þ

Note that r?Ir goes to 0 in the absence of a speckle field with

high visibility and small speckle grains: in this case, no (good)

phase retrieval can be performed. Equation (19) has three

unknown variables: the two transverse displacement arrays �

and �; and the loss term Iobj(x, y), hence a system with p 2

{1� � �P}, P � 3, equations can be solved for those three

aforementioned variables,

I ðpÞr ðx; yÞ ¼
1

Iobjðx; yÞ
IðpÞs ðx; yÞ þ �ðx; yÞ

@

@x
I ðpÞr ðx; yÞ

þ �ðx; yÞ
@

@y
I ðpÞr ðx; yÞ; ð20Þ

where each equation with a superscript p corresponds to a

sample/reference image pair, each pair at a different

(randomly chosen) transverse position p of the speckle

generator. A system with P > 3 is said to be over-determined

and is usually solved by applying a pixel-wise least-squared

algorithm to it as proposed by Pavlov et al. (2020b). This

processing permits sub-pixel displacements of the speckle

pattern to be tracked (Quénot et al., 2021c). Although equa-

tion (19) assumes an incoherent illumination, if the sample is

indeed illuminated by a coherent beam, the phase contrast

fringes that arise due to the Laplacian term in equation (18)

will be attributed to the loss term Iobj(x, y) when solving the

system in equation (20). Once the vectors � and � are found,

equation (2) relates them to the phase gradients.

3.4. X-ray multi-modal intrinsic-speckle-tracking

The MIST family of methods is based on the Fokker–Planck

equation, a generalization of the TIE (Paganin & Morgan,

2019),

Irðx; yÞ � Isðx; yÞ ’
z2

k
r?½Irðx; yÞ � r?�ðx; yÞ�

� z2DdDðx; yÞ � r2
?Irðx; yÞ; ð21Þ

where DdDðx; yÞ is the diffusive (dark field) term. Comparing

the F–PE [equation (21)] and the TIE [equation (10)] allows it

to be said that the MIST methods are a natural expansion of

the OF-based ones. Solving equation (21) can be done by

applying the same assumptions used for SMOST for the first

term in the right-hand side of the F–PE and several other

assumptions for expanding the second term (Pavlov et al.,

2020b; Pavlov et al., 2021; Alloo et al., 2022; Alloo et al., 2023).

This review does not cover the calculation or applications of

the D signal and therefore the MIST family will not be

considered here.

3.5. Comments on the implicit tracking methods

Overall, while these implicit methods provide solutions that

are less computationally intensive compared with explicit

methods and require fewer image acquisitions, their assump-

tions can limit their applications. They are particularly

attractive for biological imaging and are good candidates for

imaging specimens in 3D (tomography). However, while they

are very accurate for sub-pixel displacements, they may not

track large speckle displacements effectively:

OF: is efficient for phase retrieval with minimal computa-

tional overhead, requiring only two FFTs. Despite being less

computationally intensive, it assumes a non-absorbing sample,

a condition rarely met experimentally: this is expected to

introduce a contamination of the filtered absorption in the

retrieved phase. The method’s assumptions limit therefore its

applicability.

SMOST: extends OF to handle absorbing samples by esti-

mating sample thickness directly. It is advantageous in dealing

with absorbing materials but relies on coherent illumination

and assumes a monomorphous sample. These assumptions can

limit its effectiveness for samples with complex or varying

absorption properties. Additionally, like OF, SMOST may

struggle with large speckle displacements.

LCS: relaxes the high coherence requirement and handles

absorbing samples by introducing a loss term to the TIE

framework (like SMOST did). LCS may struggle with very low

visibility speckles or high contrast fringes, which can lead to

challenges in accurately retrieving phase information. Large

speckle displacements can also be challenging for this method:

notice that equation (19) effectively corresponds to a first-

order Taylor expansion of Ir around (x, y).

The implicit methods are described in depth in the literature

(Paganin et al., 2018; Pavlov et al., 2020a; Quénot et al., 2021c;

Rouge-Labriet et al., 2021b; Quénot et al., 2022).

4. Integration methods

With the exception of the SMOST method, all algorithms

presented here retrieve the transverse deflection maps D(x, y)

= (�, �). Phase images are obtained by integrating numerically

the gradients in equation (2), a problem which, in the presence

of noise, is ill-posed (Ettl et al., 2008; Huang et al., 2015).

Several two-dimensional integration methods for surface

reconstruction from gradient data were developed by Frankot

& Chellappa (1988), Arnison et al. (2004) and Kottler et al.

(2007). In this work, Frankot Chellappa’s integration method

(FC) is used to compare the different phase retrieval algo-

rithms,
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�ðx; yÞ ¼ F � 1

(

�
i

2�ð�2
x þ �

2
yÞ

 

�x F

�
@

@x
�ðx; yÞ

�

þ �y F

�
@

@y
�ðx; yÞ

�!)

: ð22Þ

FC is a Fourier-based solver and assumes periodic boundary

conditions, which are often not satisfied, especially when the

sample extends beyond the edges of the field of view. To avoid

artefacts in the integrated phase, an anti-symmetrization of �

and � was implemented, as suggested by Bon et al. (2012).

5. Numerical implementation

All the phase retrieval algorithms presented here, together

with several numerical integration methods, are conveniently

centralized in open-access GitHub repositories.1 Most of the

presented algorithms are available through a Python library

called POPCORN (POst-processing Phase COntrast and

spectRal X-ray imagiNg) (POPCORN, 2021). The UMPA

code used in this work is taken from UMPA (2017) – an

updated version is available at Refactored UMPA (2022). The

WXSVT implementation is taken from WXSVT (2020).

6. Methods: samples description and experimental

parameters

The phase retrieval schemes, previously presented, were

applied to four different sample groups under diverse

experimental conditions. The relevant experimental para-

meters are summarized in Table 1.

The first samples were cylindrical nylon wires of 140 mm and

200 mm diameter, which were measured on the ID17 beamline

at ESRF. Nylon wires are a common phantom for X-ray phase

imaging and were chosen to benchmark quantitatively the

speckle tracking algorithms as they offer a simple analytical

model for the phase gradient. The second set is composed of

three bi-concave parabolic X-ray lenses made out of beryllium

(Lengeler et al., 2004), which are typical samples for metrology

measurements. These focusing lenses have different char-

acteristic radii (50 mm, 500 mm and 5000 mm) and were chosen

due to their varying strength of phase modulation: the smaller

the radius, the stronger the phase variation leading to larger

speckle displacements. The lenses were measured on the

BM05 beamline at ESRF. A mouse knee was chosen for a

qualitative evaluation of the algorithms when applied to

biomedical samples. Biomedical samples are characterized

by high spatial frequencies, discontinuities and interfaces

between different materials, which should be correctly

retrieved while reducing the radiation dose. These measure-

ments were also performed at the ID17 beamline. The

experiments described so far were performed on a synchro-

tron source with monochromatic illumination achieved with a

Si(111) double-crystal monochromator (�E=E ’ 10� 4). The

X-ray source for the synchrotron experiments is very small (a

few tens of micrometres in the horizontal and less than that

vertically) and is placed rather far from the speckle generator

(40 m for BM05 and 138 m for ID17). Since the beam is not

conditioned by any collimating or refocusing optics, it is safe

to assume the illumination on the membrane has an elevated

degree of spatial coherence – this is directly a consequence of

the van-Cittert–Zernike theorem (Geloni et al., 2008; Gureyev

et al., 2017). Finally, the last sample – a headless domestic fly –

was measured on a micro-focus laboratory X-ray source with a

broad spectrum (tungsten anode at 40 kVp) in order to test

the algorithms on yet another complex sample with small

features but under a low-coherence illumination. The

measurements were performed on an adapted EasyTom XL

tomographic set-up from RX solutions at the SIMaP

(University Grenoble Alpes, France).

7. Results: algorithms comparison

In this section we present an experimental comparison of

various speckle tracking methods. To ensure consistency, we

used the same parameters when comparing the same sample

and technique. For example, within the same section, XSVT

and WXSVT were always compared using the same window

size, and similarly for XST–XSVT and UMPA. The OF and

SMOST reconstructions were performed for each individual

image pair and merged using the median of several recon-

structions. In the LCS method, the linear system was solved

using QR (Golub & Van Loan, 2013) decomposition. Detailed

reconstruction parameters can be found in Appendix A.
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Table 1
Samples description and experimental parameters.

Sample Source Beam energy (keV) Propagation distance (m)

Nylon wires (Ø 140 mm, Ø 200 mm) ID17 52.0 3.600

X-ray lenses (50 mm, 500 mm, 5000 mm) BM05 20.0 0.750
Mouse knee ID17 52.0 11.000
Fly on straw Easytom XL-RX W anode at 40.0 kVp 0.345

Sample Beam modulator Pixel size (mm) Detector Section (x)

Nylon wires (Ø 140 mm, Ø 200 mm) Sandpaper 3.0 pco.edge 7.1
X-ray lenses (50 mm, 500 mm, 5000 mm) Filter membrane (pore size �1.2 mm) 1.6 pco.edge 7.2
Mouse knee sandpaper 6.1 pco.edge 7.3
Fly on straw TiC powder (grain size �100 mm) 48.0 Varian flat panel 7.4

1 See also Hu et al. (2024) for other numerical recipes.



7.1. Nylon wires: phantom imaging and quantitative

analysis

This round-robin study was conducted on the nylon wires.

The theoretical phase shift induced by a single-material

cylindrical sample is known, therefore only the algorithms that

retrieve displacement maps were compared: XSVT, XST–

XSVT, WXSVT, UMPA, OF and LCS. The phase gradients in

this section were obtained by applying the several algorithms

to a set of ten reference and ten sample images at different

membrane positions. Fig. 2 shows horizontal displacement for

two nylon wires with nominal diameter of 140 mm and 200 mm.

Since they are tilted with respect to the vertical axis, the

slanted edge method was adopted to obtain a perpendicular

profile cut. This method is typically used for the calculation of

a super-sampled edge spread function (ESF) or the modula-

tion transfer function (MTF) (Reichenbach et al., 1991). To

reduce noise-induced fluctuations, 200 profiles were averaged

per wire in Fig. 2, which also shows the displacement field in

units of pixels and in angular deflection [equation (2)]. A

theoretical profile is also shown: it was computed from the

gradient of the phase shift induced by a perfect cylindrical

nylon wire at the nominal beam energy. The point spread

function (PSF) of the detector, here of 2 pixels (Mittone et al.,

2017), was simulated by applying a Gaussian filter to the

phase-shift gradient.

In this experiment all algorithms provided a displacement

close to the theoretical values, which is confirmed by the

calculation of the normalized root-mean-square error

(NRMSE) – the NRMSE stays under 5.5% for both wires over

a wide choice of algorithms. Possible sources of errors can be

difficult to pinpoint, but we list some of them here: regardless

of the technique, the edges of the wires are smoothed and this

is mainly due to the imaging system lateral resolution (scin-

tillator blurring and imaging system PSF). This is also where

the displacement field has a discontinuity; we also bring

attention to residual propagation-based edge-enhancement

effects, which depend on the Laplacian of the phase-shift;

lastly, the non-perfect cylindrical shape of the nylon wires

cause difference between observed and calculated values.

Optical flow provides the least accurate quantitative infor-

mation which depends strongly on the high-pass filter applied,

despite good qualitative results – for single-material samples,

attenuation and phase shift are proportional and related to the

thickness of the sample. For this reason, it cannot be excluded

that the shape of the profile measured by OF was dominated

by the attenuation of the wires.
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Figure 2
Nylon wires displacement maps retrieved with different algorithms (XSVT, XST–XSVT, WXSVT, UMPA, OF, LCS). Plots of the wires profiles
compared with theory. Table of the NRMSE calculated between the experimental profiles and the theoretical one.



7.2. X-ray lenses and larger pixel displacements

A second quantitative study was performed on refractive

X-ray lenses with radii varying from 50 mm, 500 mm to

5000 mm – the smaller the radius, the shorter the focal length

of the lens and the larger the speckle lateral displacement will

be. Under the experimental conditions summarized in Table 1,

their respective focal lengths are 29.36 m, 293.58 m and

2.94 km. X-ray lenses attenuate the incoming beam, but the

lenses used in this experiment are made of beryllium and at

20 keV absorption is kept to a minimum. X-ray lenses can be

easily modelled and theoretical values for their phase gradi-

ents readily obtained (Celestre et al., 2020; Celestre et al.,

2023). Furthermore, the phase gradients of a 2D parabolic lens

is linear in both vertical and horizontal directions within the

lens geometric aperture, which makes visual inspection of the

displacement graphs in Figs. 3, 4 and 5 straightforward. All

these make X-ray lenses good phantoms for SBI and the same

treatment dispensed to the nylon wires will be applied to the

lenses. Much like in the previous section, the phase gradients

presented here were obtained by applying the several algo-

rithms to a set of ten reference and ten sample images at

different speckle membrane positions.

Fig. 3 shows the horizontal phase gradients and the NRMSE

values for a 50 mm radius lens. For this experimental config-

uration, the speckle shift at the edge of the lens is expected to

be slightly over 3 pixels. We can see that, with the exception of

the LCS algorithm – that stagnates around �1 pixel, all

algorithms follow closely a linear profile and overlap well with

the theoretical curve within the lens active area; however, the
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Figure 3
Displacement maps of a 2D beryllium lens with R = 50 mm from measurements with ten membrane positions. The NRMSE values are calculated within
the limits of the profile cuts above, while values in parentheses are calculated within the lens active area. The horizontal profile cuts were obtained from
the centre of the lens. The orange bar represents 200 mm.

Figure 4
Displacement maps of a 2D beryllium lens with R = 500 mm from measurements with ten membrane positions. The NRMSE values are calculated within
the limits of the profile cuts above, while values in parentheses are calculated within the lens active area. The horizontal profile cuts were obtained from
the centre of the lens. The orange bar represents 500 mm.



edges of the lenses are not well represented by the theoretical

model, hence the difference between experimental and

simulated data reflected by the NRMSE – this mismatch has

been documented and discussed into depth in a previous work

(Celestre et al., 2023). The NRMSE vales are calculated within

the limits of the profile cuts in Fig. 3, while the values in

parentheses are calculated within the lens active area and

hence their lower values (meaning better agreement). A visual

inspection of the 2D maps shows that XSVT, WXSVT and

UMPA are indistinguishable. The XST–XSVT map is less

sharp than the aforementioned methods, but this is already

expected due to the method’s intrinsic lower lateral resolution.

The results with OF, despite following closely the theoretical

profile, present some artefacts/texture that is not observed

with the previous methods – this texture is not captured by the

NRMSE. The LCS results are not good towards the edge of

the lens, where both the displacements and absorption are

stronger.

Moving to the 500 mm radius lens (Fig. 4), we see a better

agreement between theoretical and experimental values. Here

the pixel displacements are confined to �1 pixel. Much like

for the previous lens, XSVT, WXSVT and UMPA are indis-

tinguishable. The XST–XSVT map remains the least sharp

method but still presents excellent qualitative and quantitative

results. OF still presents some texture near the lens edge, but

those are much less prominent. The LCS method behaves

much better than for the 50 mm case, but it is still noisy

towards the edge of the lens where phase shifts approach the

1 pixel mark. The NRMSE remains between 6.2% and 6.9%

for all methods mainly due to the modelling of the lens edge.

Explicit tracking methods, however, present slightly lower

NRMSE values within the lens active area.

The third measurement of this series is of a 5000 mm radius

lens. This is a very weak phase element and the pixel displa-

cements are below a third of a pixel for the lens geometric

aperture – edge effects are rather strong compared with the

gradient inside the lens geometric aperture, hence the

elevated NRMSE values in Fig. 5. For this experiment, the

explicit tracking methods are rather robust and manage to not

only follow the slope of the gradient but also show a slightly

lower noise than the LCS method (implicit tracking). The OF

algorithm under-performs and does not follow the straight line

of the slope as shown by the gradient’s horizontal cuts. The OF

image has three noticeable artefacts: two discontinuities on

the left side of the lens (singularities/vortexes) and a conic

shape on the right side. While the first remains a source of

speculation, the latter has also been observed in Fig. 4 for the

same method and most likely comes from the scintillator or

the carbon cover of the X-ray imaging system, which shields it

from stray light. The same structures are visible in the loss

term of LCS, highlighting the different nature of the signal

retrieved by OF. The LCS algorithm performs well for this

sample, despite higher noise levels in the 2D map. We remind

the reader that the noise levels shown here (about one-tenth

of a pixel) represent �210 nrad of angular sensitivity for this

experimental setup.

7.3. Mouse knee: qualitative evaluation of a detailed sample

under high-coherence illumination

The third study examined a biological sample (mouse knee)

using high-coherence illumination. While the previous

sections explored the retrieval of quantitative information,

this and the following section emphasize image quality. This is

because obtaining the theoretical phase shifts produced by this

kind of sample is very challenging, if not impossible. Assessing

image quality can be very subjective at times. In order to

facilitate the qualitative evaluation of the reconstructed phase,

we apply a selection of ‘no-reference’ image quality ranking

methods (IQRMs) commonly used in microscopy – Koho et al.

(2016) present a very complete overview of several methods

and compare their relative performance; we based our image
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Figure 5
Displacement maps of a 2D beryllium lens with R = 5000 mm from measurements with ten membrane positions. The NRMSE values are calculated within
the limits of the profile cuts above, while values in parentheses are calculated within the lens active area. The horizontal profile cuts were obtained from
the centre of the lens. The orange bar represents 1000 mm.



analysis on their work. To compose our pool of metrics we

chose: BRISQUE (blind/referenceless image spatial quality

evaluator; Mittal et al., 2012) and NIQE (natural image quality

evaluator; Mittal et al., 2013) – methods for natural images

(MATLAB official implementation); for identifying images

with high contrast and continuous spatial features we use the

Shannon spatial entropy (sEntropy) and one minus the

normalized power spectrum standard deviation (1-fSTD). As

pointed out by Koho et al. (2016), the spatial entropy favours

images with high contrast, while 1-fSTD should favour non-

noisy images. We also add the mean between sEntropy and

1-fSTD (‘mean*’); finally, in order to try to evaluate blur, we

chose two frequency-domain metrics: the spectral domain

mean (fMean) and standard deviation (fSTD). The imple-

mentation of sEntropy, fMean and fSTD was taken from

MIPLIB (2020).

We present the phase gradients and reconstructed phases

for two data-sets: ten-image-pairs (Figs. 6 and 7) and a reduced

four-image-pair (Figs. 8 and 9) in order to test the robustness

of the algorithms to a reduced data-set. The metrics plotted

alongside the gradients and reconstructed phases were

adjusted by offsetting with the lowest value across both

datasets (for each respective metric) and subsequently scaled

by dividing by the range of values within each metric. The

SMOST algorithm is now included in the pool of tested SBI

methods. Unlike the other methods that retrieve phase

gradients, SMOST directly obtains the phase. Therefore,

Frankot–Chellappa’s integration method (FC), as described in

x4, will be applied to obtain the phase for the remainder

methods.

Using ten image pairs, all algorithms are able to retrieve

phase gradients and the FC integration returns an image that
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Figure 6
Displacement maps and phase images retrieved from acquisitions at ten membrane positions with various explicit phase retrieval algorithms.



seems to be morphologically correct. Using the aforemen-

tioned IQRM, we can say that XSVT, XST–XSVT, WXSVT

and UMPA deliver very similar results, with WXSVT having a

lower 1-BRISQUE response and UMPA a higher one. OF has

the poorest performance on all but 1-STD metric: smooth/

blurred images with a reduced dynamic range that makes

some details difficult to see. This smoothing can be reduced by

tuning the high-pass filter in the Fourier domain but this leads

to the appearance of other artefacts. OF assumes a non-

absorbing sample, a hypothesis which does not hold with

highly absorbing samples such as bones. Since the absorption

signal cannot be fully removed from the dataset, the signal

retrieved by OF contains the filtered absorption. Isolating only

the phase signal of this sample is not possible with this algo-

rithm. The LCS algorithm gives a result that nears the explicit

tracking methods, but with a higher fSTD content which

translates to a higher granularity in the phase image. LCS has

the highest 1-NIQE metric from all images. The SMOST phase

image is the one that is subjectively the best in our evaluation:

it presents the most details. It has the highest fSTD and fMean

when compared with the rest of the ten-image-pair recon-

structions. It performs very badly on the 1-NIQE criterion,

has very low Shannon entropy but performs well with the

1-BRISQUE. Despite being perceived as the best recon-

struction, it shows interference fringes and the image is similar

to the one obtained with a simple propagation-based phase

imaging setup. This is due to the nature of the retrieved

signal that, assuming a single material, combines information

from the phase and attenuation. The SMOST equation is

similar to the PBI formulation, thus raising doubts about

the role of membrane modulation in the image

quality.

Now we focus on the reduced dataset. Reconstructions with

less experimental data were performed to assess the robust-

ness of the algorithms when minimizing sample exposure to

X-rays, thereby reducing the delivered dose – an important

consideration for medical imaging applications. Right away,

we see that both XSVT and WXSVT fail. This can be

explained by the fact that these algorithms track displace-

ments using cross-correlation of 1D arrays with a length of P,

where P is the number of collected images. When P is as small

as four, the vectors are too short to compute a meaningful

cross-correlation. The XST–XSVT and UMPA images become

slightly more grainy: fMean is marginally reduced. We also

note an increased sEntropy to the images. The 1-NIQE metric

is also increased for the smaller set. The LCS is visually worse

than the ten-image-pair reconstruction: the background is

significantly noisier. The used metrics back up this subjective

assertion: fSTD is significantly increased (1-fSTD is

decreased) while the entropy plummets. The natural image
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Figure 7
Displacement maps and phase images retrieved from acquisitions at ten membrane positions with various implicit phase retrieval algorithms.



metrics seem not to be appropriate markers of image quality

for this case. The OF is still the least performing from all the

algorithms, but it seems to be insensitive to the reduction of

image-pairs. SMOST seems to retain its subjective image

quality and appears to be unaffected by the data-set reduction,

despite having an increase in the fMean and fSTD.

7.4. Domestic fly: qualitative evaluation of a detailed sample

under low-coherence illumination

Finally, the algorithms were compared in the case of a low-

coherence system, by using a laboratory source with poly-

chromatic illumination (a tungsten anode operating at

40 kVp). This experimental setup also has a lower lateral

resolution – the detector has a limited pixel size of 48 mm. To

compensate for the blurring induced by the detector point

spread function, an unsupervised Wiener deconvolution was

applied to the acquisitions prior to the phase retrieval. For this

comparison, 4, 10 and 16 image pairs were used. The resulting

phase images are displayed in Fig. 10. To facilitate the image

quality evaluation, we tried to adopt the same metrics used

in the previous section (x7.3); however, a distinctive image

quality metric could not be found and the quality assessment

remained subjective at times. Basically, for all methods but the

OF, it is straightforward to observe an improvement of image

quality with increased number of image pairs as they are less

grainy – this can be monitored with the background of the

image. The metrics fSTD and fMean should be sensitive to it,

but the LCS with four image pairs eclipse the results for all the

other techniques (metrics are normalized). For the first series

(N = 4), much like in the previous section, we note that XSVT

and WXSVT do not work. UMPA and XST–XSVT give
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Figure 8
Displacement maps and phase images retrieved from acquisitions at four membrane positions with various explicit phase retrieval algorithms.



equivalent results with UMPA having a higher entropy, while

XST–XSVT has a higher fMean and fSTD but the perceived

difference in the images is marginal. For an increased number

of images – be it 10 or 16 – XSVT, XST–XSVT, UMPA and

LCS appear to give equivalent results, despite XST–XSVT,

UMPA having a cleaner background. Confirming what was

observed in x7.3, OF seems to be invariant to the number of

images used in the reconstruction – while there is a difference

between N = 4 and the rest of the OF reconstructions, N = 10

and N = 16 are very similar. It is clear upon visual inspection

that those images appear to be less sharp than the other

methods, which is related to how the several reconstructions

are merged together (Appendix A). It is difficult, however to

rank them amongst each other. Using this same metric, we can

see that OF presents the least sharp of the image recon-

structions. But in this case, the blur is balanced with an edge

enhancement effect due to the Fourier frequency filter. It

appears to be the least noisy result; however, the nature of the

signal retrieved might be mainly due to filtered attenuation as

previously discussed.

8. Conclusions and perspectives

Table 2 summarize the results obtained with the different

algorithms and Appendix A summarizes all the relevant

parameters for phase retrieval used in this work. These

methods present different advantages and drawbacks which

are summarized in x2.7 and x3.5. If searching for high displa-

cement quantitative measures, the XSVT, XST–XSVT,

WXSVT and UMPA are the best options. The WXSVT has the

advantage of a lower computational cost if fewer wavelet

coefficients are used. For small displacements, the LCS gives

quantitative results and might be the fastest computation

option. For synchrotron high-resolution imaging, XSVT, XST–

XSVT, WXSVT, LCS and UMPA give similar results when

a large number of membrane positions are acquired. With

smaller numbers of points, XSVT and WXSVT are no longer

good candidates. For conventional micro-focus source imaging

of complex samples, the LCS, UMPA and XST–XSVT appear

to give the best results that are quite similar to each other.

Once again, for faster computation, the LCS is the best solu-

tion. OF and SMOST give interesting results when looking at

complex samples but the nature of the extracted signal

remains an issue. Further tests should be done to completely

identify and characterize it. For example, the same SBI

experiment could be performed with and without the modu-

lator, to study the role of the membrane for signal extraction.

A measurement without membrane would moreover provide

a reliable measurement of the absorption, which could be

decoupled from the phase signal.
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Figure 9
Displacement maps and phase images retrieved from acquisitions at ten membrane positions with various implicit phase retrieval algorithms.
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Figure 10
Phase images of a fly retrieved from a conventional set-up set of acquisitions with various available algorithms: XSVT, XST–XSVT, WXSVT, UMPA, OF,
LCS from 4, 10 and 16 membrane positions.



APPENDIX A

Phase retrieval parameters

A1. XSVT

The XSVT processing of experimental data was consistent

across all sample types and closely followed the method

described by Berujon et al. (2020b). Each speckle vector (1D)

was searched within a window of size W = (2M + 1)� (2N + 1)

with M = N = 10. For XSVT, as long as the window is large

enough to contain the matched signal, reducing the window

size only speeds up the calculations. This was not a concern at

the time, as the computations were performed on the ESRF

SLURM cluster using 40 cores in parallel, taking less than

a minute for a 2159 � 2559 pixel image using ten sample/

reference pairs. We tracked local normalized cross-correlation

values, and if a pixel’s correlation fell below a threshold –

indicating a poor match – we locally increased the search

window to improve the signal match. Sub-pixel tracking of the

maxima is done using equations (7) and (8) from Qiao et al.

(2020a). The phase gradients then underwent post-processing,

where a 5 � 5 median filter was applied locally only to outlier

values to avoid altering the unaffected parts of the image.

A2. XST–XSVT

The XST–XSVT algorithm is more computationally

demanding than its XST counterpart. It was implemented

outside the ESRF, therefore the ESRF-SLURM cluster was

not utilized for the analysis. The size of the window w was kept

as small as possible, i.e. 3� 3 pixels. The search interval W was

selected based on the maximum lateral displacement expected

for each sample, to minimize the computational time. W was

set to 5 � 5 for the 50 mm Be lense, 3 � 3 for the 500 mm and

5000 mm lenses and the wires, and reduced to 2 � 2 only for

the biomedical samples: the knee and the fly.

A3. WXSVT

The data processing using WXSVTwas identical to XSVT in

terms of search window sizes, sub-pixel tracking and post-

processing of outliers. To achieve the best results, we retained

all wavelet coefficients, prioritizing accuracy over computation

time. Despite this, calculations for ten sample/reference pairs

(2159 � 2559 pixels) still took less than a minute using the

ESRF SLURM cluster with 40 cores in parallel.

A4. UMPA

The analysis with the UMPA algorithm was identical to

XST–XSVT.

A5. OF

The OF algorithm was run on every sample/reference pair

and D?(x, y) was computed as the median of the resulting

displacement maps. The threshold of the Gaussian-shaped

high-pass filter strongly affects the resulting D?(x, y) and had

to be manually selected for each dataset to optimize the

image quality.

A6. SMOST

Similarly to OF, SMOST can run on a single sample/refer-

ence pair. When more image pairs are used, the median of the

displacement maps was considered as the resulting D?(x, y).

A7. LCS

The LCS algorithm does not require the manual selection of

any parameters. The linear system in equation (20) was solved

via QR (Golub & Van Loan, 2013) decomposition.
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Table 2
Summary of the characteristics of the various phase retrieval algorithms.

Explicit tracking

XSVT XST–XSVT WXSVT UMPA

Section (x) 2.2 2.3 2.4 2.6
Quantitative Yes Yes Yes Yes
Sensitivity to small pixel displacements + + + +
Sensitivity to large pixel displacements + + + +
Robust to decrease in membrane positions � + � +

Low coherence + + + +
Computational cost High Very high High Very high

Implicit tracking

OF SMOST LCS

Section (x) 3.1 3.2 3.3

Quantitative No No due to filtering in the Fourier domain Yes for sub-pixel displacements
Sensitivity to small pixel displacements / / ++
Sensitivity to large pixel displacements / / �
Robust to decrease in membrane positions ++ ++ � (> 3)
Low coherence + / +
Computational cost Very low Very low Low



APPENDIX B

Effects of the window size on the lateral resolution of the

XST–XSVT and UMPA methods

In the sections on the XST–XSVT (Berujon & Ziegler, 2016)

and UMPA (Zanette et al., 2014; Zdora et al., 2017) methods

(x2.3 and x2.6) we briefly mentioned the reduction in lateral

resolution of the reconstructed phase (or gradients) with

increasing window size but did not explore it further in x7. This

limitation has already been thoroughly addressed in the

original publications and examined in detail by Tian et al.

(2020b). Figs. 11 and 12 show the decrease in lateral resolution

for the XST–XSVT and UMPA methods for increasing

window size. In order to facilitate the visual comparison, the

plots in Fig. 11 are shown using the contrast limited adaptive

histogram equalization (CLAHE) normalization from

OpenCV (OpenCV, 2024). We notice that the the XST–XSVT

has a worse lateral resolution than the UMPA method for the

same w (in this example 2m + 1 = 2n + 1) – see Fig. 12. We used

the Laplacian variance (LAP4), the Tenengrad or gradient

magnitude (GRA6) and gradient energy (GRA2) from Pertuz

et al. (2013) and the high frequency content of the Fourier

transform of the image (‘FT sharpness’). The accompanying

increase in angular sensitivity is easy to understand given the

larger size of the motif being correlated in the search window

and the accuracy of sub-pixel maxima tracking methods

(Fisher & Naidu, 1996).
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Figure 11
Reconstructed phase image of the mouse knee from x7.3 for ten sample/
reference image pairs for increasing w with 2m + 1 = 2n + 1.
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Quénot, L., Brun, E., Létang, J.-M. & Langer, M. (2021a). Phys. Med.

Biol. 66, 175027.
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