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Asymmetric double-crystal monochromators (aDCMs) and inclined DCMs

(iDCMs) can significantly expand the X-ray beam footprint and consequently

reduce the heat load density and gradient. Based on rigorous dynamical theory

calculations, the major principles and properties of aDCMs and iDCMs are

presented to guide their design and development, particularly for fourth-

generation synchrotrons. In addition to the large beam footprint, aDCMs have

very large bandwidths (up to �10 eV) and angular acceptance, but the narrow

angular acceptance of the second crystal requires precise control of the relative

orientations and strains. Based on Fourier coupled-wave diffraction theory

calculations, it is rigorously proved that the iDCM has almost the same prop-

erties as the conventional symmetric DCM, including the efficiency, angular

acceptance, bandwidth, tuning energy range and sensitivity to misalignment.

The exception is that, for the extremely inclined geometry that can achieve very

large footprint expansion, the iDCM has (beneficially) a larger bandwidth and

wider angular acceptance. Inclined diffraction has the ‘rho-kick effect’ that can

be cancelled by the second reflection of the iDCM (even with misalignment),

except that inhomogeneous strains may cause non-uniform rho-kick angles. At

present, fabrication/mounting-induced strains pose low risk since they can be

controlled to <0.5 mrad over large areas. The only uncertain challenge is the

thermally induced strains, yet it is estimated that these strains are naturally

lowered by the large footprint and may be further mitigated by optimized

cryogenic cooling to the 1–2 mrad level. Overall, aDCMs and iDCMs have more

stringent requirements than normal DCMs, but they are feasible schemes

in practice.

1. Introduction

The emerging fourth-generation synchrotron light sources and

X-ray free-electron lasers with increased brilliance are

promising to significantly improve the performance of various

X-ray diffraction, scattering and imaging techniques. Among

the unique properties of these new light sources are the small

electron beam sizes and emittance that can produce X-ray

beams with small dimensions along both the vertical and

horizontal directions (Tavares et al., 2018; Raimondi et al.,

2023), i.e. the natural X-ray beam cross section becomes

nearly a round dot and the beam footprint on the high-heat-

load double-crystal monochromator (DCM) can be about

1 mm � 1 mm or smaller at the insertion device beamlines

(APS-U, 2019). In comparison, the beam shape is generally

an extended horizontal line for third-generation sources.

Although the total power may not differ significantly from that

of the third-generation one, the smaller beam size of the

fourth-generation light source obviously produces much

higher heat load density on the DCMs. Such highly localized
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heat load can induce severe heat bumps (Revesz et al., 2007),

which correspond to large lattice constant gradients and lattice

plane tilts (usually at the mrad level or more even for third-

generation synchrotrons) (Chumakov et al., 2014) that are

equivalent to the slope errors of mirrors and may significantly

reduce the DCM efficiency (flux), broaden the virtual source

(Huang et al., 2012), and degrade the X-ray coherence and

wavefront.

In addition to improving the cooling techniques of DCMs,

an effective strategy for reducing the heat bump is to use

small-incidence diffraction geometry to expand the X-ray

beam footprint on the crystal for spreading the heat load. For

this purpose, mainly two types of DCMs, asymmetric DCMs

(aDCMs) and inclined DCMs (iDCMs), have been proposed

in the literature (Kohra, 1962; Nave et al., 1995; Khounsary,

1992; Hrdý, 1992; Macrander et al., 1992; Macrander et al.,

1993). Regular DCMs and aDCMs in the vertical diffraction

configuration magnify only the vertical beam size (beam

height), but an iDCM magnifies both the beam height and the

beam width (Khounsary, 1992; Macrander et al., 1992). Thus,

footprint magnification of the horizontal incident beam size

(beam width) is unique to iDCMs and is particularly suited to

the smaller beam widths of fourth-generation light sources.

However, aDCMs and iDCMs have seldom been implemented

(Bernstorff et al., 1998; Yabashi et al., 1999; Tajiri et al., 2019).

There are several reasons for this situation. For aDCMs, a

limitation is that the asymmetrically cut surface reduces the

energy tuning range. Another reason might be that, compared

with symmetric DCMs, aDCMs may have special require-

ments that have been overlooked in the literature. By contrast,

an iDCM has almost the same energy tuning range as the

conventional symmetric DCM. However, theoretical calcula-

tions of the involved non-coplanar diffraction configuration

(i.e. the incident wavevector, the diffraction vector and the

crystal surface normal are not in the same plane) are extre-

mely difficult using the conventional dynamical theory.

Therefore, most of the previous work was on the geometrical

diffraction properties of iDCMs (Kashihara et al., 1998; Hrdý

et al., 1995). Macrander et al. (1993) have used advanced

dynamical theory methods to compute the non-coplanar

inclined diffraction case, but the computation was limited to a

single bounce. To fully understand the practical requirements

of an iDCM, modelling and accurate calculations of the two-

bounce configuration are required to include possible mis-

alignment between the two crystals along all the pitch, roll and

yaw axes. The extremely inclined geometry with the inclined

angle of the iDCM very close to 90� also needs accurate

calculations as this configuration is critical for achieving very

large footprint expansion (Khounsary, 1992; Macrander et

al., 1992). Without such rigorous calculations, the efficiency,

the angular acceptance, the bandwidths and the mechanical

requirements of iDCMs are unclear. Consequently, there have

been many concerns or even misunderstandings about iDCMs.

In this paper, we revisit these two types of DCMs by

providing systematic re-examinations of their detailed prin-

ciples and requirements. We demonstrate that these two types

of DCMs are, in fact, feasible and easy-to-implement schemes

for efficiently reducing the heat load density of DCMs for

fourth-generation synchrotrons, together with many other

benefits.

2. Properties of aDCMs

As shown in Fig. 1, the two crystal surfaces of an aDCM are

both cut by an angle � from the diffracting lattice planes (� = 0

for the standard symmetric DCM). Then the incident angle of

the first crystal is !B
i1 = �B � �, where �B is the Bragg angle. A

direct consequence of the asymmetric cuts is that the footprint

of the X-ray beam on the crystals becomes W=sin!B
i1, where W

is the height of the incident beam. For the symmetric DCM,

the footprint is W=sin �B. For example, for the Si 111 reflection

at E = 8.05 keV (�B = 14.22�), the footprint on the symmetric

DCM is 4 mm for W = 1 mm. It becomes 28.7 mm and 57.3 mm

for � = 12.22� and 13.22� (!B
i1 = 2� and 1�), respectively.

Consequently, the heat load density can be reduced by about

an order of magnitude. Meanwhile, a very beneficial side effect

is that the angular acceptance (Darwin width) and the photon

energy bandwidth of the grazing-incidence geometry are

both increased by a factor of B = |b|� 1/2, where b =

� sinð�B � �Þ= sinð�B þ �Þ is the asymmetric factor (B = 3.6

and 5.1 for � = 12.22� and 13.22�, respectively).

Under the ideal condition �� = 0, the second reflection of

the DCM is exactly the reverse process of the first reflection

with !i2 = !e1 and !e2 = !i1, where !im and !em are the

incidence and exit angle of the mth crystal, respectively (m =
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Figure 1
Calculated Darwin curves of the symmetric DCM and the aDCM with
different misaligned angles �� (the angle between the two sets of
diffracting planes). !i2 � !e1 + ��. The Darwin curves of the DCMs are
for varying photon energy E with the relative orientations of the
two crystals fixed. Si 111 reflection for E = 8.05 keV. �-polarization.
(a) Symmetric DCM. (b) aDCM with � = 12.22�.



1, 2). The two reflectivity values are also identical, R2 = R1

(only for �� = 0). The two solid black curves in Fig. 1 are the

calculated curves of the overall reflectivity R = R1R2 of the

DCMs in terms of the relative energy �E = E � EB, where EB

is the Bragg energy. These curves are the energy-dependent

Darwin curves of the entire DCMs. Compared with Fig. 1(a),

the bandwidth of the aDCM in Fig. 1(b) is, indeed, widened by

a factor of B = 3.6 for � = 12.22� (and �� = 0).

The angular Darwin curve in terms of �!i1 is the same as

the E-dependent Darwin curve except that the �!i1 axis is

rescaled from the �E axis by the differential Bragg law �!i1 =

tan �B �E=EB. For Fig. 1, the angular Darwin widths of the

aDCM and the symmetric DCM are � = 119 and 33 mrad,

respectively (not shown), again satisfying the ratio B = 3.6.

Here note that both the bandwidth broadening and the

angular acceptance widening can significantly increase the flux

of the aDCM. In particular, if the divergence of the incident

beam is larger than the angular Darwin width of the DCM in

Fig. 1(b), the total flux is increased from Fig. 1(a) to Fig. 1(b)

by nearly a factor of B2 (instead of B). Such a gain may be

remarkable and is extremely beneficial for monochromators

of laboratory sources or DCMs of high-energy synchrotron

sources to achieve very high flux. When the divergence of the

incident beam is less than the angular acceptance of the

symmetric DCM in Fig. 1(a), only the bandwidth broadening

of the aDCM contributes to the flux increase (by a factor

of B), but the gain can still be substantial for flux-hungry

beamlines. Meanwhile, the DCM completely preserves the

size, divergence, time structure, coherence and wavefront of

the incident beam (Tajiri et al., 2019).

Note that the angular acceptance of the first and second

crystals in Fig. 1(b) are �1 = B�sym and �2 = �sym /B,

respectively, where �sym is the angular Darwin width of the

symmetric reflection in Fig. 1(a). However, the angular

acceptance � of the entire aDCM is the same as �1. For � > 0

in Fig. 1(b), the much narrower acceptance of the second

crystal (�2 = 10 mrad) does not affect the wide acceptance of

the entire DCM (� = 119 mrad) because the first crystal acts as

a collimator that reduces the divergence of the incident beam

by a factor of B2 = |b|� 1. Accordingly, the beam received by

the second crystal is highly collimated. However, this is only

valid for the ideal case where the two crystals are exactly

parallel. If they have a misaligned angle ��, the collimated

beam from the first crystal may easily shift out of the narrow

angular acceptance range of the second crystal, thus drama-

tically reducing the efficiency of the DCM.

The Darwin curves of the symmetric DCM for different

misaligned angles �� are shown in Fig. 1(a). The total flux of

the DCM is determined by the integrated area below each

curve. Compared with the ideal case �� = 0, the total flux of

the red curve is reduced by half when �� = 24.3 mrad (about

two-thirds of the ideal Darwin width �2). When �� further

increases to 36 mrad (��2), the total flux drops to only 22% of

the ideal flux (the dotted-line curve). To achieve high effi-

ciency, therefore, the misaligned angle must be as small as

possible. When �� = 12 mrad (��2 /3) in Fig. 1(a), the total

flux is about 80% of the ideal flux (the dashed-line curve). We

may set this value as the criterion of the DCM, i.e. the mis-

aligned angle of a DCM must be less than �2 /3 to achieve

adequate efficiency.

For the aDCM, Fig. 1(b) shows the three corresponding

Darwin curves with reduced efficiency values of 80%, 50%

and 22%, respectively, in terms of the ideal efficiency.

Compared with Fig. 1(a), the three corresponding misaligned

angles are �� = 3.5 mrad (��2 /3), 7 mrad (�2�2 /3) and

10.5 mrad (��2), respectively. These values are much smaller

than those in Fig. 1(a), indicating that the aDCM has more

stringent requirement for the misaligned angle than the

symmetric DCM. This results from the (much) narrower

angular acceptance �2 of the second crystal in the large-

incidence geometry. Here the requirement for the misaligned

angle is still �� � �2=3 to achieve an efficiency better than

80% of the ideal efficiency. The criterion of �� � �2=3 is

approximately valid for any DCMs.

Note that, even if the two crystals are ideally parallel to

each other, slight lattice constant difference �d between the

two crystals (caused by different temperatures) can also cause

an equivalent misaligned angle �� = � tan �B �d=d. There-

fore, channel-cut designs without the relative crystal orienta-

tion tweaking capability for compensating temperature-

induced �� should be avoided for high-heat-load DCMs,

which is particularly critical for aDCMs.

Thus, we have revealed that aDCMs have stricter require-

ments for alignment and stability of the relatively crystal

orientation than symmetric DCMs. Nevertheless, these

requirements are usually on the mrad level that are achievable

in practice. Therefore, aDCMs are practical monochromator

schemes that can significantly reduce heat load density and

thermal gradient, particular for fourth-generation synchro-

trons, together with the benefits of large bandwidth and

angular acceptance and complete preservation of the beam

size, divergence and coherence.

3. Properties of iDCMs

3.1. Rigorous dynamical theory calculations of inclined

diffraction

In addition to the above coplanar aDCMs, iDCMs have

been proposed as another type of grazing-incidence mono-

chromator for reducing heat load density (Khounsary, 1992;

Hrdý, 1992). Fig. 2(a) shows the symmetric inclined diffraction

geometry, where the xy plane is parallel to the diffracting

lattice planes, and the yz plane is the plane of diffraction

determined by the diffraction vector g (parallel to the z-axis)

and the principal incident wavevector ki1. The crystal surface

is the YZ plane inclined from the yz plane by 90� � � around

the � y axis, where � is the inclined angle of the crystal surface

from the xy plane. Here, since the surface normal (the X axis)

is not in the yz plane of diffraction, it is a non-coplanar

diffraction configuration. Under the Bragg condition, we have

#i1 ’ �B (%i1 ’ 0), but the actual glancing angle (not marked)

is the angle between ki1 and the YZ plane,
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!i1 ¼ sin� 1 sin �B cos�ð Þ: ð1Þ

Obviously, !i1! 0 for any �B when �! 90�. In experiments,

the �-scan is to rotate the crystal around the x-axis. For

convenience, we will consider #i1 and #e1 as the incidence and

exit angles with respect to the xy plane (rather than the crystal

surface), respectively, in the following. Here we have #e1’ #i1

such that the diffraction configuration is still symmetric with

respect to the xz plane. Unlike asymmetric diffraction, the

symmetric inclined diffraction geometry in Fig. 2 has almost

the same energy tuning range as regular symmetric diffraction

(� = 0) because here #i1 can still cover the entire 0; 90�ð �

range.

Dynamical theory calculations of inclined diffraction have

been a difficult task in the literature. Afanas’ev & Melkonyan

(1983) developed an approximate method that can treat the

diffraction configuration in Fig. 2(a), but it is valid only for

�! 90�. Later, Huang et al. (2013) developed the fully

vectorial Fourier coupled-wave diffraction theory (FCWDT)

that can rigorously treat general N-beam diffraction from

periodic structures (including optical diffraction from

photonic crystals) in 3D space. This method is for solving the

eigenmodes of the coupled Fourier components of the electric

fields (E) and the magnetic fields (H), and the strengths of

these fields are determined by the boundary conditions of the

E and H fields. The FCWDT can calculate any coplanar or

non-coplanar X-ray diffraction involving two or more beams

without approximation. Here we adopt this method.

Fig. 3 shows the calculated Darwin curves of the Si 111

reflection for different inclined angles �. The Darwin curve for

� = 0 precisely coincides with that calculated by the conven-

tional dynamical theory, which directly verifies the reliability

and accuracy of the FCWDT. Our calculations show that all

the Darwin curves for � � 80� have no noticeable difference

from the � = 0 curve in Fig. 3. Only when � > 80� does the

Darwin curve start to show deviations. For example, the blue

curve for � = 85� in Fig. 3 shows a slight difference on the right

shoulder. The difference becomes evident when � increases to

88�. The Darwin curve for � = 89� differs further and becomes

much wider, corresponding to wider angular acceptance and a

proportionally larger bandwidth (not shown).

Note that the glancing angles of the incident beam for � =

80�, 85�, 88� and 89� are !i1 = 2.44�, 1.23�, 0.49� and 0.25�,

respectively, according to equation (1). Apparently, the

deviation of the Darwin curves for � > 80� are caused by

X-ray specular reflection from the crystal surface when !i1 is

very small (typically !i1 < 1�). For !i1 � 1�, the specular

reflection is negligible, and the inclined crystal performs the

same as the corresponding regular coplanar geometry in terms

of reflectivity, which can be verified by FWCDT calculations.

As indicated by Fig. 3, the extremely inclined geometry

(�! 90�, corresponding to extremely grazing-incidence

diffraction) still preserves high reflectivity. Practically this

geometry is very useful to achieve very large beam footprint

magnification (for example, the magnification for � = 89� is

229) (Khounsary, 1992). Meanwhile, it has the extra benefit

of a larger bandwidth and angular acceptance, which is valu-

able for flux-hungry beamlines. The extremely grazing-inci-

dence geometry requires long super-smooth crystal surfaces

(similar to X-ray mirrors), but this is feasible based on modern

crystal polishing techniques.

3.2. The ‘rho-kick’ effect

Inclined diffraction has the following subtle difference even

for !i1 � 1�, the ‘rho-kick’ effect. This effect was revealed by
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Figure 3
Darwin curves of single-bounce Si 111 inclined diffraction calculated by
FCWDT based on the geometry of Fig. 2(a) (%i1 � 0). E = 8.05 keV.
�-polarization.

Figure 2
Schematic of X-ray diffraction of the iDCM (� = 0 corresponds to a
conventional symmetric DCM). (a) The first crystal of the iDCM. PA is
the projection of ki1 onto the yz plane. #i1 is the angle between PA and
the y-axis. %i1 is the angle between ki1 and PA. %i1 � 0 if ki1z � 0, and
%i1 < 0 if ki1z < 0. The angles of other wavevectors have similar definitions.
(b) The second crystal with the same �. ki2 = ke1. Changing energies of the
DCM is by the #-rotation of the two crystals together around the x-axis.
(c) Relationship between the xyz and XYZ coordinate systems.



Lee et al. (1996), and can be illustrated as follows. Even if the

incident wavector ki1 in Fig. 2(a) strictly lies within the yz

plane (%i1 = 0), the diffracted wavevector ke1 can have an out-

of-plane component with respect to the yz plane, i.e. %e1 6¼ 0,

as schematically shown in the inset of Fig. 4(a). Moreover, %e1

may vary dramatically with the incidence angle #i1. In Fig. 2,

this effect can be computed by the following angular tracing.

We start from the wavevector ki1 in Fig. 2(a) with an inci-

dence angle #i1 and, for generality, we allow ki1 to have a small

out-of-plane angle %i1. In the xyz coordinate system, ki1 can be

written as

ki1 ¼ ki1x; ki1y; ki1z

� �
ð2Þ

¼ k sin %i1; cos %i1 cos#i1; � cos %i1 sin#i1ð Þ;

where k = 1/� (� the incident wavelength). In the XYZ

coordinate system, ki1 is transformed from equation (2) into

ki1 ¼ k X
i1 ; k Y

i1 ; k Z
i1

� �
ð3Þ

¼ ki1x sin �þ ki1z cos�; ki1y; ki1z sin � � ki1x cos �
� �

:

The key principle for determining the diffracted wavevector

ke1 is the conservation of the tangential wavevectors with

respect to the crystal surface (Huang et al., 2013; Huang et al.,

2012),

k
jj
e1 ¼ k

jj
i1 þ gjj; ð4Þ

where ‘jj’ means the projection of the vector onto the crystal

surface (the YZ plane). Based on this principle, the diffracted

wavevector in the XYZ system is ke1 = k X
e1; k Y

e1; k Z
e1

� �
with

k Y
e1 = k Y

i1 ,

k Z
e1 ¼ k Z

i1 þ g
�
�
�
� sin � ð5Þ

and

k X
e1 ¼ k 2 � k Y

e1

� �2
� k Z

e1

� �2
h i1=2

; ð6Þ

where |g| = 1/d (d is the spacing of the diffracting lattice

planes). Afterwards, we can transform ke1 back to the xyz

system,

ke1 ¼ ke1x; ke1y; ke1z

� �
ð7Þ

¼ k X
e1 sin � � k Z

e1 cos�; k Y
e1; k X

e1 cos�þ k Z
e1 sin �

� �
;

which gives the two angles %e1 = sin� 1 ke1x=kð Þ and #e1 =

tan� 1 ke1z=ke1y

� �
.

Now we let the second crystal of the iDCM in Fig. 2(b)

receive this diffracted wave. When the two crystals are exactly

parallel to each other, #i2 = #e1 and %i2 = %e1: In the xyz

coordinate system, the incident wavevector of the second

crystal is

ki2 ¼ ki2x; ki2y; ki2z

� �
ð8Þ

¼ k sin %i2; cos %i2 cos#i2; cos %i2 sin#i2ð Þ:

In the XYZ system, it becomes

ki2 ¼ kX
i2 ; kY

i2; kZ
i2

� �
ð9Þ

¼ ki2x sin �þ ki2z cos�; ki2y; ki2z sin � � ki2x cos �
� �

:

Based on equation (4), we can obtain the components of ke2 =

k X
e2; k Y

e2; k Z
e2

� �
in the XYZ system as k Y

e2 = kY
i2,

k Z
e2 ¼ k Z

i2 � g
�
�
�
� sin �; ð10Þ

and

k X
e2 ¼ � k 2 � k Y

e2

� �2
� k Z

e2

� �2
h i1=2

: ð11Þ

Here, note that the diffraction vector is � g in Fig. 2(b), which

results in the ‘� ’ sign in equation (10). Transforming ke2 from

the XYZ system to the xyz system gives

ke2 ¼ ke2x; ke2y; ke2z

� �
ð12Þ

¼ k X
e2 sin � � k Z

e2 cos�; k Z
e2; k X

e2 cos�þ k Z
e2 sin �

� �
:

Then the two angles of the exit wave are %e2 = sin� 1 ke2x=kð Þ

and #e2 = tan� 1 � ke2z=ke2y

� �
. The angular tracing is auto-

matically implemented in the FCWDT. Here we have expli-

citly derived the equations, which can be used for rigorous ray

tracing of iDCMs (Blasdell et al., 1994).

The red-line curve in Fig. 4(a) is the calculated rho-kick

angle %e1 as a function of the relative incidence angle �#i1 for

highly inclined Si 111 single reflection (with %i1 � 0). The
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Figure 4
The ‘rho-kick’ effect of iDCMs. (a) The red line is the rho-kick curve
%e1ð�#i1Þ for single-bounce Si 111 inclined diffraction. The two hori-
zontal lines are the rho-kick curves %e2ð�#i1Þ of the entire two-bounce
DCM with �� = 0 and 10 mrad, respectively. Calculated by the FCWDT
based on Fig. 2(a). %i1 � 0. � = 85�. E = 8.05 keV. The inset schematically
shows the rho-kick angle %e1. The yz plane is the same as that in Fig. 2(a).
(b, c) The rho-kick functions of the two reflections with opposite slopes
(for %i1;2 � 0). (d) The rho-kick functions of the second reflection of the
DCM with ð�#i2; %i2Þ = ð�#e1; %e1Þ (red lines) and ð�#i2; %i2Þ =
ð�#e1 þ��; %e1Þ (blue lines).



curve is nearly a straight line and its slope is S = 22.1 in the

vicinity of the Bragg angle. For a fixed inclined angle �, the

slope S remains nearly constant for different energies (E).

However, S quickly decreases with decreasing � (e.g. S = 9.1

and 5.5 for � = 78� and 70.5�, respectively, not shown). These

results agree well with those given by Lee et al. (1996).

The large value S = 22.1 of the single-bounce curve in

Fig. 4(a) indicates that the rho-kick angle changes significantly

with slightly varying �#i1. As shown in Fig. 3, the Darwin

width for the Si 111 reflection is 40.2 mrad at 8.05 keV. Even if

the incident beam has no horizontal divergence (%i1 � 0), this

vertical angular width will cause a highly amplified horizontal

divergence of 888 mrad for the exit beam, as shown schema-

tically in Fig. 4(b). This is the rho-kick effect of inclined

diffraction that may severely change the shape, divergence

and brightness of the X-ray beam, together with other issues

including virtual source broadening, focusing, coherence etc.

Fortunately, for a double-bounce iDCM, the second

reflection is the reversed process of the first one. For an

incident beam with %i2 � 0, the second reflection will produce

a rho-kick line with slope � S, as shown in Fig. 4(c). The rho-

kick functions of the two crystals can be written as

�#i1; %i1ð Þ ! �#e1; %e1ð Þ ¼ �#i1; %i1 þ S�#i1ð Þ; ð13Þ

�#i2; %i2ð Þ ! �#e2; %e2ð Þ ¼ �#i2; %i2 � S�#i2ð Þ; ð14Þ

respectively, where �#m = #m � �B for m = i1, e1, i2, e2. Here

we have �#e1 ’ �#i1 and �#e2 ’ �#i2. Under ideal condi-

tions, the exit beam of the first reflection and the incident

beam of the second reflection have identical directions,

ð�#i2; %i2Þ = ð�#e1; %e1Þ = ð�#i1; %i1 þ S�#i1Þ. Substituting

this relation into equation (14) gives ð�#e2; %e2Þ = ð�#i1; %i1Þ,

i.e. the exit beam of the second reflection preserves the exact

direction of the incident beam of the first reflection. The red

lines in Fig. 4(d) schematically show this process for %i1 � 0,

which is strictly verified by the rigorously calculated black line

%e2 � 0 in Fig. 4(a). Therefore, a perfect iDCM has no rho-

kick distortion, and it precisely preserves the direction, shape,

brightness and wavefront of the incident beam.

However, if the second crystal has a misaligned angle ��

relative to the first crystal (i.e. the second crystal in Fig. 2 is

rotated around the x-axis by ��), the incidence direction of

the second crystal becomes ð�#i2; %i2Þ = ð�#e1 � ��; %e1Þ =

ð�#i1 � ��; %i1 þ S�#i1Þ. In Fig. 4(d), this corresponds to a

shift of the incident beam profile of the second crystal to the

left. Substituting this relation into equation (14) gives

�#e2; %e2ð Þ ¼ ð�#i1 � ��; %i1 þ S��Þ: ð15Þ

With respect to the incidence direction ð�#i1; %i1Þ, here the

shift of the �#i2 angle by �� causes a constant rho-kick angle

% ¼ S�� ð16Þ

for the exit beam of the DCM, which is schematically shown in

the Fig. 4(d). The blue line in Fig. 4(a) is the rigorously

calculated %e2 �#i1ð Þ curve for �� = 10 mrad, which is a

horizontal line with %e2 � 220.5 mrad, very close to the value

221 mrad given by equation (16). Therefore, a relative ��

angle between the two crystals of an iDCM (which may be

caused by crystal misalignment or a uniform lattice constant

difference) can lead to a constant rho-kick angle for the exit

beam, which does not affect the beam shape, divergence or

brightness.

In the above, we have discussed the diffraction process of a

single wavelength. For a practical incident beam with a finite

bandwidth, most of the spectral components do not satisfy the

exact Bragg condition (i.e. �� 6¼ 0), and each component has

a different rho-kick angle. For a single inclined diffraction

configuration, this dispersion effect can also significantly

elongate the virtual source size. However, for an ideal iDCM,

the second reflection always exactly cancels out the rho-kick

angle for each spectral component because the above angular

tracing principle applies to each component. It is also inde-

pendent of the Bragg angle, although the deviation of each

component from the Bragg angle and Bragg wavelength

affects the diffraction intensity.

3.3. Tolerance to misalignments

The Darwin curves calculated by the rigorous FCWDT for

the iDCM with � = 85� are shown in Fig. 5 in comparison with

those of the normal DCM (� = 0). Similar to Fig. 3, the double-

reflection Darwin curves of the iDCM are very close to those

of the normal DCM. To a good approximation, therefore, one

again can safely use the simple conventional dynamical theory

to estimate the reflectivity and other properties of an iDCM if

the glancing angle satisfies !i1 � 1�. These two types of DCMs

have almost the same Darwin width, angular acceptance and

bandwidth, which are independent of � unless � is very close

to 90�. This is also true when the two crystals are slightly
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Figure 5
(a) Similarities between the Darwin curves of the iDCM and the normal
DCM with and without misalignment ��. Si 111 reflection. E = 8.05 keV.
�-polarization. The two Darwin curves for � = 0 are the same as the
corresponding curves in Fig. 1(a). (b) Tolerance of the iDCM Darwin
curve to the relative misalignment angles � and ’.



misaligned by an angle ��, as shown by the two curves for

�� = 12 mrad. As mentioned above, at this angle the inte-

grated flux (efficiency) is reduced to 80% of the ideal value.

Therefore, these two types of DCMs have the same sensitivity

to ��. The difference is that the iDCM produces a uniform

rho-kick angle %e2 = S��, as demonstrated above.

X-ray diffraction from iDCMs is a 3D non-coplanar

configuration, which may also be affected by the relative

misaligned angles around other axes. The blue dash line in

Fig. 5(b) is the Darwin curve of the iDCM when the second

crystal in Fig. 2(b) is rotated around the y-axis by � = 0.2�

(usually called the tilt angle). Apparently, the difference

between the two Darwin curves for � = 0 and 0.2� is negligible,

indicating that iDCMs are quite insensitive to the relative tilt

misalignment. The red dotted line in Fig. 5(b) is the Darwin

curve when the second crystal in Fig. 2(b) is rotated around

the z-axis by an angle ’ = 0.1�. This curve shows some

noticeable difference from the ideal Darwin curve on the right

shoulder, indicating that the iDCM is moderately sensitive to

the ’ misalignment. The underlying mechanism is that the ’

angle directly affects the glancing angle !i2 of the incident

beam on the second crystal, which can be understood from

Fig. 2. The misaligned angle ’ = 0.1� also causes the rho-kick

curve %e2ð#i1Þ to have a small slope S = 1.9, and the slope

caused by � = 0.2� is S = 0.85 (not shown). These two slope

values are much smaller than the value S = 22.1 caused by the

single reflection in Fig. 4(a). Overall, iDCMs are not very

sensitive to either � or ’ misalignment, but are extremely

sensitive to the �� misaligned angle.

4. Discussion of crystal strains

We have demonstrated that iDCMs have almost the same

properties as normal symmetric DCMs, and these properties

are nearly independent of the inclined angle � (except for the

extreme cases with �! 90� or !i1! 0). Thus, one can freely

choose the desired � angle to adjust the beam footprint

(power density) on the crystal without affecting other prop-

erties of the iDCMs. The only exception is that iDCMs are

much more sensitive to inhomogeneous strains (lattice

distortions) possibly induced during crystal fabrication and

mounting, or by thermal gradients during operations. Inho-

mogeneous strains, even on the mrad level, may noticeably

reduce the efficiency of iDCMs, which is also true for aDCMs.

In particular, inhomogeneous strains of iDCMs can cause

varying misaligned angles ��(r) across the beam footprint on

the crystal, thus producing non-uniform rho-kick angles

%e2ðrÞ = S��(r) for the exit beam.

In the earlier days it was estimated that the fabrication/

mounting-induced strains in DCMs could be on the level of

�6 mrad, which was the major source of strains worse than the

thermal strains (Lee et al., 1996). Fortunately, after more than

two decades of improvements, nowadays DCMs made of high-

quality float-zone-grown silicon crystals can be nearly free of

fabrication/mounting-induced strains, which may be verified

by the double-crystal rocking curve imaging method illu-

strated in Fig. 6(a). This is the most accurate method for

detecting and mapping crystal strains. Here the first crystal is

the beam conditioner with an incidence angle �2�, which also

acts as the beam expander/collimator. The second crystal must

have the same reflection (Bragg angle). Then the diffraction

bands of the two crystals in the DuMond diagram are parallel,

and their overlap during crystal rocking is the same for any

wavelength �. Thus, the measured rocking curve of the second

crystal is almost independent of the bandwidth and divergence

of the incident beam, which ensures the reliability of this

method regardless of experimental conditions. Moreover, the

measured rocking curve width of a perfect crystal is very close

to the theoretical Darwin width that can be only a few mrad.

Consequently, the strain sensitivity can reach the sub-mrad

level. For example, the theoretical Darwin width of symmetric
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Figure 6
(a) Schematic of the double-crystal rocking curve imaging technique.
(b) Measured and calculated double-crystal rocking curve of a cryogenic
Si (111) monochromator (left inset). Crystal dimension 40 mm (L) �
15 mm (W) � 95 mm (H) (right inset). The X-ray footprint on the crystal
is about 35 mm � 12 mm during measurements. (c) The distribution map
of midpoints of local rocking curves extracted from rocking curve images
recorded by a CCD camera with 4096 � 4096 pixels (pixel size 2.6 mm).
Si 333 reflection. E = 8.05 keV. �-polarization.



the Si 333 reflection is 9.63 mrad for E = 8.05 keV, and the

width of the convoluted double-crystal rocking curve is only

slightly broader at 9.90 mrad. Another major advantage is that

this method can map strains over large areas (up to 80 mm �

80 mm in our experiments), which is critical for characteriza-

tion of aDCMs and iDCMs that requires large crystal surfaces

to be strain-free.

As an example, Fig. 6(b) shows the measured double-crystal

rocking curve of a symmetric Si (111) monochromator

installed on a cryogenic cooling fixture with indium foil

thermal interfaces. The measurement was carried out at

beamline 1-BM of the Advanced Photon Source (APS) at

room temperature with negligible heat load. Here the 333

reflection rocking curve width of 9.9 mrad over the entire

footprint of 35 mm � 12 mm perfectly matches the theoretical

convoluted rocking curve width. Moreover, the shape of the

measured curve is also in good agreement with the theoretical

shape. Note that the asymmetric shape of the rocking curve

results from the absorption-induced asymmetry of the Darwin

curve. This asymmetric profile is precisely repeatable in our

experiments, which indicates the high accuracy of the double-

crystal diffraction method. Here the strain sensitivity of this

method is better than 0.5 mrad. At this precision level,

Fig. 6(b) shows no noticeable strains over the entire footprint,

indicating that the fabrication/mounting-induced strains of

the crystal are negligible (<0.5 mrad). Currently these results

can be routinely achieved for silicon monochromators made

at the APS.

Note that the integrated rocking curve in Fig. 6(b) only

shows that the crystal has no noticeable ‘global’ strain. In our

rocking curve imaging experiments, we used a charge-coupled

device (CCD) to record a series of images of the diffracted

beam during the rocking curve scan. Thus, each pixel of the

CCD recorded a local rocking curve. Numerical processing of

all the local rocking curves then gives detailed maps revealing

the local peak reflectivity, local rocking curve widths,

midpoints of the local rocking curves, etc. From these maps

local information of lattice strains (and also defects) can be

clearly extracted (Stoupin et al., 2019). For example, the map

in Fig. 6(c) is extracted from the CCD data revealing the

distribution of the midpoints of the local rocking curves, which

indeed shows that the crystal has no noticeable local strains

within the sub-mrad precision.

Another fact that confirms the feasibility of achieving

strain-free silicon monochromators is the successful imple-

mentation of ultrahigh-resolution monochromators with meV

or even sub-meV energy resolution (Yabashi et al., 2001;

Toellner et al., 2006; Toellner et al., 2011). To achieve such

resolution, the crystal strains must be below 10� 7 (0.1 mrad)

over the entire footprints. Here, note that the X-ray footprints

of these monochromators are also quite large since they use

extremely asymmetric diffraction geometry. Nevertheless,

these monochromators are not under direct high heat load but

instead work downstream of high-heat-load DCMs. Their

successful implementation does not resolve the concern of the

thermal strains induced by high heat load, which is the other

major type of strain.

However, two factors may help mitigate thermally induced

strains in iDCMs. First, high-heat-load iDCMs for fourth-

generation synchrotrons are expected to be cryogenically

cooled, preferably around 123 K when the thermal expansion

coefficient of silicon goes to zero (Toellner et al., 2006).

Around this temperature, the thermal strains (lattice constant

gradients) induced by temperature gradients are minimized.

The second factor is the iDCM itself, which is designed to

reduce the heat load density and gradient by elongating the

footprints on the crystals. With the footprint elongated to a

few centimetres on the crystal, the thermal gradient along the

elongation direction will be minimum except for the areas

near the two ends (of which the X-ray diffraction contribution

is small). Consequently, the local deviation of the Bragg angle,

��, which is mainly induced by the thermal gradient along

the elongation direction, is minimized. For a small incident

beam, the spread footprint has a line shape on the crystal

surface, and the thermal gradient along the direction

perpendicular to the line may still be notable. However, for

relatively small Bragg angles, the inhomogeneous strains along

this direction mainly contribute to deviation of the tilt angle �,

which has little effect on the performance of the iDCM or the

rho-kick angle, as shown in Fig. 5(b). Note that these discus-

sions are also applicable to aDCMs.

Overall, combined with cryogenic cooling, we believe that

high-heat-load iDCMs with large beam footprints can achieve

low thermal strains of the order of 1–2 mrad, which is

supported by the fact that the heat load density can be

reduced by about an order of magnitude from symmetric

DCMs to iDCMs. But this claim requires future experimental

verification.

Similar to the fact that an iDCM has an angular amplifica-

tion rate of S, i.e. the rho-kick slope (along the horizontal

direction for vertical diffraction), for the relative orientation

variation between the two crystals, an aDCM also has an

angular amplification rate of |b|� 1 (along the vertical direc-

tion) for the relative orientation change. The underlying

mechanism is that, when the first crystal of the aDCM has a

small rotation ��, the incidence angle is changed by ��. Due to

the collimation effect of the grazing incidence geometry, the

exit angle is changed by ��|b| with respect to the first crystal

surface. The total rotation of the first exit beam is then

��(|b| + 1) relative to the (fixed) second crystal. As the

reversed process of the first crystal, the second crystal has an

angular amplification rate of |b|� 1 that amplifies this angular

variation to be ��(|b| + 1)/|b| ’ ��/|b|. This mechanism has

been verified by our detailed SHADOW simulation (Sanchez

del Rio et al., 2011). When non-uniform strains or thermal

bumps are present, these two angular amplification

phenomena may have noticeable influence on beam pointing

stability in addition to its influence on the virtual source, the

beam brightness, etc. Nevertheless, all these effects should be

minimum for aDCMs and iDCMs because the thermal bumps

have been significantly reduced by the large beam footprints

on the crystals. In our future work, we plan to use finite-

element analyses to quantify the thermal bumps on aDCMs

and iDCM and study their influence on beam pointing.
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Eventually we will experimentally test the aDCM and iDCM

at fourth-generation synchrotron beamlines.

5. Summary

We have provided a relatively comprehensive description of

aDCMs and iDCMs based on rigorous dynamical theory

calculations. The common feature of aDCMs and iDCMs is

that they have larger beam footprints on the crystals, corre-

sponding to much lower heat load density and gradient (by

about an order of magnitude) than the conventional DCMs.

However, both types of DCMs require much lower inhomo-

geneous crystal strains than the normal DCMs. The aDCM

have large bandwidth (up to �10 eV) and angular acceptance

determined by the first crystal in the grazing-incidence

geometry, but the narrow angular acceptance of the second

crystal requires high precision of alignment (and stability) of

the relative orientations between the two crystals to achieve

adequate efficiency. The total misalignment and inhomoge-

neous strains must be controlled typically within 4 mrad

(<�2 /3). For iDCMs, we used the rigorous FCWDT calcula-

tions to precisely prove that they have almost the same

properties as conventional symmetric DCMs, including the

efficiency, angular acceptance, bandwidth, energy tuning range

and sensitivity to crystal misalignment. The exception is that

extremely inclined iDCMs (�! 90�) have wider bandwidths

and angular acceptance. Inclined diffraction has the rho-kick

effect, in which the vertical incident beam divergence can

produce highly amplified divergence of the exit beam along

the horizontal direction. But this effect can be perfectly

cancelled by the two-bounce iDCM as the second reflection

cancels out the rho-kick angle of the first reflection. This

cancellation is largely valid even if the two crystals have

misalignment. Under favourable conditions, therefore, iDCMs

can well preserve the beam shape, divergence, brightness and

coherence. The only challenge is that iDCMs are very sensitive

to inhomogeneous strains that cause non-uniform rho-kick

angles to degrade the beam brightness. We demonstrated that

fabrication/mounting-induced crystal strains can be controlled

to the level <0.5 mrad over large areas. We expect that, by

combining cryogenic cooling, the other major type of strains,

the thermally induced strains, can also be controlled to the

1 mrad level so that the inhomogeneous rho-kick angles are

within �20 mrad (for � ’ 85�). Note that this requirement

is relaxed quickly for decreasing inclined angles � (corre-

sponding to decreasing S). In our future work, we plan to

experimentally test the iDCM prototypes and to study the

thermal strains.

In addition, the rho-kick effect of inclined diffraction can be

used as an angular amplification technique (with the amplifi-

cation rate >20) for many high-resolution X-ray diagnostic

applications, including accurate measurements of X-ray beam

divergence, crystal strains and angular stability of optical

components. The FCWDT method demonstrated above can

be used for designing iDCMs and other inclined diffraction

optics (Hrdý et al., 2011; Oberta et al., 2012; Smither et al.,

2012). It is also capable of computing any non-coplanar two-

or multiple-beam X-ray diffraction in 3D space for arbitrary

forms of polarization (including elliptical polarization and

mixed linear polarization), which is a valuable supplement to

the classical dynamical theory.
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