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3D virtual histology of formalin-fixed and paraffin-embedded (FFPE) tissue

by means of phase contrast micro-computed tomography (micro-CT) is an

increasingly popular technique, as it allows the 3D architecture of the tissue to

be addressed without the need of additional heavy ion based staining approa-

ches. Therefore, it can be applied on archived standard FFPE tissue blocks.

However, one of the major concerns of using phase contrast micro-CT in

combination with FFPE tissue blocks is the trapped air within the tissue. While

air inclusion within the FFPE tissue block does not strongly impact the workflow

and quality of classical histology, it creates serious obstacles in 3D visualization

of detailed morphology. In particular, the 3D analysis of structural features is

challenging, due to a strong edge effect caused by the phase shift at the air-

tissue/paraffin interface. Despite certain improvements in sample preparation to

eliminate air inclusion, such as the use of negative pressure, it is not always

possible to remove all trapped air, for example in soft tissues such as lung. Here,

we present a novel workflow based on conditional generative adversarial

networks (cGANs) to effectively replace these air artifact regions with gener-

ated tissue, which are influenced by the surrounding content. Our results show

that this approach not only improves the visualization of the lung tissue but also

eases the use of structural analysis on the air artifact-suppressed phase contrast

micro-CT scans. In addition, we demonstrate the transferability of the genera-

tive model to FFPE specimens of porcine lung tissue.

1. Introduction

Evaluation of biomedical tissue at the cellular level is crucial

for medical diagnosis as well as for fundamental research. For

this purpose, typically histology – the analysis of micrometre

thin stained tissue sections using optical microscopy – is

commonly applied. Histology requires mechanical sectioning

of the specimens, which is facilitated by embedding them in a

stiff matrix, most often in paraffin. Despite the great success of

histology, its intrinsic 2D nature hinders the evaluation of 3D

tissue structures such as fiber orientation, position of meta-

stasis or tissue architecture in general. Nowadays, micro-

computed tomography (micro-CT) is increasingly used for 3D

tissue analysis (Albers et al., 2018; Metscher, 2021; Wells et al.,

2021). However, due to limited soft-tissue contrast in classical

micro-CT, such an approach often requires additional staining

with heavy elements (Metscher, 2009), which in turn renders

sample preparation more complex. Phase contrast micro-CT
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(PCmCT) is a technique in which the contrast is more related

to the scattering and refraction of the incident X-ray beam

(Momose et al., 1996) than to its attenuation like in classical

computed tomography (CT). PCmCT strongly increases soft-

tissue contrast without additional staining, and thus has been

recently used in various studies (Kitchen et al., 2017; Sacco-

mano et al., 2018; Töpperwien et al., 2018; Donato et al., 2024;

Walsh et al., 2021).

Among many other methods, formalin-fixed and paraffin-

embedded (FFPE) tissue is by far the most utilized tissue

preserving protocol for classical histology as well as subse-

quent analysis. Although FFPE is well suited for both classical

and virtual histology using micro-CT, one of the main chal-

lenges of using it in combination with PCmCT is the inclusion

of air bubbles on the surface or within the tissue. Typically,

entrapped air bubbles within the FFPE blocks do not affect

the quality of the histology. However, they can have a major

impact on the visualization and analysis (Donato et al., 2024;

Strotton et al., 2018; Norvik et al., 2020; Handschuh et al., 2022)

of PCmCT scanned tissue samples. Visualization as well as

structural tissue analysis becomes extremely difficult due to

the high contrast caused by the phase shift at the air-tissue/

paraffin interface. Approaches such as formalin fixation and

tissue embedding in combination with negative pressure can

effectively remove the majority of air bubbles at the tissue

surface (Brunet et al., 2023). However, it is not always possible

to remove all air bubbles, especially for lung tissue where air is

trapped inside small structures such as the alveoli. Fig. 1 shows

part of a PCmCT scan from an FFPE tissue block of a rat lung

with air artifacts. 3D rendering reveals air bubbles on the

surface [Fig. 1(a)] as well as within the lung tissue [Fig. 1(b)].

The 2D slices in the marked region (red rectangles) illustrated

in Fig. 1(b) reveal voids surrounded by bright bands caused by

the air artifacts. These air artifacts arise from the use of a

single-distance phase retrieval algorithm, where only the

interface between two specific materials – lung tissue and

paraffin – remains well defined, while other interfaces, such as

air-to-paraffin or air-to-lung, retain strong phase contrast

edge-artifacts. Even the stepwise phase retrieval approach for

different interfaces, as proposed by Beltran et al. (2011),

cannot be applied effectively, as the interfaces are not suffi-

ciently spatially separated. As a result, air, particularly in the

peripheral airways, causes strong artifacts that merge the

airways, complicating their morphological analysis. However,

unlike metal artifacts in classical CT, air artifacts in PCmCT

affect a much smaller proximity and do not interfere with the

quantification of more distant structures.

Quantifying 3D tissue morphology provides valuable

insights into the presence and extent of diseases, as well as the

effectiveness of treatments. This is particularly important for

lung tissue, where structural integrity is essential for proper

respiratory function. In research, such quantification is often

carried out by analyzing micro-CT data sets from small animal

disease models (De Langhe et al., 2012). However, due to the

lung’s complex hierarchical structure and its small size, accu-

rately segmenting specific generations of the airway tree

remains a significant challenge. Structural analysis is typically

performed using 3D regions-of-interest (ROIs), which should

ideally contain only similar airway generations to avoid

confounding effects. These ROIs are usually placed in

peripheral lung regions, where airway structures are less

heterogeneous. To minimize the influence of artificial cuts at

the boundaries of the airways, it is crucial that the selected

ROIs are sufficiently large. The placement of these ROIs

becomes even more difficult in the presence of air artifacts.

Air artifacts, if not properly accounted for, can lead to inac-

curate segmentation and hinder the reliability of the analysis.

Therefore, careful selection and placement of ROIs is essen-

tial to mitigate the impact of both airway complexity and

imaging artifacts.
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Figure 1
Visualization of air artifacts in a PCCT scan of a FFPE tissue block of a rat lung. (a) A 3D chunk of FFPE lung tissue where artifacts due to trapped air
bubbles are clearly visible. (b) The same chunk as in (a) with a threshold higher than the intensity of paraffin. The visualization reveals the 3D structure
of the air artifacts and illustrates the 2D view of the air artifacts with the two marked regions (red rectangle).



Several studies have used different approaches to address

the issue of air artifacts. To exclude air artifacts as features in

segmentation and visualization, Lawson et al. (2021) created a

binary mask containing void and surrounding bright bands of

air bubbles, which was used to replace the corresponding

voxels with a fixed value. Katsamenis et al. (2019) proposed

the calibration of micro-CT data similar to clinical CT to get

rid of air artifacts. Both of the aforementioned methods

replace air artifacts with a fixed value, which in turn results in

a homogeneous artificial structure within the micro-CT scan.

Compensating the artifacts with morphology operations used

by Wollatz et al. (2017) is also limited as the used morphology

filters need to be adapted to the size of the air artifacts.

Here we present a novel approach utilizing generative

adversarial networks (GANs), specifically the conditional

variant (cGANs), to replace air artifacts with generated

structures that are influenced by the surrounding materials.

GANs have been used in many computer vision tasks

including medical image analysis. The main idea of GANs is to

generate synthetic outputs that appear to be drawn from the

distribution of the target domain from which the network has

been trained. While GANs can produce outputs by taking

random noise as inputs, cGANs take additional information to

generate outputs that are precisely controlled. There are many

variants of cGANs (Zhu et al., 2017; Choi et al., 2018; Liao et

al., 2022), among which pix2pix conditional GANs (pix2pix-

cGANs) (Isola et al., 2017) is the most general supervised

image-to-image translation framework. In this framework, the

generation of the output image is conditioned on an input

image. Our proposed workflow creates source-to-target pairs

and trains a network based on pix2pix-cGANs that learns to

remove/suppress the air artifacts from PCmCT scans. The

efficacy of the trained pix2pix-cGANs model was further

evaluated through quantitative and qualitative analysis of the

generated data, demonstrating superior rendering for visua-

lization and easing structural analysis in the peripheral lung on

the air artifact-suppressed PCmCT scans.

2. Materials and methods

2.1. Sample preparation

Rat lungs were collected from an approved animal experi-

ment (details in Section 2.5) to study the effect of injurious

ventilation in a rat model of ventilator-induced lung injury

(VILI). The experiments were performed on 24 Sprague-

Dawley rats, with an average weight of 399 � 26 g. After

baseline image acquisition, injurious ventilation was initiated

by increasing peak respiratory pressure to 41� 2 cm H2O, and

0 PEEP (where PEEP refers to the positive end-expiratory

pressure), while the respiratory rate was reduced to

30 beats min� 1 for 20 min to induce VILI. At the end of the

in vivo imaging, the rats were euthanized by intraperitoneal

injection of pentobarbital sodium (Dolethal, 200 mg kg� 1

body weight; Vetoquinol, Lure, France) and the heart and

lungs were excised and removed en bloc for histological

analysis. The left lungs were fixed in 4% paraformaldehyde

(PFA) at a pressure of 20 cm H2O, dehydrated with a graded

ethanol series and embedded in paraffin for further histolo-

gical and post-mortem imaging studies.

Pig lungs were obtained from a licensed slaughterhouse in

Germany and kept frozen at � 20�C. Lungs were transported

to the SYRMEP beamline of the Italian synchrotron ‘Elettra’

in Trieste and slowly defrosted at room temperature

approximately 5 h before the phase contrast CT experiment

using an athropomorphic human chest phantom (Albers et al.,

2023). The lung was kept within the phantom and fixed using

PFA vapor while a constant negative pressure was applied to

keep the lung inflated – a technique adapted from Weibel &

Vidone (1961). After approximately 6 h of fixation the lung

was removed from the phantom, cut and an approximately

1 cm � 2 cm � 3 cm piece of the right medial lung lobe was

extracted, chemically dried using an ascending ethanol series

and embedded into paraffin.

2.2. Micro-CT acquisition

PCmCT scans of FFPE tissue blocks from rat and pig lung

specimens were acquired at the SYRMEP beamline of the

Italian synchrotron ‘Elettra’ in Trieste, Italy. The beamline was

operated in white beam mode with the following parameters:

average photon energy E = 23.6 keV and sample-to-detector

distance =150 mm, to enable the manifestation of the phase

effects. A single-distance phase-retrieval algorithm [homo-

geneous case of the transport of intensity equation (TIE-

HOM) (Paganin et al., 2004)] was applied with a �-to-� ratio of

100. This �-to-� ratio was found to be ideal for the lung tissue

to paraffin interface (see Fig. S5 of the supporting informa-

tion). Finally, a filtered back projection algorithm was

employed to reconstruct the PCmCT scans, yielding a 3D

dataset with a voxel size of 2 mm � 2 mm � 2 mm (or 4 mm �

4 mm � 4 mm in the case of the pig lung specimen). Detailed

parameters can be found in Table 1. These datasets predo-

minantly expressed the distribution of the phase shift

component ‘�’ of the complex refractive index within the lung.

2.3. cGANs

GANs are a type of neural network that consist of a

generator and a discriminator network. The fundamental

concept of GANs is to generate synthetic outputs that closely

resemble the distribution of the target domain. The first

introduction of GANs (Goodfellow et al., 2020) can be
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Table 1
PCmCT scan parameters.

Property Rat lung tissue Pig lung tissue

Scan mode 360 off-center 180

Projections 1800
Exposure time 20 ms
Pixel size 2 m 4 m
Field-of-view per step 8 mm � 8 mm � 4 mm 8 mm � 8 mm � 8 mm
Sample orientation Vertical Vertical
Mosaic scan setup

(X, Y, Z)
1, 1, 4 � 3.5 mm 3 � 4 mm, 1, 3 � 5.3 mm

Sample-to-detector
distance

150 mm 150 mm

http://doi.org/10.1107/S1600577525001511
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referred to as unconditional GANs, in which the generator

takes random noise as input and learns to produce convincing

synthetic outputs from the real input observations. However,

there is no control over the generated output. In the case

of cGANs, additional information is provided during the

generation process so that GANs can be controlled to

generate output according to the condition. This additional

information may take the form of a label, text, mask, image or

any other attributes to serve as condition to the cGANs. The

supervised image-to-image translation model, pix2pix-cGANs,

is conditioned on a target image. The generator network in

pix2pix-cGANs is a U-Net based on convolutional blocks.

Although U-Net was initially developed as a segmentation

tool (Ronneberger et al., 2015), it has proven to be effective

for image generation tasks (Hu et al., 2019; Zeng et al., 2021;

Sorokina & Ablameyko, 2023) due to its robust encoder–

decoder network architecture with skip connections. The

discriminator in pix2pix-cGANs, defined as PatchGAN, is a

classifier network that is also based on convolutional blocks.

PatchGAN takes the output from the generator as input and

classifies it as real or fake. The detailed network architecture

of the generator and discriminator is described in Section 3.2

below.

2.3.1. Loss function

The loss function of a pix2pix-cGAN is a combination of

two components: the adversarial loss and the L1 loss. The

adversarial loss of a cGAN can be expressed as

LcGANðG;DÞ ¼ Ex;y log Dðx; yÞ½ � þ Ex log
�

1 � D½x;GðxÞ�
�� �
;

ð1Þ

where, with an input x, the generator G tries to minimize it to

produce an output G(x) that is as close as possible to the

ground truth y, while the discriminator D attempts to maxi-

mize it to detect the generated fake output with the greatest

precision possible. The adversarial loss is combined with the

L1 loss (absolute mean error between the ground truth and

the generated output) that helps the generator to produce

output similar to the corresponding ground truth. L1 can be

written as

L1ðGÞ ¼ Ex;y

�
ky � GðxÞk1

�
: ð2Þ

So, the final combined minmax objective function can be

written as

Lpix2pix-cGAN ¼ min
G

max
D
LcGANðG;DÞ þ �L1ðGÞ; ð3Þ

where � is a hyperparameter that controls the importance of

the L1 loss relative to the adversarial loss, which is set to 100 as

described by Isola et al. (2017).

2.3.2. Model evaluation

In traditional neural networks, the training objective is to

minimize the loss function until convergence. The training

progression of the networks can be tracked by observing the

loss function over training iterations. However, there are no

such metrics to assess the training progression and conver-

gence in the case of GANs training. The training of GANs is

considered to be converged when both the discriminator and

generator losses have reached an equilibrium state. It is not

only generally challenging to reach convergence in GANs

training but also difficult to measure the training progression

solely based on the losses. To obtain a more comprehensive

evaluation of the training progression, a generator model was

saved after a certain interval (every ten epochs). The saved

models were evaluated quantitatively on the test dataset to

identify the optimal generator model. The test dataset

consisted of 95 pairs of generated and ground truth volumes.

To assess how well a model was performing, the relative error

(RE) between the generated voxel intensities and the corre-

sponding ground truth voxel intensities was calculated. The

RE provides a measure of the difference between the two sets

of data, normalized by the intensity of the ground truth values,

making it less sensitive to overall scale differences and better

suited for comparing models that might generate volumes with

different intensity distributions.

The formula for calculating the RE between the generated

and ground truth volume pairs is

RE ¼
1

n

Xn

i¼ 1

Xdim

j;k;l¼ 0

jVi;gen Ij;k;l

� �
� Vi;real Ij;k;l

� �
j

jVi;real Ij;k;l

� �
j

" #

; ð4Þ

where n is the total number of volume pairs in the test dataset

(in this case, n = 95); Vi, gen and Vi, real are the ith generated and

corresponding ground truth volume pair, respectively, and

Ij, k, l refers to the intensity of the relevant voxel in the 3D

coordinate system ( j, k, l), which is the value being compared

between the generated and ground truth volume pairs.

A lower RE indicates that the generated volume is closer to

the ground truth, meaning that the model is performing better

in terms of accurately predicting the voxel intensities. Using

RE as a metric is particularly valuable when assessing the

effectiveness of generative models in tasks such as denoising,

artifact removal or image synthesis, where maintaining the

fidelity of the voxel intensities is crucial for the overall quality

of the generated output.

The second method employed for the evaluation was the

peak signal-to-noise ratio (PSNR). PSNR measures the

quality of gray scale generated volume compared with its

corresponding ground truth volume pair. PSNR is calculated

as

PSNR ¼
1

n

Xn

i¼ 1

20 log10

MAXVffiffiffiffiffiffiffiffiffiffiffi
MSEi

p

� �

; ð5Þ

where MAXV is the maximum possible voxel value in the

volume (255 for 8-bit gray scale volume), and MSEi is the

mean squared error between the ground truth and generated

ith volume pair in the test dataset (n = 95). A lower MSE value

indicates a similar pair which results in a higher PSNR value.

For identical pairs, MSE is zero and PSNR is considered as

infinity. PSNR is calculated in decibels (dB) where a higher

value suggests better quality.

research papers

4 of 12 Md Motiur Rahman Sagar et al. � Air artifact suppression in phase contrast micro-CT J. Synchrotron Rad. (2025). 32



The third evaluation method used to choose the best

performing model is called the structural similarity index

measurement (SSIM), which can be expressed as

SSIM ¼
1

n

Xn

i¼ 1

2�geni
�reali
þ c1

� �
2�geni:reali

þ c2

� �

�2
geni
þ �2

reali
þ c1

� �
�2

geni
þ �2

reali
þ c2

� � ; ð6Þ

where �geni
and �reali

are the mean and �2
geni

and �2
reali

are the

variance between the ith generated and ground truth volume

pair. �geni:reali
is the covariance between the ith generated and

ground truth volume pair. c1 and c2 are small constants to

avoid division by zero. SSIM is a perception-based method

that evaluates image quality based on the structural changes

while incorporating luminance (brightness) and contrast

information. A higher SSIM value (ranging from � 1 to 1)

indicates a greater similarity between two volumes. In contrast

to the RE and PSNR methods, which calculate voxel-wise

differences, SSIM assesses the perceived volume quality. The

combination of these three methods constituted a compre-

hensive technique for evaluating the training progression and

selecting a generator model for the experiment.

2.4. Software

The phase retrieval as well as the reconstruction algorithm

on synchrotron data was performed using the software

SYRMEP Tomo Project (STP) (Brun et al., 2015). The

pix2pix-cGANs model, related functions and all analysis

pipelines were implemented in a Python (v3.9) environment.

The deep learning framework utilized was Keras (Chollet,

2015) on top of Tensorflow (v2.9) (Abadi et al., 2015). The

structural properties of the pores were extracted using an

open-source Python toolkit, PoreSpy (Gostick et al., 2019).

The pix2pix-cGANs model was trained using a NVIDIA

(RTX3090) GPU. The data used in this study can be accessed

by a valid request to the correspondence author. The code for

the project is available at https://github.com/mrahmansagar/

AirGANs.

2.5. Ethics

The care of rats and the experimental procedures were in

accordance with the Directive 2010/63/EU of the European

Parliament on the protection of animals used for scientific

purposes and complied with the ARRIVE guidelines (https://

arriveguidelines.org/arrive-guidelines). Experimental proce-

dures were evaluated and approved by the local institutional

ethical review board and the French Ministry of Higher

Education and Research (authorization number:

APAFIS#31021-2021040617424365). The animals were housed

in a facility with 12 h light/dark cycles, fed ad libitum, and were

allowed to acclimatize to the housing conditions for a

minimum of seven days before any experimental procedures.

Pig lungs were obtained from a licensed slaughterhouse, from

pigs used for food production. No pig was euthanized for the

purpose of this experiment.

3. Results

3.1. Training data pair preparation

The training of pix2pix-cGANs requires a set of paired

source and target domains. In this study, a source and target

pair corresponds to a 3D volume with and without air artifacts,

respectively. Unlike the applications demonstrated by Isola et

al. for image-to-image translation (Isola et al., 2017), manually

obtaining a labeled target from a source domain was not

feasible in our workflow. Instead, training pairs were created

using a semi-automatic workflow. The first step of the work-

flow was to automatically extract 3D cubes of size 256� 256�

256 voxels from the reconstructed PCmCT scans of the FFPE

lung tissue blocks. These 3D cubes were then manually clas-

sified into two categories: those with and those without air

artifacts. Figs. 2(a) and 2(b) show examples of a 3D cube with

and without air artifacts. Subsequently, the air artifacts were

extracted from the cubes with air using a dedicated image

processing pipeline. This pipeline comprises two stages: (a)

creation of a 3D mask of the air artifacts through thresholding,

followed by binary morphological operations (opening and

dilation) to capture the edges of the air; and (b) copying of the

masked voxels from the cube with air artifacts to the cube free

from air artifacts. An overview of the pipeline for creating a

source and target pair is described in the scheme below,

and illustrated in Fig. 2. Figs. 2(b) and 2(d) represent the target

and source cube, respectively. This process was repeated for all

the available PCmCT scans, resulting in a training dataset of

900 source and target cube pairs.

3.2. Network architecture of pix2pix-cGANs

Pix2pix-cGANs comprise two main parts: a generator and a

discriminator network. The generator network is a convolu-

tional-based U-Net that takes an input from the source

domain and transforms it into an output of the target domain.

The encoder and decoder architecture used for U-Net utilized

the same configuration proposed by Isola et al. in the original

pix2pix-cGANs implementation (Isola et al., 2017). However,

the convolutional blocks were 3D instead of 2D to accom-
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modate the inputs for the study, which were cubes of size

256 � 256 � 256 voxels. The U-Net network architecture is

described as below, where Ck and Tk refer to convolution and

convolution transpose blocks with k number of filters,

respectively,

Encoder:

C64 – C128 – C256 – C512 – C512 – C512 – C512 – C512

Decoder:

T512 – T512 – T512 – T512 – T256 – T128 – T64

Each block in the encoder was compiled with a convolution,

followed by batch normalization and an activation function,

except the first block, where batch normalization was not

applied. The configuration of the blocks in the decoder was

analogous to that of the encoder, but the convolution was

replaced by convolution transpose. Furthermore, a 50%

dropout layer was included for the first three blocks. There

were skip connections between encoder and decoder blocks at

the same resolution level to preserve the important informa-

tion during the forward pass. The encoder blocks had leaky

rectified linear units (ReLUs) with a slope of 0.2 as activation

function, whereas the decoder blocks had ReLU activation

functions which were not leaky. The last block (bottleneck) of

the encoder used a ReLU activation function without any

batch normalization layer. To match the output resolution at

the end of the decoder, a convolutional transpose layer was

utilized with a tanh activation function.

The discriminator network of GANs compares the

generator output with the ground truth and classifies it as

either real or fake. In the original implementation of the

pix2pix-cGANs the discriminator is called a PatchGAN (Isola

et al., 2017). The main idea of the PatchGAN is that, rather

than considering the whole input image, it classifies a defined

patch across the entire input image and averages the response

of each patch to provide the final decision. Each activation

output in the receptive field of a PatchGAN represents one

area/patch on the input image. The discriminator network

architecture can be described as below, wherein Ck represents

a convolution block with k number of filters,

PatchGAN: C64 – C128 – C256 – C512

The PatchGAN used in the study shared an identical config-

uration as implemented in the pix2pix-cGAN (Isola et al.,

2017). However, the convolutional blocks were 3D instead of
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Figure 2
Workflow for creating a data pair to train pix2pix-cGANs. 3D cubes with and without air artifacts are shown in (a) and (b), respectively. Using a
dedicated image processing pipeline, air artifacts are identified and extracted. The extracted air artifacts, illustrated in (c), are copied to a cube without
air artifacts (b). The resulting 3D cube with copied air artifacts is demonstrated in (d). This workflow creates source (d) and target (b) pairs for training
the pix2pix-cGANs. The length of each cube is 256 pixels in all directions.



2D, resulting in a patch size of 70 � 70� 70 voxels with a final

receptive field of 16 � 16 � 16 voxels. Each convolutional

block in the discriminator consists of a convolution operation,

followed by batch normalization and a leaky ReLU (slope =

0.2) activation function, with the exception of the first block, in

which batch normalization was not employed. To obtain final

patch output, a convolution layer was applied with a sigmoid

activation function after the last block of the discriminator.

The kernel size for all the convolutional operations in the

generator and discriminator was set to 4 � 4 � 4 voxels with a

stride of 2 � 2 � 2 voxels. This setup enabled downsampling

of the input in both the encoder and discriminator while

upsampling in the decoder by a factor of two. As an exception,

the final two blocks of the discriminator had a stride of 1� 1�

1 voxel. Fig. 3 depicts a schematic of the pix2pix-cGANs

network architecture.

3.3. Training of the pix2pix-cGANs

The 3D cube pairs (900), prepared with the aforementioned

data preparation pipeline (see Section 3.1), were used for

training the pix2pix-cGANs. During the training phase, the

generator, U-Net, took a cube with air artifacts as input

(source: Real A) and was tasked to generate a cube (Gen B)

free from air artifacts that closely resembled the ground truth

(target: Real B). Both the generated and the ground truth

cubes were then combined with the source cube to create a

fake and a real pair, respectively. Then, the discriminator,

PatchGAN, needed to differentiate between the fake and real

pair. Fig. 3 provides a graphical illustration of the training

process. The training process optimized the discriminator’s

ability to distinguish real outputs from the generated synthetic

outputs. The generator was optimized to minimize the

adversarial loss along with the L1 loss, thereby generating

outputs that were similar to the ground truth. The generator

and the discriminator were trained in an alternative manner,

using their respective loss function iteratively with a batch size

of 1. The choice of optimizer was Adam with a learning rate of

0.0002 and beta1 = 0, beta2 = 0.999 (Isola et al., 2017).

3.4. Evaluation of generated data

Following the training of the pix2pix-cGANs with the

source and target pairs, a generator model was selected based

on the criteria mentioned above (see Section 2.3.2). The

trained model was then employed to assess the generated air

artifact-suppressed cubes of PCmCT scans quantitatively and

qualitatively. The assessments were conducted on the cubes

(test dataset) that were not included in the training process.

3.4.1. Quantitative assessment

In order to undertake a quantitative comparison between

cubes before and after the suppression of air artifacts, a source

to target pair was initially created using the same process as

described in Section 3.1. Then the generated cube was

compared with the target cube quantitatively. Fig. 4(a) depicts

a source (left) to target (right) pair along with generated

(middle) cube. One of the quantitative metrics used for

comparison was the intensity distribution or the histogram.

The histogram of the source (blue), target (green) and

generated (yellow) cube are presented in Fig. 4(b). The

histogram of the cube with air artifacts exhibited a high

frequency at values 0 and 255, which correspond to low

intensity voxels within the air artifacts region and high

intensity voxels at the edge of the air artifacts, respectively.

However, both the generated and target volumes did not

display these extreme intensities, which indicates a similarity
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Figure 3
The network architecture of pix2pix-cGANs for translating a 3D cube with air artifacts (source) to a 3D cube without air artifacts (target). The network
comprises a generator (U-Net) and a discriminator (PatchGAN), similar to the pix2pix network proposed by Isola et al. (2017), but with network blocks
adjusted to accommodate 3D inputs and outputs. The generator receives cubes with air artifacts as input (Real A) and generates cubes which are
potentially free from air artifacts as output (Gen B). Pairs of Gen B and Real A (fake pair) are compared with pairs of Real B and Real A (real pair)
using the discriminator network. Over the course of prolonged training, the generator network learns to generate outputs that can deceive the
discriminator network into misclassifying fake pairs as real ones.



between the generated and the target volume in intensity

distribution.

Additional quantity measures used to assess the structural

properties of the generated volume were the extent and the

solidity of identified pores of the lung tissue, with extent

defined as

Extent ¼
total amount of voxels of a pore

volume of the bounding box in voxels
;

and the solidity as

Solidity ¼
total amount of voxels of a pore

volume of the convex hull in voxels
;

where the convex hull is the the smallest convex polyhedron

that encloses all the points (voxels) of the region. A convex

hull has no indentations, meaning it is the tightest convex

shape that contains the region. A solidity equal to 1 char-

acterizes completely filled convex objects such as a sphere,

cube or cylinder. A solidity <1 is found for less compact

regions that have gaps, hollow regions or concavities.

The majority of 3D pore segmentation pipelines are effec-

tive when the pores are enclosed and have a clearly defined

boundary. However, these pipelines are not well suited to the

segmentation of 3D pores (airways) of the lung tissue, as the

lung tissue is not composed of pores but of strongly connected

airways. The 3D airway/pore segmentation pipeline utilized

in the study initially segments the pore using a threshold,

followed by binary morphology filtering (fill-holes and

closing) to eliminate binarization residues. In the next step, a

distance transform was applied, resulting in a mask and

markers that were essential for the label-based watershed

segmentation. The outcome of the watershed segmentation is

demonstrated in Fig. 4(a) (bottom row) alongside the corre-

sponding volume (top row). Afterwards, the segmentation,
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Figure 4
Comparison of generated and actual tissue structures: (a) Three 256� 256� 256 voxel cubes from a PCCT scan of a rat lung FFPE tissue block: (i) cube
with air artifacts (top left), (ii) cube with air artifacts suppressed by a trained generator model (top middle), and (iii) actual cube without air artifacts (top
right). (b) Histograms of each cube. The cube with air artifacts (blue) shows peaks at 0 and 255, indicating low intensity artifacts and high intensity at
their edges. The generated cube (orange) lacks these extremes, aligning with the original cube’s intensity distribution. (c) For ten randomly selected
ROIs with air artifacts, porosity, pore volume, pore extent and solidity were calculated for the original data (blue) and for data with air artifacts masked
(orange). Since there is no ground truth, the artifact-free values (red line, after applying our cGAN) were used as reference. Masking the artifacts
resulted in similar measurements to our approach, which increases the average pore size due to blending of alveolar regions (the ^ symbol denotes
an outlier).



extent and solidity of each identified pore were analyzed. The

summary of the pipeline is presented below:

The extent provides insights into the spatial distribution of a

pore within a cuboid, whereas solidity offers insights into the

density of the pore. These properties together with pore

volume and porosity collectively provide a comprehensive

structural characterization of the porous medium. Fig. 4(c)

presents a comparison of these properties for ten randomly

selected cubes with artifacts. Since there is no ground truth,

only the quantification with the air artifacts, masking the air

artifacts as proposed by Lawson et al. (2021) and after

applying our pix2pix-cGANs approach, can be compared. To

ease the comparison we used the result of the pix2pix-cGANs

for each region and each feature as reverence [Fig. 4(c), red

line]. As the air artifacts typically blend multiple alveolar

regions together, ignoring them results in strongly increased

average pore volume. While masking the artifact region leads

to similar results as the pix2pix-cGANs approach, the calcu-

lated porosity is on average slightly higher than our approach.

Thus, the application of the pix2pix-cGANs method produces

similar results as excluding the artifacts from the analysis and

at the same time it improves the visualization of those regions,

which cannot be achieved by masking the artifact regions.

3.4.2. Qualitative assessment

One significant challenge associated with the presence of air

artifacts in the PCmCT scans is the difficulty in rendering

crucial aspects of the sample for visualization due to the

extreme intensity values of these artifacts. For qualitative

visual assessment, rendering of the PCmCT scan of a FFPE

tissue block was compared before and after the suppression of

air artifacts. The visual comparison is demonstrated in Fig. 5.

As the trained model accepts cubes of size 256 � 256 � 256 as

input, the initial stage of the process was to identify the cubes

containing air artifacts of that size that should be processed by

the trained generator of the pix2pix-cGANs model. To achieve

this, the entire PCmCT scan was divided into non-overlapping

cubes, each with a size of 256 cubic units. Subsequently, each

cube was processed to ascertain whether it contained air

artifacts. The cubes with air artifacts were then subjected to

further processing with the trained generator model. Finally,

all the cubes were combined according to their original

coordinates to obtain the entire volume of the PCmCT scan.

The complete pipeline is summarized in the scheme below:

Fig. 5 demonstrates a visual comparison between a PCmCT

scan that contains air artifacts (left) and the same PCmCT scan

after the air artifacts were suppressed (right) using the

generator from the pix2pix-cGANs model. For better visua-

lization, a threshold value higher than the paraffin intensity

was used for the 3D rendering [Fig. 5(a)]. One slice from the

corresponding volume above also compares the results in 2D

[Fig. 5(b)], showing a notable reduction in air artifacts within

the PCmCT scan following suppression. The pix2pix-cGANs

model was primarily trained to replace air artifacts in

peripheral lung regions. The indicated regions [Fig. 5(b),

yellow ROIs] represent an alveolar region (1), a large bronchi

(2) and a larger vessel (3). In Fig. 5(c), close-ups of these three

regions are shown before (left) and after artifact removal

(right). In the first case, the artificially inpainted alveolar

structure appears natural, and the artifact is nearly completely

removed. In the second case, the strong edge enhancement of

the air regions is reduced without introducing artificial tissue

structure. In the last case, the artifact was removed, but dim

artificial lung tissue was incorrectly inpainted.

4. Discussion

Here we demonstrate that artifacts resulting from air inclusion

in the PCmCT scans of unstained FFPE lung tissue blocks of a

rat VILI model as well as of a porcine lung tissue can be

effectively replaced with artificial tissue content through the

application of pix2pix-cGANs models. The generated PCmCT

scans were free from the extreme contrast caused by air in the

specimen, thereby enabling the rendering of the specimen’s
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overall appearance in 3D without the strong impact of the air

artifacts. Furthermore, we showed that, despite the fact that

the regions were filled with artificially generated data, pore

analysis of the region revealed structural characteristics

comparable with those in which the air artifact regions were

simply masked, as proposed by Lawson et al. (2021).

Virtual histology of FFPE tissue blocks using PCmCT is an

emerging technique (Albers et al., 2018; Donato et al., 2024;

Peña et al., 2023; Töpperwien et al., 2016; Eckermann et al.,

2021) with the primary objective of facilitating a 3D overview

of the tissue structure, which can be significantly compromised

in the presence of air artifacts. Therefore, the replacement of

these artifact regions is of great benefit in this context.

Structural analysis of the PCmCT scans with air artifacts would

result in the identification of major outliers, which can be

avoided if air artifacts are suppressed using the proposed

trained generator model of the pix2pix-cGANs.

The air artifacts observed in the PCmCT datasets arise from

the use of the single-distance phase retrieval algorithm TIE-

hom (Paganin et al., 2004). This algorithm requires selecting a

specific �-to-� ratio for the material interface of interest, which

can result in blurriness or uncompensated edge-enhancement

effects at other interfaces. Beltran et al. (2011) proposed an

interface-specific improvement to the original TIE-hom

algorithm, demonstrating its ability to obtain sharp boundaries

at lung-tissue to air and bone to soft-tissue interfaces in in vivo

PCmCT datasets of young rabbit pups. This method replaces

tissue interfaces that retained edge-artifacts from one recon-

struction with sharp tissue interfaces from a second recon-

struction using a different �-to-� ratio. However, this approach

has a limitation: the tissue interface with retained edge-arti-

facts is larger than the sharp version, meaning the algorithm

can only be applied when the interfaces of interest are suffi-

ciently spatially separated. In our case, the air artifacts are in

direct contact with the lung tissue, making it impossible to

apply Beltran et al.’s method without compromising the

surrounding lung tissue. Therefore, we argue that our

approach, utilizing a cGANs, is more suitable for reducing

these artifacts, especially in this scenario.

The 3D nature of the PCmCT scans enables quantitative

analysis of the tissue specimens, as demonstrated in the

analysis of lung tissue (Eckermann et al., 2020; Kampschulte

et al., 2013; Khan et al., 2023). In general, such analyses are

performed on the ROIs which are selected avoiding the air

inclusion areas in the specimens. The selection of such ROIs

can be a labor-intensive process, often resulting in a few

numbers of ROIs per specimen. The outcome of structural

analysis conducted with a limited number of ROIs per

specimen may be susceptible to selection bias and may lack

statistical significance. In this regard, the use of pix2pix-

cGANs to suppress/remove air artifacts in the PCmCT scans

can facilitate the selection of larger ROI areas that encompass

the majority of the specimen, with the positioning of ROI

placement being of lesser importance. It is true that the
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Figure 5
Visual comparison of a PCCT scan of an FFPE rat lung tissue block before and after suppression of air artifacts. (a) A 3D rendering of a PCCT scan of
FFPE rat lung tissue, with visible air artifacts (left), and the same scan after suppression of these artifacts using a trained pix2pix-cGAN generator model
(right). To enhance visualization, a threshold above the paraffin intensity is applied in the 3D rendering. (b) A 2D slice from the same scan before (left)
and after (right) suppression of air artifacts, corresponding to the dataset shown in (a). (c) Detailed views [marked in yellow in (b)] of specific regions –
on the left, the original scan, and on the right, the scan after air artifact suppression. In the first example, air artifacts within the lung parenchyma are
replaced with plausible lung tissue structures. In the second, air artifacts in a large vessel are reduced mainly in edge intensity, while, in the third, the
artifact in a smaller vessel is replaced with dim, but visibly incorrect, lung tissue. The 3D and 2D visualizations demonstrate that suppression of air
artifacts significantly improves the rendering and structural analysis of lung tissue, particularly in the parenchyma regions.



generated structure utilized to fill the artifact region is artifi-

cial and lacks pathological significance. Consequently, incor-

porating it into tissue quantification will result in a deviation

from the actual values. However, our data indicate that this

discrepancy is negligible in comparison with the substantial

impact of having an air inclusion within the measurement

region.

The pix2pix-cGANs employed in the study had the identical

network architecture proposed by Isola et al. (2017); however,

the network blocks were 3D instead of 2D to accommodate

the input cube pairs. The training data were prepared with a

dedicated data preparation pipeline, exclusively from the

PCmCT scans of FFPE tissue blocks of rat lung specimens.

Following the training of the 3D pix2pix-cGANs, a generator

model was selected to suppress/remove air artifacts in the

PCmCT scans of a rat lung, as well as pig lung specimens,

although the generator model demonstrated a superior

performance on the rat lung data with which it was trained.

It also exhibited encouraging outcomes on the pig lung data

(see Fig. S4 of the supporting information), which further

substantiates the model’s versatility and applicability to

diverse PCmCT scans of FFPE lung tissue. To facilitate the

training process of the pix2pix-cGANs, pairs of images with

and without air artifacts were required. Since it is not possible

to acquire the same specimen in the exact position both with

and without air artifacts, the training data were generated by

simulating these artifacts on otherwise artifact-free regions.

Two approaches were considered for this task: (i) artificially

generating air artifacts within the lung structure, and (ii)

copying existing air artifacts to different locations within an

otherwise artifact-free region of the dataset. In the first case,

we were unable to generate artifacts with a realistic structure

and shape, so we favored the second approach. However,

when copying existing air artifacts to other lung regions, it

could not be ensured that the anatomical region being

replaced was identical to the original one that caused the air

artifacts. This limitation reduces the ability of the trained

network to effectively replace air artifacts with lung tissue.

Our study has considered exclusively lung tissue specimens,

which are particularly susceptible to air artifacts due to the

inherent difficulty in completely eliminating air during the

sample preparation. However, the novel concept and work-

flow presented here have the potential to be applied to a

diverse range of specimens, offering a promising solution to

the challenges posed by artifacts in scientific investigations.
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