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We present here a newly developed software tool (called PGMweb) for

computing and simulating the X-ray beam path through a plane grating

monochromator (PGM), a key component in soft X-ray beamlines at modern

synchrotron and free-electron laser facilities. A historical overview of the

development of PGMs is presented, with special attention dedicated to the

collimated PGM optical scheme found at several X-ray facilities worldwide. The

analytical expressions that fully describe the geometry of a PGM are derived

and have been implemented as functions in a Python library (pyplanemono).

PGMweb is distributed as a web-based application that can be run in any

modern browser without installation, making its use very straightforward for

X-ray beamline designers and beamline scientists alike.

1. Introduction

Monochromatic soft X-ray beams are indispensable for many

areas of ongoing research. To perform X-ray absorption

spectroscopy (XAS) at the K-edges of abundant main group

elements (such as carbon and oxygen) as well as at the L-edges

of the first row transition metals (such as iron or nickel), one

needs to work in the soft X-ray range. Both XAS and X-ray

photoelectron spectroscopy (XPS) performed with soft X-rays

can shed light on the underlying physical and chemical

processes at work in a variety of different research areas, from

thin-film magnetism (Aich et al., 2023) to catalytic processes

(Venezia, 2003), and from strongly correlated electron systems

(Gilmore et al., 2021) to prototype battery materials (Liu et

al., 2019).

Achieving monochromation in the soft X-ray range is not

straightforward. Below �2000 eV, one cannot use a double-

crystal monochromator with Si(111) reflections, as the wave-

length of the incoming photons is too large to satisfy the Bragg

condition. In this energy range (�50–2000 eV), potential

crystal candidates with d-spacings large enough to accom-

modate the longer wavelengths are few and far between

(Sutter, 2021). Moreover, the current capabilities in high-

purity manufacturing of these exotic crystals are relatively

limited, and in most cases their thermal properties are far from

optimal, which is a significant factor considering the high heat

load beams produced at large-scale X-ray facilities. These

issues mean that double-crystal monochromators devoted to

soft X-ray studies are rather impractical.

However, the dispersive property of reflective diffraction

gratings (Ebert, 1889) offers the possibility of a mono-

chromator design with adequate efficiency in the soft X-ray
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range. The pioneering work of Kunz et al. more than 50 years

ago featured a monochromator which combines a plane mirror

and plane grating (Kunz et al., 1968), aptly named the plane

grating monochromator (PGM). However, the mechanical

design of the Kunz setup was rather complicated, as it required

the mirror optic to be translated as well as rotated during

operation. Later work performed at Zeiss during the 1980s

(Riemer & Torge, 1983) showed that a single eccentric rota-

tion of the mirror would, in effect, achieve the desired

simultaneous translation and rotation. This mechanical

arrangement was originally used at BESSY in the SX-700 type

PGM design popular in the 1980s and 1990s (Petersen et al.,

1995) and is used in the vast majority of PGMs in operation

today. Furthermore, PGMs are increasingly attractive mono-

chromators for use in the notoriously difficult tender X-ray

range (�1500 eV to 4000 eV) due to recent advances in

multilayer grating manufacturing (Wen et al., 2024; Werner et

al., 2023).

Diffraction from a grating is governed by the grating

equation,

n� ¼ g ðsin�þ sin �Þ; ð1Þ

where n is the diffraction order and therefore takes integer

values, � is the selected wavelength of the radiation, g is the

grating line density (normally defined in lines mm� 1), and the

angles � and � are as presented in Fig. 1 (see also Table 1).

Throughout this work we follow the convention used in the

X-ray data booklet (Thompson et al., 2009), where � and �

have opposite signs if they are on opposite sides of the normal.

During operation, the mirror and the grating are rotated in a

coordinated way to change � and/or � whilst ensuring that the

outgoing rays remain parallel to the incoming rays. The grating

disperses the X-rays in energy, and a small fraction of the

dispersed radiation is then selected via a fixed downstream

exit slit with a tunable opening in the dispersive direction. In

this way a monochromatic beam is produced.

A common way to parameterize the relationship between �

and � for a given grating geometry is through the property

originally defined as the constant of fixed-focus (Petersen et

al., 1995), now commonly referred to as the grating cff,

cff ¼
cos�

cos�
; ð2Þ

By substituting equation (2) into equation (1) and with

suitable algebraic manipulations, one arrives at the updated

grating equation commonly used today when operating PGMs,

1 �
n�

g
� sin �

� �2

¼
cos2 �

c2
ff

: ð3Þ

The only angular dependence of equation (3) is now in �, and

equation (3) is essentially a quadratic equation in sin �. � can

be calculated from � and a given cff; and � can be solved by

imposing that the incoming and outgoing rays must remain

parallel, that is, 2� = � � �. Equation (3) calculates all three

angles while only requiring the user of a PGM to dictate the

desired diffraction order, the energy to be transmitted, and a

value of cff.

Nowadays a significant proportion of soft X-ray beamlines

use the collimated PGM (cPGM) optical scheme proposed by

Follath et al., as it offers the ability to operate the PGM at

different values of cff while maintaining a focused beam at the

exit slit in the dispersive direction (Follath & Senf, 1997;

Follath, 2001). This is in contrast to the older SX-700 scheme

described by Petersen, where the beam was non-parallel in the

vertical plane at the PGM, and it therefore required the use of

the focusing properties of a plane grating (Petersen, 1982),

and thus restricted the cff to a single value. Modifying cff in a

cPGM beamline enables scientists to directly tune the resol-

ving power, improve higher-order suppression, and/or custo-

mize the vertical divergence of the beam for a given
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Figure 1
A schematic of a typical modern PGM geometry. Quantities highlighted
in red are to be determined prior to the manufacturing of the PGM. All
parameters presented in this figure are described in Table 1.

Table 1
The complete list of parameters that define the geometry of a PGM and
the commonly assigned variables.

Description
Parameter
name

Fixed or varying
in operation

Displacement vector of the centre of beam

footprint on the plane mirror

A Varying

Displacement vector of the plane grating
rotation axis (origin of the x, y coordinate
system)

O Fixed

Displacement vector of the centre of beam
footprint on the plane grating

B Varying

Displacement vector of the plane mirror
rotation axis

C Fixed

Displacement vector of downstream edge of
the plane mirror

D Varying

Projection of C onto plane mirror surface E Varying
Displacement vector of the bottom left

corner of the grating
G Varying

Distance between D and E a Fixed
Vertical displacement between B and

incident beam
b Fixed

Vertical displacement between exit beam
and incident beam

b 0 Varying

Rotation radius for plane mirror c Fixed

Distance between A and B d Varying
Distance between O and B e Varying
Vertical displacement between C and O v Fixed
Horizontal displacement between C and O h Fixed
Distance between A and D s Varying
Normal angle of incidence on the mirror � Varying
Normal angle of incidence on the grating � Varying

Normal angle of diffraction from the grating � Varying



experiment. The cPGM scheme continues to be one of the

most popular soft X-ray beamline designs despite the fact that

it has been more than two decades since its inception.

The mechanical design of a modern PGM is rather

complicated, primarily stemming from the requirements that

(1) the beam is always incident on the centre of the grating

optical surface, and (2) the outgoing beam should remain

parallel to the incoming beam. To achieve this, the mirror is

rotated eccentrically, with the centre of rotation of the mirror

located at C in Fig. 1 (Riemer & Torge, 1983). The point C is

offset from the origin of the PGM coordinate system (O) by

the vector ðh vÞ in the convention used here. The intercept of

the incoming X-ray beam with the mirror surface is then a

non-trivial function of the photon energy and the PGM cff.

While some time ago Pimpale et al. provided an analytical

description of this geometrical design (Pimpale et al., 1991),

here we reintroduce some of the derivations described in that

work but with an alternative parameterization that we feel is

more practical for use by scientists at X-ray facilities.

The mechanical evolution of the PGM as it performs an

energy scan is potentially unintuitive. The complex nature of

coupled rotations of the mirror and grating makes checking

the feasibility of a set of PGM parameters non-trivial, as

understanding the limits of operation for a PGM requires

complete knowledge of its geometry. Limitations are

encountered when:

(1) The beam is either blocked by the edges of the mirror

or the grating leading to a partial/total loss of flux, Figs. 2(a)

and 2(b).

(2) The beam is no longer incident on the optical surfaces of

the mirror and/or the grating, Fig. 3(a).

(3) The grating or mirror is over-illuminated, Fig. 3(b).

In Fig. 3, we have included additional inset plots showing

the ‘footprint view’ of the beam geometry within the PGM.

The footprint view presents the beam footprints where the

beam impinges on the respective optical surfaces, and does not

show the propagating beam. It differs from a top view in two

primary ways: (i) the grating has been offset horizontally for

clarity so as not to overlap with the mirror, and (ii) the mirror

and grating optical surfaces (and the corresponding beam

footprints) are viewed normal to each optical surface. The

horizontal direction is the direction of propagation of the rays

(x) and the vertical direction is parallel to the widths of the

optical elements (z). We have included the footprint view in

PGMweb, as we feel that it is extremely useful both to

beamline designers and beamline scientists.

In practice, a PGM is designed with a set of predetermined

offsets which optimizes the performance of the PGM for the

specific use case, i.e. energy range, or energy resolution. The

optimized parameters that must be known prior to manu-

facturing are highlighted in red in Fig. 1. These parameters

therefore define the range of energy and cff over which a given

grating can transmit the whole beam for a particular PGM. We

have therefore developed PGMweb, a software tool designed

to help scientists to select these fixed parameters when

designing a PGM. Our program also enables users to rapidly

assess what is the lowest (or highest) energy that can be

transmitted through a given PGM. Moreover, PGMweb

provides an easy method for checking the transmission of an

existing PGM with a new grating, which may have a different

line density and therefore would operate in a different

geometry (�, � and �) compared with existing gratings.

computer programs
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Figure 2
Two possible scenarios where self-blockage may occur. (a) Blocking by
the upstream corner of the grating. (b) Blocking by the downstream
corner of the mirror. Blockages are highlighted with circles.

Figure 3
Two further possible scenarios where the beam is (a) only partially on the
mirror surface, and (b) over-illuminating the grating. Two inset plots are
provided for each scenario which gives the view of the top of the optical
surfaces of the mirror and the grating as well as the footprints of
the beam.



2. The geometry of a PGM

In this section, we present the analytical expressions of all

quantities of interest in a PGM. This includes the intercepts

that the beam makes with both the grating and the mirror, as

well as coordinates for the corners of both optics which have

not been previously derived.

In all subsequent expressions, we define the horizontal as x,

with positive x in the direction of ray propagation. The vertical

is defined as y. The origin is defined to be at point B in Fig. 1,

which is the location of the grating rotation axis. The bulk of

the derivation will be performed in the (x y) plane. For

simplicity, we present the derivations in two dimensions and

introduce the z dimension at the end.

2.1. Intercepts with the mirror and the grating

Using quantities as they are defined in Fig. 1, the x–y

coordinate of the intercept of the rays with the mirror is given

by the expression

A ¼
hþ c cos � � tan �ðbþ v � c sin �Þ

b

� �

; ð4Þ

where h, c, b and v are all quantities known prior to the

manufacturing of the PGM, and � can be trivially calculated

from the grating equation, equation (3).

Ideally the beam after the mirror would always be centred

on the grating surface, so the grating is able to accept the

largest beam possible at lower incident grazing angles (90� �

�). In practice, the beam intercept (B) is slightly offset from

the centre of the grating (O) by some finite distance e along

the optical surface, as shown in Fig. 1. Using equation (4), an

expression for e can be derived,

e ¼
h sin 2� þ vðcos 2� � 1Þ þ 2c sin � � b

cos �
: ð5Þ

2.2. Minimization of e

To ensure that the beam hits the centre of the grating at a

range of energies, the values of b, c, v and h must be carefully

chosen. This can be done by minimizing the quantity b 0 � b,

the vertical displacement of the centre of the beam from the

centre of the grating, which is equal to

b 0 � b ¼ e cos �:

Written in full, from equation (5),

b0 � b ¼ cff

�
h sin 2� þ vðcos 2� � 1Þ þ 2c sin � � b

�
; ð7Þ

where we have substituted the definition of cff. By satisfying

the condition that the beam impinges on the centre of the

grating, the left-hand side of the above equation is set to 0.

After some rearrangement, this gives an expression for b,

b ¼ h sin 2�g � 2v cos2 �g þ 2c cos �g; ð8Þ

noting cos 2’ � 1 = � 2 sin2 ’ and that we have replaced � with

the grazing angle �g = �/2 � �.

When �g is small (which is typical to ensure high reflectiv-

ities in the soft X-ray range), we can apply cos �g =

ð1 � sin2 �gÞ
1=2 ’ 1 � ð1=2Þ sin2 �g þO3. Substituting the

approximation in equation (8) gives

c � v �
b

2
þ v �

c

2

� �
sin2 �g þ h sin �g ¼ 0; ð9Þ

which would suggest that, in order to keep b 0 � b small, the

values of the offsets should be chosen such that b’ c’ 2v and

h ’ 0. This approximation has been applied to almost all

PGMs at Diamond Light Source, cf. Table 2.

2.3. Corners of the grating

Equally as important in the visualization of a PGM are the

corners of the optics. The analytical expressions can be easily

derived using trigonometry. Let the dimensions of the grating

optic be defined as Lg, Hg and Wg, the length, height and

width, respectively, where the length is the dimension in the

tangential direction, the width is the dimension in the sagittal

direction and height is the optical thickness. The corners of the

grating are defined by the vectors G1, G2, G3 and G4 in the x–y

plane; their expressions are

G1 ¼ �
Lg

2

cos �g

sin �g

� �

� �
Lg

2

sin �

cos�

� �

: ð10Þ

In Fig. 4(a), from the origin (O), the point G1 is in the fourth

quadrant, where both the components x and y are negative.

The expression for the coordinate is thus

G1 ¼ �
Lg

2

cos�g

sin �g

� �

� �
Lg

2

sin �

cos �

� �

; ð11Þ

G2 ¼ G1 þHg

� cos �

sin �

� �

; ð12Þ
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Table 2
A compendium of all PGMs installed at the Diamond Light Source and their relevant offsets.

Beamline Short summary a (mm) b (mm) v (mm) c (mm) h (mm)

I05 (Hoesch et al., 2017) Angle-resolved photoelectron spectroscopy 5 35 19.37 36.88 � 190.36

I06 (Dhesi et al., 2010) Photoelectron emission microscopy 40 15 7.67 15.25 0
I08 Scanning X-ray microscope 35 10 5.054 10.054 0
I09 (Lee & Duncan, 2018) Surface and interface structural analysis 50 16 8.111 16.111 � 4
I10 Advanced dichroism experiments 40 15 7.67 15.25 0
I21 (Zhou et al., 2022) Resonant inelastic X-ray scattering 40 15 7.5 15 0
B07c (Held et al., 2020) Versatile soft X-ray (VerSoX) beamline 40 13 6.5 13 0
B07b (Grinter et al., 2024) Versatile soft X-ray (VerSoX) beamline 40 24 12 24 0

B24 (Harkiolaki et al., 2018) Full-field cryo-X-ray microscopy for life sciences 50 10 5 10 0



G3 ¼ G4 þHg

� cos �

sin �

� �

; ð13Þ

G4 ¼
Lg

2

sin �

cos �

� �

: ð14Þ

The third dimension z can be introduced trivially. A set of

eight vertices of the grating can be found by placing the four

points G1, G2, G3 and G4 in z = �Wg/2, so that the centre of

the grating O is situated at the three-dimensional origin.

2.4. Corners of the mirror

In very much the same fashion, the vertices of the mirror

can be found, with the added complication that the origin is in

the middle of the grating optical surface. The mirror corners

are given by the expressions

M3 ¼ E � a
sin �

cos �

� �

; ð15Þ

M4 ¼ M3 þHm

sin �

� cos �

� �

; ð16Þ

M1 ¼ M3 � Lm

sin �

cos �

� �

; ð17Þ

M2 ¼ M4 � Lm

sin �

cos �

� �

; ð18Þ

where the displacements are negative in all components.

The results derived from the expressions presented above

were extensively compared with an alternative software tool

developed at Diamond in Igor, which was described in a

previous publication (Sutter et al., 2023). This older software

has been tested extensively during the design of several soft

X-ray beamlines at Diamond, and the two software tools give

results in complete agreement.

2.5. Beam size from an undulator source

Another area of consideration during PGM operation is the

beam size from the source, more specifically, the height of the

beam. For an undulator source at modern X-ray facilities, the

vertical beam size at the PGM is significantly changing as a

function of energy. Here we present the analytical expressions

to calculate the beam height from a Gaussian undulator source

(Peatman, 1997). The vertical root mean squared (RMS)

photon source size (�) is given by

� ¼ �2
y þ

�L

4�2

� �1=2

; ð19Þ

where �y is the vertical RMS electron beam size, � is the

wavelength of the beam and L is the length of the undulator.

The vertical photon source divergence (�0) is given by a

similar expression,

�0 ¼ � 0 2y þ
�

2L

� �2
" #1=2

; ð20Þ

where � 0y is the vertical electron beam divergence. It neces-

sarily follows then that the final beam height at a plane

distance d away is given by

Beam height ¼ �2 þ � 0dð Þ
2

h i1=2

n�; ð21Þ

where n� is the number of standard deviations to include in

considering the beam size.

3. Implementation

3.1. Python API

All analytical expressions that have been presented were

compiled and coded into callable functions in Python. An

object-oriented approach was employed to construct simu-

lated instances of a mirror and a grating to form a PGM. This

is distributed in the form of a Python library: pyplanemono.

This code is freely available on Github (https://github.com/

patrickwang27/pyplanemono) under an MIT licence, as well as

on PyPI (https://pypi.org/project/pyplanemono/). The library

additionally provides methods to draw PGM diagrams by

performing simple ray tracing. The code computes all

geometrical quantities of the PGM given a set of parameters

defined using the class attributes of the PGM, mirror and

grating. Notably, the package can also interface with Matplot-

lib and Plotly to produce diagrams of the PGM. We have

therefore included animations of a PGM performing both an

energy scan as well as a cff scan in the supporting information.
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Figure 4
(a) A 2D side-view (x–y) projection of the grating optic, along with the
dimensions of length (Lg) and height (Hg) denoted, and (b) an identical
view of the mirror optic, with its dimensions Lm and Hm denoted.
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http://doi.org/10.1107/S1600577524011603


3.2. PGMweb

PGMweb (https://pgmweb.diamond.ac.uk) is an extension

of the underlying calculation software package. A front-end

graphical user interface (GUI) was developed using Shiny

for Python (https://shiny.posit.co/py/), a dashboarding library

commonly used in data science. This provides a GUI that can

run in any modern browser that supports JavaScript. To

simplify the user experience and avoid manual installations,

we have opted to distribute the software as an online appli-

cation with Shinylive (https://github.com/posit-dev/shinylive).

Shinylive bundles the GUI code with a minimal Python

environment in WebAssembly [Pyodide (https://pyodide.org/

en/stable/)] to produce files for a static website. The workflow

presented in Fig. 5 shows that upon visiting the PGMweb

website the server returns a set of files containing everything

necessary to run a minimal Python environment within the

browser. After the user’s local setup is complete (typically

within 1 min), all calculations are run by the pyplanemono

package within the browser, at which point the server ceases

to play any role. The delay experienced by the user would

have been considerably less had the calculation been

performed on a separate remote Python server. Shiny also

includes a feature which makes any code executed completely

transparent to the user and can be modified on-the-fly to

better suit the user’s needs. This can be done by accessing the

edit function of Shiny, as shown in Fig. 6.

3.3. Features

The interface allows the user to define all key parameters

that dictate the geometry of a PGM, Fig. 7. The energy, cff, the

grating line density and the diffraction order are highlighted as

four primary controls and occupy a prominent space in the

GUI to allow quick and easy reading/changing of their values.

Controls for the finer details are included as well; the user can

fully specify the geometry of a PGM using the appropriate

offsets previously defined. The software also has the ability to

compute the offset parameters h, c and v when the user

specifies the offset b, using the approximation described in

Section 2.2. The software computes the geometry of the PGM

computer programs
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Figure 5
A cartoon depiction of using PGMweb to illustrate the role each entity
serves.

Figure 6
A screenshot of the PGMweb app in the edit mode. This mode is accessed by visiting https://pgmweb.diamond.ac.uk/app/edit/.
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and shows a plot of the beam footprints on the optical

surfaces, as well as a plot of the side-view diagram of the rays

propagating through the PGM. This can be very helpful in

quickly determining whether or not the whole beam can be

transmitted through a given PGM geometry. We note the

assumption that the size of the clear aperture of the optics is

equivalent to the actual physical size of the components. The

beam dimensions can be specified manually or computed by

the programme from user-specified parameters for an undu-

lator source (cf. Section 2.5).

The figures can be downloaded as vector graphic files, and

the application also allows the user to export the PGM

configuration to a human-readable TOML file which can be

saved locally and imported at a later time if required.

4. Conclusion

In this paper, we have derived expressions for various

geometrical parameters which allow the geometry of a PGM

to be computed in its entirety. The expressions are imple-

mented as class methods in a Python package called

pyplanemono, which provides a set of robust application

programming interfaces (APIs). The graphical front-end

provides a quick and accessible tool for checking the geometry

of a PGM given a set of parameters. We highlight that

PGMweb does not itself identify if any part of the beam will

not be transmitted due to the geometry of the PGM, but

presents visualizations which make any blockages apparent to

the user (see for example Figs. 2 and 3).

We note that the expressions used in PGMweb assume that

the condition 2� = � � � always holds, as is intended in most

real applications. Any misalignment of a beamline that would

introduce an angular offset will lead to a more complicated

analytical expression for the grating equation than that

presented in equation (3), and could also affect the trans-

mission of the PGM for a given energy and cff.

The development of the underlying Python library

described here opens up the possibility for interfacing it with

ray-tracing software such as SHADOW3 in the future

(Sanchez del Rio et al., 2011), where the blockages could be

accounted for natively in ray-tracing simulations of soft X-ray

beamlines. Such ray-tracing simulations could be scripted to

be performed over a wide range of diffraction orders, energies

and values of cff, providing a full picture of the parameter

space accessible with existing or planned cPGM beamlines. We

plan to explore these possibilities in our future work.
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Figure 7
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