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Scanning objects with a tightly focused beam (of photons or electrons for

example) can provide high-resolution images. However, rapid deposition of

energy into a small area can damage tissues in organic samples or may rearrange

the chemical structure or physical properties of inorganic materials. Scanning an

object with a broad, or diffuse, beam can deliver an equivalent probe energy but

spread it over a much wider footprint. However, typically the imaging resolution

is proportional to the probe diameter and a diffuse probe sacrifices resolution.

Here we propose a method to achieve ‘high resolution’ imaging (in the sense

that resolution is smaller than the probe diameter) using a diffuse probe. We

achieve this by encoding a pattern onto the probe and employing a decoding

step to recover a tight delta-like impulse response. Huffman sequences, by

design, have the optimal delta-like autocorrelation for aperiodic (non-cyclic)

convolution and are well conditioned. Here we adapt 1D Huffman sequences to

design 2D Huffman-like discrete arrays as diffuse imaging probes that have

spatially broad, relatively thin, uniform intensity profiles and have excellent

aperiodic autocorrelation metrics. Examples of broad shaped diffuse beams

were developed for the case of X-ray imaging. A variety of masks were fabri-

cated by the deposition of finely structured layers of tantalum on a silicon oxide

wafer. The layers form a pattern of discrete pixels that modify the shape of an

incident uniform beam of low-energy X-rays as it passes through the mask. The

intensity profiles of the X-ray beams after transmission through these masks

were validated, first by acquiring direct-detector X-ray images of the masks, and

second by raster scanning a pinhole over each mask pattern, pixel-by-pixel,

collecting ‘bucket’ signals as applied in traditional ghost imaging. The masks

were then used to raster scan the shaped X-ray beam over several simple binary

and ‘gray’ test objects, again producing bucket signals, from which sharp

reconstructed object images were obtained by deconvolving their bucket images.

1. Introduction

High-resolution scanning X-ray imaging typically requires

high-fidelity beam shaping to create sharp probes (Yan et al.,

2014; Bajt et al., 2018), concentrating the radiation that is

raster scanned over the specimen. The same is true for atomic-

resolution scanning transmission electron imaging, where it is

advantageous to further remove probe aberrations in dedi-

cated post-processing to achieve the highest resolution (Chen

et al., 2021). Irrespective of resolution, beam shaping can be

also useful for patterning the scattered radiation to sensitively

measure strain (Zeltmann et al., 2020) or efficiently map

crystal orientations (Hong et al., 2021). An alternative to

raster scanning is to transmit a known ensemble of broad yet
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structured probes through a specimen, to be computationally

reconstructed through ‘ghost imaging’ (Erkmen & Shapiro,

2010; Pelliccia et al., 2016; Yu et al., 2016). Here we consider

combining these ideas to produce a broad patterned probe

that encodes the sample through scanning, and seek to recover

sharp images through correlative reconstruction akin to ghost

image recovery.

Energy deposition has paramount importance in the X-ray

imaging of soft-tissues or nano-structured materials. Miti-

gating beam damage is likewise crucial for atomic resolution

structural determination in cryo-electron microscopy, and low

electron dose imaging continues to be developed for beam-

sensitive materials such as metal organic frameworks, zeolites

and organic perovskites. The motivation for imaging with a

diffuse beam is to significantly reduce the rate of energy

deposited per unit area of the test object. For example, a

uniformly intense beam having an area of 10 � 10 pixels

reduces the rate of incident energy deposition per unit area by

100 times relative to that from an equivalent probe focused to

be one pixel wide. Deconvolving the diffuse beam to single-

pixel width reduces the radiation damage whilst preserving the

spatial resolution and signal-to-noise ratio.

A closely related technique for structuring the incident

beam is the use of coded apertures that employ ‘binary’ 2D

masks comprising elements which have either 100% trans-

mission or are fully opaque (Fenimore & Cannon, 1978).

When combined with a spatially resolved or pixelated camera,

coded apertures are useful in contexts where lensing is not

possible, as a generalization of pinhole imaging [see the review

by Cieślak et al. (2016)]. For X-ray imaging, coded apertures

are generally specialized binary (2D) masks designed to

improve spatial resolution and enhance contrast in a range of

applications, including transmission X-ray imaging, phase

contrast imaging (Olivo & Speller, 2007), compressive X-ray

tomosynthesis (Cuadros et al., 2015), 3D diffraction contrast

imaging (Gürsoy et al., 2025) and high-energy astrophysics

(Braga, 2020).

Common designs of coded apertures include uniformly

redundant arrays (URAs) (Fenimore & Cannon, 1978),

modified URAs (MURAs) (Haboub et al., 2014) and Hada-

mard patterns (Pinilla et al., 2018). As Huffman patterns are

designed for aperiodic convolution (unlike URAs, MURAs

and Hadamard patterns), Huffman probes can be used to scan

regions of arbitrary size.

This paper addresses the conceptual and experimental

design, fabrication and application of 2D masks with the

primary motivation to reduce damage to specimens being

scanned during X-ray imaging. A spatially broad beam of

uniform intensity incident onto these masks transmits an

equally broad but discretely shaped pattern of illumination.

Each digital pattern is designed to have an autocorrelation

that is approximately a delta function. Using this intensity

pattern as an X-ray probe to scan a test object produces a

blurred image of the object as it is convolved by the pattern of

the mask. The inverse problem of decoding the pattern

encoded by the mask is straightforward due to the delta-like

autocorrelation property of the mask. We have called this

process ‘high-resolution’ scanning with a diffuse probe since

the imaging resolution achievable is smaller than the probe

diameter. While initially motivated by reducing dose rate (and

thus sample damage) given synchrotron radiation, we note

that this concept can also improve the imaging resolution

given any radiation that is not easily focused, e.g. lab-based

X-rays, or neutrons.

In this work, the intensity of a broad beam from a

synchrotron was shaped, at a discrete pixellated level, to form

a diffuse probe. The broad probe shape is designed to be

deconvolved to yield a point-spread function with single-pixel

resolution. Shaping a probe requires controlled changes to the

intensity transmitted through each pixel of the mask used for

beam shaping. The near parallel and near monochromatic

X-rays from a synchrotron means the probe intensity could be

controlled by transmitting the broad beam through a mask

comprising different thicknesses and/or different materials for

each individual pixel of the mask. This experiment could also

be done using incident optical photons, lab-source X-rays,

electrons or neutrons if precise control of the beam absorption

can be achieved. This method is applicable wherever it proves

difficult to maintain the focus of an incident beam down to the

desired pixel width. We also note that here single-pixel (or

bucket) signals were collected and used to reconstruct images

of the scanned objects, but this approach is not essential to the

method. The images of the scanned test samples here show

absorption contrast, but could also have been configured to

display phase contrast, near- or far-field scatter, fluorescence

or other imaging modalities.

The remainder of the paper proceeds as follows. Section 2

reviews the theory behind the design of diffuse, delta-like

pixellated masks that transmit a narrow range of stepped

intensities using beams that project onto areas comprising

hundreds to thousands of pixels. The mask design was inspired

by earlier work on 1D aperiodic sequences by Huffman

(Huffman, 1962). Section 3 describes the design and the

challenging techniques developed here to fabricate Huffman-

like masks; this includes both binary masks suited for use with

X-rays with an energy of around 20 keV, and quaternary

masks designed for use with an X-ray energy of 12.4 keV. The

latter masks were built as multiple uniform layers of tantalum

deposited in discrete patterns on a silicon oxide wafer. Vali-

dation of the as-fabricated patterns, which was achieved by

directly imaging the X-ray beam transmitted by each mask, is

presented in Section 4. The experimental synchrotron-beam-

line setup, images of the fabricated test objects, and the

experimental procedures (including post-processing analysis)

are expained in Section 5. Section 6 presents experimental

results obtained using a uniform beam of synchrotron-gener-

ated X-rays that was shaped by transmission through these

masks. Several simple binary objects and more complex ‘gray’

test objects were scanned with these diffuse beams to produce

bucket images from which images were reconstructed that

closely match the test objects. We discuss the experiment

results and their implications in Section 7. Section 8

summarizes our findings and discusses future practical imaging

applications for broad Huffman-like masks. Additional rele-
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vant information on the properties of Huffman sequences, the

design and testing of compressed Huffman-like arrays and a

more detailed overview of the fabrication design and wafer

production process necessary to make the masks used in the

X-ray imaging experiment can be found in the supporting

information.

2. Numerical design of broad, diffuse X-ray probes with

delta-like auto-correlation

Scanning probes acquire images of test objects that are

blurred by the spread and shape of the scanning probe.

To reduce the impact of the local radiation dose rate of the

incident beam, the probe area could be made broader or more

diffuse. A broader beam generally means poorer spatial

resolution. However, a diffuse probe shape that is encoded

with a pattern that has an autocorrelation closely approx-

imating a delta function can circumvent this issue; we refer to

such probes as having delta-like autocorrelation. The object

image that was blurred by the shape of the probe can be

restored by a deconvolution using the known shape of the

probe. Probes that have delta-like autocorrelation are well

conditioned and ensure that the inverse deblurring problem is

robust to measurement noise. The method may be viewed as a

form of coded aperture imaging (Cieślak et al., 2016), in which

the coding and decoding arrays are identical to one another.

This section describes how to encode such sequences into

suitable shapes for use as scanned X-ray probes. Much

attention has been given in the literature to the many and

varied periodic sequences that are delta-like under circular

convolution or correlation (so-called periodic arrays) (Chu,

1972; Schmidt, 2016; Petersen et al., 2024). However, these

sequences are impractical when the probe field-of-view (FOV)

limits the object size. We usually need to scan objects larger in

size than the probe FOV. In this situation, the probe performs

non-circular (or aperiodic) convolution or correlation. We

hence seek to encode (or pattern) the probe shape using

sequences that possess delta-like aperiodic autocorrelation.

The Huffman sequences described in the next section are, by

design, optimal for aperiodic convolution.

2.1. Huffman sequences and 2D Huffman arrays

In 1962, in a pioneering paper, Huffman (1962) defined

what constitutes the optimal possible delta-like form for any

aperiodic autocorrelation and then constructed quite special

examples of sequences, HL, for any length L, that met that

goal.

Following that work, several different types of integer, real

and complex Huffman sequences have been found. These

sequences, specified here as H s
L for distinct sequence types s,

all have in common the following unique property under

aperiodic autocorrelation (�),

H s
L �H s

L ’ �: ð1Þ

Here, � is the Kronecker delta function,

�ðx � aÞ ¼ 0; x 6¼ a; ð2Þ

with x and a being array coordinates. So-called ‘perfect-

sequences’, SL, where

SL � SL � � ð3Þ

under periodic autocorrelation conditions, were well known

long before Huffman’s work (Schmidt, 2016). However, those

sequences do not satisfy equation (1) when used in aperiodic

operations.

Building on Huffman’s paper, Hunt & Ackroyd (1980)

discovered integer-valued Huffman sequences (of length L =

4n � 1) with entries that turn out to be derived from the

Lucas/Fibonacci series. An example of their sequence type is

H7 ¼ ½1; 2; 2; 0; � 2; 2; � 1�:

The aperiodic autocorrelation of H7 is

H7 �H7 ¼ ½� 1; 0; 0; 0; 0; 0; 18; 0; 0; 0; 0; 0; � 1�:

An aperiodic autocorrelation is optimally delta-like [following

equation (1)] when all of the off-peak autocorrelation values

are zero bar the unavoidably non-zero left and right end

correlation values. The magnitudes of the end values are kept

as small as possible relative to the autocorrelation peak, which

should be as large as possible. For H7, those values are � 1 and

18, respectively. ‘Perfect-periodic’ sequences, for example

Legendre L7 = [0, 1, 1, � 1, 1, � 1, � 1], are not delta-like (for

L7, the aperiodic autocorrelation peak is 6 with many non-

zero off-peak values ranging from +1 to � 2). Thus,

L7 � L7 ¼ ½0; � 1; � 2; 1; 0; � 1; 6; � 1; 0; 1; � 2; � 1; 0�:

The range of and spacing between the values in the elements

of H s
L has critical practical implications for the arrays fabri-

cated in our experiment, for example to construct the 32 � 32

array. The 1D Lucas/Fibonacci sequence H31 has signed

integer values that range between �754. The integer range for

these Huffman sequences grows exponentially with length L,

maxðjHLjÞ ¼ bð2=
ffiffiffi
5
p
Þ�ðL� 3Þ=2e; ð4Þ

where � is the golden ratio, ð1þ
ffiffiffi
5
p
Þ=2, and bre denotes the

integer round operation on real value r. The ranges fixed by

equation (4) motivate the compression of Huffman sequence

values, as covered in Section 2.3.

In general, any canonical Huffman sequence of length L has

optimal aperiodic autocorrelation of length 2L � 1 with the

form

½lr; 0; 0; . . . ; 0;A0; 0; . . . ; 0; 0; rl �:

The peak of the auto-correlation value at zero shift is A0,

whilst the (unavoidable) end terms rl = lr arise from the

product of the (non-zero) leftmost and rightmost elements of

the sequence H s
L, denoted here as l and r, respectively. Then

equation (1) is the closest possible approximation to an

aperiodic �, especially for integer sequences when rl = �1

(| l | need not match |r | for all Huffman sequence types).

The elements of Huffman sequence HL comprise L signed

values that, under the convolution operator, act as a discrete,

broadband filter. To be delta-like, the bandwidth of H s
L as a

filter has to have a near-constant response over all L spatial
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frequencies in order for equation (1) to hold. Further exam-

ples of integer Huffman sequences and their properties are

given in the supporting information, together with a detailed

description of their Fourier spectra.

Huffman derived the necessary and sufficient criteria to

compute canonical sequences H s
L in terms of a complex

polynomial P(z): in the complex plane, any root/zero zl of P(z)

must lie on a circle of radius either R or 1/R with phase angle

arg(zl) = 2�l /(L � 1). See Huffman (1962) and related work

by Ackroyd (1977) and Ojeda & Tacconi (1994).

A polynomial with L coefficients cl, where
X

cl z l � cL� 1

Y
ðz � zlÞ;

can be represented as a discrete Fourier transform F when

evaluated on the unit circle by setting z = expð2�iq=LÞ, where

the integer q lies in the range 0 � q � (L � 1). Given a set of

roots zl, an inverse Fourier transform F � 1 can thus efficiently

compute and sort the coefficients cl.

Using Huffman’s criteria for roots placement, the qth

Fourier coefficient F½H s
L�q of any canonical Huffman

sequence hence can be calculated from

F H s
L

� �

q
¼ cL� 1

YL� 1

l¼ 1

n
exp

�
2�iq=L

�
� R sl exp

�
2�i ðl � 1Þ=L

�o
;

ð5Þ

where sl 2 {� 1, +1} is any chosen set of signs. While the

elements of H s
L are sensitive to the 2L � 1 choices for sl, each

choice produces an identical canonical autocorrelation

function. How equation (5) adheres to Huffman’s original

construction is explained in the supporting information, as is

the straightforward restriction to real-valued H s
L. By careful

choice of R, the growth of maxðjH s
LjÞ with increasing L [such

as in equation (4)] can be suppressed, yet the values are

generally non-integer. Therefore the dynamic range of H s
L still

increases for larger L.

Huffman sequences that have a compact range of element

values and close-to-zero off-peak aperiodic autocorrelation

elements are particularly suited for X-ray imaging applica-

tions. We call sequences that are optimized to adhere closely

to equation (1) ‘Huffman-like’.

2.2. Encoding X-ray probes with 2D Huffman arrays

A patterned scanning probe based on a 2D Huffman array

H can be constructed from 1D H s sequences using an outer

product *, such that H = H s * H s also obeys the desired

property given in equation (1) (Svalbe et al., 2020). Suppose a

2D X-ray probe has been encoded by a mask defined by H. For

an object of interest O convolved (�� ) with H, a sharp image

of O can be obtained by cross-correlation via the property in

equation (1),

O ’ ½O�� H� �H: ð6Þ

Thus far we have described how to generate 2D Huffman

arrays with the optimal aperiodic autocorrelation property.

The delta-like autocorrelation means that we can robustly

compute a high-resolution image (of arbitrary size due to the

aperiodic probe properties) by scanning a test object with a

broad beam patterned by these arrays. In the context of X-ray

imaging, a beam with a wider footprint is often preferable, to

diffuse the X-ray dose more effectively. However, as shown by

equation (4), the range of array values grows rapidly with

increased array size. The fabrication of masks that are able to

transmit X-rays with a large range of discrete intensity values

(or a wide range of discrete phase shifts in the wavelength) is

intrinsically difficult. Practical construction concerns require

we place strong limits on the value range of transmitted X-ray

intensities (or phase shifts).

Experimentally, a physical attenuation used to moderate

X-ray intensities can only comprise non-negative variations in

intensity. We propose a method to achieve this in the following

section (Section 2.2.1). To be practical from a fabrication point

of view, the mask should also be restricted to providing only a

few different intensities comprising clearly separated uniform

steps. This is achieved by compressing the dynamic range of

Huffman sequences to manageable levels whilst still retaining

their Huffman properties.

Fully compressing the range of signed integer values in

Huffman sequences would produce, as its ultimate limit, a

binary sequence. However, as shown by White et al. (1977), no

real binary sequence can have the canonical aperiodic auto-

correlation property. Complex-valued Huffman sequences can

be designed to have near-unity magnitude, but they all require

multi-valued phase. For this reason, our Huffman-like

sequences (even with integer values constrained to �3) will,

under aperiodic convolution, outperform all binary sequences

(including perfect periodic sequences) of the same length.

The quality metrics used to quantify array performance are

detailed in Section 2.2.2. Having established these metrics, we

then present two different design approaches in Section 2.3 to

ensure that equation (1) is maintained, as closely as is possible,

after compressing the gray-level range of Huffman arrays.

2.2.1. Non-negative 2D X-ray masks to imprint Huffman

arrays

Huffman arrays necessarily comprise signed elements, while

X-ray intensities are non-negative. Huffman arrays can

nonetheless be realized using pairs of absorptive X-ray masks,

provided that the decorrelation method equation (6) is

generalized. We split the signed values of the Huffman-like

array H into two positive-definite parts as ‘Huffman masks’ –

one comprising the positively signed elements, P = max½H; 0�,

and another containing the magnitudes of the negative

elements, N = max[� H, 0], such that

H ¼ P � N: ð7Þ

If a signal ST encodes an object O of interest with a Huffman-

like array via a linear relation such as ST = O�� H, this total

signal can be decomposed as the difference between two

successive measurements Sp and Sn using the Huffman mask

arrays P and N, respectively,

ST ¼ Sp � Sn ¼ O�� P � O�� N ¼ O�� H: ð8Þ
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The desired object signal O can then be de-correlated by

cross-correlating ST with the delta-correlated H.

In our experiment, the X-ray beam, after being shaped by

the array, is to be raster scanned across the object being

imaged. Both P and N masks need to be applied separately.

We arranged each P and N mask in a 2 � 2 block, i.e.

P N

N P

� �

; ð9Þ

that we will denote inline as [P, N /N, P]. This layout permits

the P and N probes to be scanned separately across the object,

along either the horizontal or vertical scan axes. This redun-

dant mask arrangement also provides multiple ways to

combine P and N bucket images to form the bucket image

from any mask H.

Having solved how, in practice, to deal with negative mask

intensities, the next problem is to constrain the number of

intensity levels that each P and N mask transmits. More and

more finely spaced transmission levels impose significantly

tighter demands on mask fabrication. The range of Huffman

mask values can be compressed, but practical truncation or

rounding of the compressed levels rapidly reduces their

essential delta-like autocorrelation property.

We chose to limit the design range of our Huffman-like

arrays to �3. The P and N arrays then have four uniformly

spaced steps [0, 1, 2, 3], where 0 means the lowest and 3 means

the highest transmitted intensity. An intensity range larger

than �3 would prove, in practice, difficult to fabricate for

X-rays. A key aim of this experiment is to keep the broad

beam intensity profile as wide and as uniform as possible to

minimize the rate of energy deposition.

For larger sized arrays, we found that limiting array values

to �2 produced a mostly binary �1 result that cannot capture

the broad central peak of intensities that is typical of classic

integer Huffman sequences. On the other hand, each array

element that has value �3 increases the size of the auto-

correlation peak A0 by 9 (and each �2 value adds increases of

4). In contrast, array values of �1 add just 1 to A0. Sequences

with all values�1 are known to not satisfy equation (1), which

is essential for our imaging context (excluding the special case

of area-weighted binary masks presented in Section 2.3.3).

The relevant metrics used to guide the range-compression

process are described in the next section.

2.2.2. Array delta-correlation quality metrics

Here we present metrics to quantify the desirable proper-

ties of the diffuse probe patterns. All the following metrics

were monitored and simultaneously optimized when

compressing Huffman array element values. The metric defi-

nitions are shown below for sums over the 2D arrays used

here, but apply equally for 1D and nD arrays, where the sums

are taken over all array elements.

Our primary aim is to minimize the adverse effects of the

probe causing local heating or radiation damage to the

scanned object. To achieve this, the diffuse X-ray probe should

transmit close-to-uniform intensities over the entire area of

the mask to maximally spread the dose. This property can be

quantified for an L � L array HL by:

RMS. The root mean square of intensities transmitted by an

array is

RMS ¼
1

L2

X

i

X

j

HLði; jÞ
2

" #1=2

:

RMS values of 1 correspond to the same uniform (positive)

intensity transmitted through each array element.

MAV. The mean absolute value is

MAV ¼
1

L2

X

i

X

j

jHLði; jÞj:

MAV values of 1 (for uniform transmission across the mask)

are preferred.

An array with a strongly compressed range of integer

intensities may also set many array elements to zero, reducing

the RMS and MAV values closer to 1. However, opaque

regions in an X-ray mask do not transmit specimen informa-

tion and so diminish the imaging efficiency. A further useful

quality measure is then:

f z. The fraction f z of zero intensities in the array pattern,

f z ¼ ð1=L2Þ
X

i

X

j

�
�
HLði; jÞ

�
;

where �(�) = 1 when � = 0 and 0 otherwise. Arrays with f z’ 0

(with any zero elements located peripherally rather than

centrally) are preferred. This metric can also be applied to the

(2L � 1) � (2L � 1) autocorrelation array. Then more zeros

are preferred and f z ’ 1.

In this work we use three different measures to quantify

how closely the autocorrelation of each array is delta-like to

satisfy equation (6). Here the array peak autocorrelation value

is A0 and the off-peak autocorrelation values are Ai, j, for

shifts � L � (i, j) � L, for (i, j) not both zero.

M f. The ‘merit factor’ is the square of the autocorrelation

peak value divided by the sum of all squared off-peak auto-

correlation values. Here larger values are preferred, with

M f ¼ A2
0

�X
A2

i; j:

R 0. The ‘peak to side-lobe’ is the ratio of the peak auto-

correlation value to the largest of all the off-peak auto-

correlation absolute values. Larger values are preferred, with

R 0 ¼ A0 =max jAi;jj
� �

:

d F. ‘Spectral flatness’ has several possible definitions, one

being the ratio of the geometric to arithmetic mean of the

Fourier magnitudes (as used in acoustics). Here we use

d F ¼
�

maxðjF ½H�jÞ � minðjF ½H�jÞ
� �

meanðjF ½H�jÞ

as this measure proved to be more sensitive to the extremes of

variation in the magnitude of the Huffman-like array Fourier

transform coefficients jF ½H�j. Values closer to zero are

preferred.
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Well conditioned arrays are preferable since they are more

robust to noise and inversion is a stable process. To measure

how well conditioned the arrays are (especially after range

compression), we use the singular value decomposition (SVD)

of the array, taken under zero-padded aperiodic boundary

conditions, with singular values stored in the set �(HL).

�. The condition number is defined as the ratio of largest

to smallest singular values, i.e.

� ¼ max
�
�ðHLÞ

� �
min

�
�ðHLÞ

�
:

Note that � � 1 and values closer to 1 are preferred.

The metrics corresponding to four 11 � 11 examples are

presented in Table 1. These demonstrate that, under aperiodic

convolution, Huffman arrays are indeed very strongly delta-

like. This remains true for their Huffman-like versions, even

after their integer element values have been compressed

(from �36) to a more practical range (�3). In contrast, the

Barker binary array shows poorer autocorrelation metrics

relative to the Huffman-like array, as does the Legendre

binary ‘perfect’ array (the latter being designed to excel in the

periodic domain). The autocorrelation metric values R 0, M f

generally increase with array size (as more element values are

added); however, it becomes more difficult to keep d F, the

Fourier flatness metric, closer to zero.

2.3. Compressing Huffman arrays as practical masks to

encode diffuse probes

The dynamic range of Huffman array elements can, to some

extent, be controlled by the choice of the chosen phase

distribution. Similarly the radius and sign choices [R and sl,

respectively, in equation (5)] can reduce extrema in Huffman-

like arrays. To improve upon such initial choices, systematic

procedures are developed here to further compress Huffman

arrays while optimizing the metrics of Section 2.2.2. We refer

to compressed integer-valued Huffman element values as

Huffman-like arrays having a small range of (signed) integer

image gray levels.

2.3.1. Iterative optimization of compressed Huffman array

element values

For integer Huffman sequences, the range of values usually

grows with length, as given by equation (4) for the example of

the Lucas/Fibonacci sequences. Recall that for H31 the inte-

gers range over �754 and that the value range for a 2D array

is the square of the 1D range. For practical mask fabrication,

where constructing as few levels as possible is preferred,

strong range compression is mandated, especially for arrays

with side-lengths L > 7.

Scaling each Huffman element value by the same constant

preserves all autocorrelation metrics. The non-linear opera-

tion of integer rounding to enact range-compression on the

other hand alters the otherwise flat power spectrum, which can

in turn degrade all correlation metrics. To counter this, we

iteratively optimize the metrics of Section 2 by initially down-

scaling the Huffman array such that the smallest element

values retain unit-magnitude (rather than rounding such

element values to zero). All element values are scaled down

by a real number v (by no more than a factor of two) in fine

steps while the metrics of Section 2.1 are monitored after

integer rounding. When an optimal value of v is determined,

‘dithering’ is used by adding an L � L array of zero-mean

white noise, with maximum magnitude less than 1/2. The

Section 2 metrics are monitored after integer rounding, again

to find an optimal random perturbation. The process of down-

scaling and optimizing arrays is iterated until the desired

dynamic range (of �3) is reached.

The sequence compression process is driven by monitoring

for continual improvement in the metrics R 0, Mf and d F,

usually in that order of priority (as randomly structured

sequences can be spectrally flat). When conflict in metric gains

occurs, such as R 0 decreasing while Mf improves, the

compression step size is reduced and metric d F is given more

priority.

The final optimization step randomly cycles through each

array value (for example, choosing those array elements with

value � 2) and perturbs a small random sample of those

elements by changes of �1, again monitoring for changes in

the Section 2 metrics to fine-tune the array.

After random perturbation of 2D arrays, transpose

symmetry is restored by taking (and rounding) the mean of the

array and its transpose after each optimization step. However,

while our preference is to preserve this symmetry, it is possible

that the transpose operation produces an array with an

inferior set of metrics. In this case the asymmetric array is

retained.
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Table 1
Example metrics for four 11 � 11 arrays.

The first 2D array is built from the 1D integer Huffman sequence H11. The second array, H c
11, is a compressed integer range Huffman-like version built from the

first array. The third is a 2D B11 array, built from a length 11 binary Barker sequence using an outer product. Barker sequences have unit-magnitude integer

elements (i.e. they are ‘binary’), with aperiodic auto-correlation values all�1. The longest known Barker sequence has 13 elements. Infinite families of Barker-like
sequences with merit factors M f > 6.34 can be constructed (Borwein et al., 2004). Recent stochastic algorithms have been designed to discover and optimize new
such sequences (Bošković et al., 2017; Bošković & Brest, 2024). The fourth is L11, built from the length 11 binary periodic ‘perfect’ Legendre sequence (Golay,
1983; Hoholdt & Jensen, 1988; Petersen et al., 2024), circularly shifted to maximize the aperiodic metrics R 0 and M f.

Type Range RMS MAV f z M f R 0 d F �

H11 �36 11.18 7.94 0/121 3782 123.0 0.033 1.02
H c

11 �3 1.52 1.30 11/121 18.24 35.13 0.635 1.31
B11 �1 1.00 1.00 0/121 5.81 11.00 1.26 2.00
L11 �1 0.91 0.83 21/121 2.55 5.00 2.09 4.49



Whilst outer products of a canonical Huffman sequence of

length L are suitable for building small L � L arrays, for

longer lengths (i.e. L > 100), compression of very large

dynamic ranges [as given by equation (4)] can yield erratic

noise-like sequences that are difficult to optimize. Airy func-

tions can instead be used as flatter-ranged impulse-like

sequences, or ‘chirps’. Portions of these 1D chirps are used to

construct larger Huffman-like 2D arrays via an outer-product

(an example of a range-compressed 120 � 120 array is given in

the supporting information).

2.3.2. Hybrid Monte Carlo optimization of Huffman array

element values

Bernasconi (1987) showed that maximizing the merit factor

Mf of binary sequences is akin to minimizing the energy of

spins in a 1D Ising model. Bernasconi’s 1D Ising approach for

constructing Barker-like binary sequences (Borwein et al.,

2004) (for example, B11 as given earlier) using Metropolis–

Hasting Monte Carlo simulations (Bernasconi, 1987) needs to

be generalized here to construct integer-valued arrays with

autocorrelation adhering to equation (6).

To implement Markov steps, with reference to equation (5),

we choose a starting radius R to define an initial Huffman

sequence, and a random set of signs {s1, s2, . . . , sL� 1} is fixed. A

sign sc is then randomly chosen and randomly incremented/

decremented by a small (sub-integer) random step size,

sampling from a uniform distribution, such that the magni-

tudes of the complex roots are now defined by the non-

canonical set fR s1 ;R s2 ; . . . ;R sc ; . . . R sL� 1g (where |sc| now

differs from unity). After quantizing the associated Huffman

sequence elements (or array for 2D), this random non-integer

sc change is then accepted outright if the merit factor improves

or conditionally accepted according to an exponential distri-

bution of the weighted square difference.

Our method for iteratively evolving the complex root radii

was tested here for Barker-like unit-magnitude 1D sequences,

while also mimicking simulated annealing by linearly varying

the square-difference weight for the change in merit factor, in

addition to the step size (to optimize the ratio of accept/reject

moves). All known Barker sequences were efficiently found

from these simulations in this work, in addition to all Barker-

like sequences with largest possible merit factor (tested up to

length 20).

This generalization of Bernasconi’s energy-based Monte

Carlo algorithm (Bernasconi, 1987) only optimizes the merit

factor M f, yet we need to optimize all metrics of Section 2.2.2

in order to achieve the desired property in equation (1) for

Huffman-like arrays. With further adaption here, hybrid

reverse Monte Carlo (McGreevy & Pusztai, 1988; Opletal et

al., 2002) (HRMC) is ideally suited for this purpose. While

originally designed to minimize energy and maximize consis-

tency with experimental diffraction measurements in atomic

systems, including larger scale porosity constraints (Petersen

et al., 2007; Opletal et al., 2013), HRMC optimization can be

used in radically different contexts [cf. a recent urban design

study of flooding (Balaian et al., 2024)].

For such optimization of Huffman arrays in 2D, the quan-

tization we have chosen here is

H2Dquant ¼ dðH � hHiÞ � ðH � hHiÞ g=H2
mc; ð10Þ

where hHi is the mean and Hm = max|H| is the maximum of

the statistically evolving 1D sequence, and g is the maximum

gray value magnitude.

In this work, the connection to HRMC is quite natural if the

Fourier spectrum jF ½H2Dquant�j
2 is viewed as a diffraction

pattern, which ought to be constant across all spatial

frequencies to ensure that d F of Section 2.2.2 is optimized. We

have thereby modified the HRMC algorithm to incorporate all

of the metrics Mf, R 0, f z, d F etc. of Section 2.2.2, with the

exception of � due to the significant computational complexity

of SVD. The adapted HRMC algorithm here minimizes a �2

computed from the equation (10) array, relative to desired

target values of all metrics.

A trial move of a randomly chosen radius power’s fractional

sign sc is accepted if �2 goes down, otherwise a random

number r on [0, 1] is chosen and compared with

exp½� ð�2
trial � �

2
previousÞ�=ðkTÞ for conditional acceptance/

rejection if r is smaller/larger, respectively, where kT is a

global fictitious temperature. This differs slightly from

conventional HRMC, whereby the temperature pertains only

to the energy term. The purpose of the temperature here

is to allow for simpler ‘simulated annealing’ optimizations,

whereby all weighting factors can be gradually reduced (as

done individually in conventional HRMC) to improve

numerical efficiency. Similarly, the random step size of the

randomly walked complex polynomial zero radii in equation

(5) can be weighted by kT here to maintain an efficient accept/

reject ratio for Monte Carlo trials. Further computational

efficiency is achieved by gradually compressing the dynamic

range g in equation (10) (similar to the iterative methods in

Section 2.3.1).

Fig. 1(a) shows an example Monte Carlo step, whereby the

complex zeros of P(z) are initiated with a configuration of

radius R or 1/R, pertaining to a canonical 1D Huffman

sequence (the outer product of which yields a canonical 2D

Huffman array).

Associated with the random trial move depicted in Fig. 1(a),

Fig. 1(b) shows a possible increase in �2, as a function of

weighted Mf and d F values, for a simplified HRMC simulation

where only these autocorrelation metrics are to be optimized.

The target values of M f and d F reside in the apparent deep

global minimum in Fig. 1(b) of this example. For large ficti-

tious temperature kT, such a small random increase in �2 will

likely be conditionally accepted, allowing the �2 error to

evolve in the space of the autocorrelation metrics, without

becoming trapped in local minima. After sufficient sampling of

this metric space, kT can be gradually reduced to efficiently

optimize the quantized 2D Huffman-like array and ideally

reach the global minimum. At the end of the annealing, the

original P(z) zeros have randomly perturbed radii, different

from the {R, 1/R} starting configuration, and the corre-
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sponding 1D real-valued sequence defining the 2D integer-

valued Huffman-like array will no longer be canonical.

Further details appear in the supporting information, in

addition to a simplified HRMC simulation example for

creating a 2D Huffman-like array.

2.3.3. Reformatting Huffman arrays as binary area-weighted

masks

We forecast that the practical fabrication of masks with

microscopic feature size and multiple uniform steps of trans-

mitted X-ray intensity would be technically challenging. As a

precautionary measure, we designed equivalent Huffman-like

masks that had binary intensity transmission. These masks

emulate multiple intensity levels by depositing absorbing

material to cover fixed fractions of the pixel area.

For diffuse X-ray probes defined by Huffman-like array

masks, one can sacrifice the spatial resolution of array

elements in order to spread a given integer value across an

effective ‘sub-pixel’ (or ‘sub-voxel’ for nD arrays), which we

will refer to as a sub-element array. We have implemented an

entirely binary approach here which preserves the auto-

correlation behavior of the range-compressed and optimized

Huffman-like arrays of Section 2.3.1 and Section 2.3.2.

For a given element of P or N in Section 2.2.1, the non-

negative integer value can be decomposed as a binarized sub-

element array Se comprising values either zero or unity, which

we assume to be square for simplicity. We refer to a corre-

lating/convolving sub-element array as Sec and a given de-

correlating array as Sed.

To preserve the cross-correlation of H = P � N, the inner

product between any pair of sub-element arrays Sec, Sed must

match the products between pairs of elements of H. Denoting

a sequence bs of zeros and ones, a simple choice is the outer

product Sec = bc1T and Sed = 1bT
d , where 1 is a sequence of

unit-valued elements (an identity array for generalization

to binarized sub-voxels). In other words, Sed is geometrically

orthogonal to Sec, such that their inner product is simply the

number of ones in bc times that in bd. For arrays with trans-

pose symmetry, the encoding and decorrelation scheme of

equation (8) remains valid. A more general scheme that need

not assume this symmetry is described in the supporting

information.

The aperiodic auto-correlations H � H and (Bp � Bn) �

(Bp � Bn) are exactly the same when the latter is sampled over

element shifts, with sub-element shifts deemed a form of

oversampling. To ensure precise integral sub-divisions, the

binarized arrays Bp and Bn need be ðmax jHjÞn times larger

than H, where n is the number of dimensions. For applications

where the array size is a limiting factor, this increase empha-

sizes another reason why it is important to control the dynamic

range of Huffman gray levels, maxðjHjÞ.

When choosing how to subdivide binarized sub-element

arrays, it is important to avoid correlated placements that

could impair the delta-like performance of the entire Huffman

array for sub-element shifts. As such, we have implemented

random partitioning of any sub-element array into opaque and

transmission sub-elements (i.e. b1, b2 generated randomly).

However this randomized sub-structure (or many other binary

placements) can be quite detailed, which implies impractical

synthesis for physical manufacturing of entire Bp and Bn

arrays. For the X-ray masks, we have hence implemented an

alternative blocked-design, whereby sub-elements of equal

value are grouped together as separate blocks of either zero or

one, the binary ordering of which is randomly chosen within

the sub-element array. Explicit numeric examples of 2D sub-

element arrays and a binarized Huffman-like array are

visualized in the supporting information.

3. X-ray scanning probe mask fabrication

Given that we now have methods to design masks as diffuse

probes with delta-like autocorrelation, we would like to

evaluate the concept experimentally with X-rays. We designed

Huffman-like arrays to be constructed as physical X-ray

attenuation masks with array sizes ranging from 11 � 11 to

86 � 86 and seven transmitted intensity values (i.e. integer

values ranging from � 3 to +3 where 3 indicates transmission

as close to 100% as physically achievable). Since negative

transmission cannot be achieved, the values in each array were

separated into positive (P) and negative (N) masks (as

described in Section 2.2.1) each with four equally spaced

transmitted intensities.

The physical masks were fabricated on silica (SiO2) wafers.

This was imprinted with multiple layers of tantalum (Ta)

through a combination of lithography and etching techniques.

Several instances of each mask design were fabricated with

array element (or ‘pixel’) sizes in the mask patterns varying

from 8 to 20 mm. The masks fabricated with four intensity

levels will be referred to as quaternary masks. Binary versions

of these masks were also designed (as described in Section 4.1)

with each mask ‘pixel’ divided into 3 � 3 subpixels. The masks
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Figure 1
Hybrid reverse Monte Carlo of a 2D Huffman-like array, simplified to the
case where only the merit factor M f and spectral flatness d F are to be
optimized. A randomly chosen zero of the iteratively evolving 1D
Huffman sequence defined by Huffman’s P(z) polynomial is moved in (a)
by a small distance along a randomly chosen radial direction in the
complex plane, as shown by the arrow. The corresponding conjugated
zero (open circle vertically below in the bottom half plane) is accordingly
moved in a mirrored fashion to ensure that the Huffman-like sequence
remains real-valued. The curved arrow in (b) shows the change in the
weighted 2D array autocorrelation metrics induced by the Markov event
in (a), whereby the sum squared error �2 slightly increases.
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fabricated with two intensity levels will be referred to as

binary masks.

Binary masks were fabricated on 2 cm � 2 cm SiO2 wafers,

which were coated with a 5 mm-thick Ta layer. 5 mm was,

approximately, the maximum achievable film thickness using

the sputtering technique, and Ta had relatively low X-ray

transmissions (among the available materials) over the

selected photon energies. More information is provided in the

supporting information. An example fabricated wafer is

depicted in Fig. 2(a). It includes 12 masks with four sizes (i.e.

11 � 11, 15 � 15, 32 � 32 and 43 � 43) and three different

resolutions (i.e. 8 mm, 10 mm and 15 mm array subpixel sizes).

Optical images of the [P, N /N, P] masks for the 32 � 32

arrays with 8 mm pixel resolution, the 11 � 11 mask with

15 mm resolution and the 15 � 15 mask with 10 mm resolution

are illustrated in Figs. 2(b)–2(d). Note that the streak artifacts

in the optical images are residue from the photoresist; these

streaks are near-transparent under X-rays and do not affect

the functionality of the masks.

The fabrication process for the quaternary masks was more

complex, although the same very large scale integration

(VLSI) techniques were utilized. Quaternary Huffman-like

masks require four levels {0, 1, 2, 3} with each level transmit-

ting X-rays in steps of uniformly increasing intensity. Pixels at

each level of the quaternary mask can be fabricated with a

specific uniform thickness of Ta to provide the required level

of X-ray transmission. Given the maximum achievable thick-

ness of approximately 5 mm using the sputtering technique (as

discussed in the supporting information), we can estimate the minimum X-ray transmission through our mask as approxi-

mately 17.5% at 12.4 keV; this is the transmission through

level 0. 12.4 keV is just above the L absorption edges of Ta,

providing maximum attenuation of Ta while still allowing

transmission through silica. Requiring X-ray transmission, T,

the thickness, t, of each level can be measured as t = � ln(T)/�,

where � is the linear attenuation coefficient [0.3605 mm� 1 for

Ta at 12.4 keV (Berger et al., 2010)]. The X-ray transmission

and Ta thickness for each level is shown in Table 2.

Levels 1, 2 and 3 were fabricated through three lithography

steps (one for each level) followed by three etching steps.

Different etching times were required to achieve different

thicknesses (see the supporting information for more detail).

We fabricated 15 quaternary masks on a 4-inch SiO2 wafer.

The masks were fabricated with five array sizes (11 � 11,

15 � 15, 32 � 32, 43 � 43 and 86 � 86) and three resolutions

(10 mm, 15 mm and 20 mm pixel sizes). An optical image of the

fabricated 15 � 15 quaternary mask is depicted in Fig. 3(b).

The four Ta levels are indicated in the image. Note that level 0

(L0) is the substrate, which was coated with approximately

5 mm Ta.

4. Validation of mask fabrication

Before employing the masks in diffuse scanning probe

experiments, the masks were examined at the Micro-

Computed Tomography (MCT) beamline at the Australian

Synchrotron. We validated the quality of the mask fabrication

by imaging the masks using a 2D pixelated X-ray detector
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Figure 2
(a) One of the fabricated 2 cm � 2 cm substrates containing 12 binary
Huffman-like masks. Optical images of (b) a PN pair of the fabricated
32 � 32 binary Huffman-like mask with 8 mm resolution, (c) a fabricated
11 � 11 binary Huffman-like mask with 15 mm resolution, and (d) a
fabricated 15 � 15 binary Huffman-like mask with 10 mm resolution. The
scale bar shown in (b) also applies for the images (c) and (d).

Table 2
X-ray transmissions and Ta thicknesses for each level of the quaternary
Huffman-like masks.

Layers/levels
X-ray transmission
at 12.4 keV Ta thickness

0 17.5% 4.8 mm

1 45% 2.2 mm
2 72.5% 0.88 mm
3 100% 0

Figure 3
(a) Design and (b) optical image of the fabricated 15 � 15 quaternary
Huffman-like mask. L0, L1, L2 and L3 represent level 0, 1, 2 and 3 of the
mask, respectively.

http://doi.org/10.1107/S1600577525002127
http://doi.org/10.1107/S1600577525002127
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using 20 keV and 12.4 keV X-ray illumination. Based on the

transmitted intensity images, we assessed the faithfulness of

the mask structure and uniformity of transmission levels

compared with the ideal array designs.

4.1. Binary masks

An example of the binary mask transmission pattern for the

15 � 15 pixel P and N regions with 15 mm subpixel pitch is

shown in Figs. 4(a) and 4(b). The ‘reassembled’ Huffman-like

array, calculated as P � N, is presented in Fig. 4(c). The

histogram of measured X-ray intensities transmitted in this

reassembled array is presented in Fig. 4(d). Here the X-ray

beam energy was 20 keV with a 3% bandpass.

4.2. Quaternary masks

Images were acquired of the transmission of X-rays through

the [P, N /N, P] mask arrangement for the 11 � 11 quaternary

mask with 10 mm and 20 mm pixels, for the 15 � 15 quaternary

mask with 10 mm and 20 mm pixels and for the 32 � 32 mask

with 20 mm pixels. Here the X-ray beam energy was 12.4 keV

with 1% bandpass to reduce variation in the energy-depen-

dent transmission.

As an example, the 32 � 32 Huffman-like array is presented

in Fig. 5(a). The reassembled array generated from the P and

N X-ray images of the 32 � 32 quaternary mask with 20 mm

pixel size is presented in Fig. 5(b) for comparison. The mask

appears to produce a faithful representation of the ideal array.

The histogram of this reassembled Huffman-like array is

presented in Fig. 5(c). That histogram closely follows the

spacing and relative intensities of the histogram of the ideal

array, shown as the seven narrow peaks scaled and overlaid on

the plot of measured X-ray intensities. The higher frequency

observed around the central ‘zero’ intensity peak results from

the entries generated along the edges of pixels where the

measured images of the fabricated P and N meet and have

their intensities subtracted to form the P � N image (hence

creating extra zero pixels).

Fig. 6 shows two example ‘raw’ X-ray transmission images

of the quaternary masks for a 15 � 15 array at two different

pixel sizes (10 mm and 20 mm). The mask image data were

acquired using a long exposure (or were summed over

multiple repeated exposures) to reduce noise. The re-

assembled Huffman-like arrays using these masks are

presented in Figs. 7(a) and 7(b) to be compared with the ideal

array in Fig. 7(c). Strong agreement between each original and

fabricated mask is observed. Ta thickness here was changed by
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Figure 4
Detector images of the (a) positive (P) and (b) negative (N) 15 � 15 pixel
Huffman-like mask generated using 3 � 3 binary pixels of pitch 15 mm.
(c) The signed mask, re-generated as P � N. (d) Histogram of image (c).
The three peaks show the distribution of the measured X-ray illumination
intensities that passed through the � 1, 0, +1 sections of the fabricated
mask, respectively. The vertical axis in (d) is counts; the horizontal axis
displays the relative signal intensity.

Figure 5
(a) Image of an ideal 32 � 32 � 3 gray-level Huffman-like mask. (b) Image of X-ray transmission through the fabricated mask with 20 mm pixel size,
presented as P � N. (c) Histogram of graylevels in the ideal mask, image (a) (shown in orange), registered with the histogram of (b) the intensity of the
X-rays transmitted through the fabricated mask (shown in blue). Both image histograms show seven closely matched peaks, representing the relative
X-ray transmission intensities for mask levels � 3, � 2, � 1, 0, +1, +2, +3. The vertical scale is counts; the horizontal axis is relative intensity.



three successive depositions and etchings, resulting in some

small variations around the pixel edges. These variations are

much less evident for the 20 mm pixel fabrication than for the

10 mm pixel fabrication.

5. Experimental scanning probe method

5.1. Experiment set-up

The masks were employed to pattern diffuse scanning

probes at the MCT beamline at the Australian Synchrotron. A

monochromatic X-ray beam with energy of 20 keV was first

used to analyze the performance of the binary masks. Note

that the binary masks can be used across a range of photon

energies, since they contain only opaque and transparent

parts. In contrast, the quaternary masks require each level to

transmit a specific percentage of the incident beam. The

thicknesses of Ta to give each transmission fraction were

optimized for a single photon energy (12.4 keV in this case).

A schematic of the experimental setup is shown in Fig. 8.

The mask was placed approximately 262 mm from the

detector, and the sample was located approximately 149 mm

in front of the mask. The sample was mounted on a moving

stage to allow the test object to be transversely scanned over

the selected mask. A 2D pixelated detector was utilized

throughout the entire process. The resulting images were then

processed digitally into four individual sensors (or buckets),

one for each quadrant of the [P, N /N, P] arrays. As each scan

proceeded, these bucket values were collected into bucket

arrays for image reconstruction, as described in Section 5.3.

5.2. Test objects

The performance of the Huffman-like probes was examined

with a range of test objects specifically designed and fabricated

for this purpose. We started with simple pinholes and

progressed to more complex objects. Scanning a pinhole test

object is of interest as the resulting bucket image should

reproduce an exact image of the discretely shaped X-ray beam

intensity. This image is obtained with very weak illumination,

as the entire bucket receives information from just one mask

pixel at each scan point. The pinhole imaging results test the

resilience of broad Huffman-like array imaging under very low

signal-to-noise conditions.

Four pinholes, with diameters of 5 mm, 10 mm, 15 mm and

20 mm, were fabricated to be imaged using different mask

sizes. Optical images of two fabricated pinholes are illustrated

in Fig. 9(a). The material and fabrication process were the

same as those used for the binary Huffman-like mask

explained in Section 3. Utilizing the same procedure, multiple

binary objects of different sizes were also fabricated. An

optical image of a binary test object is shown in Fig. 9(b). We

also fabricated gray-level objects using the four-level fabri-

cation method described in Section 3. Fig. 9(c) shows an

example of a gray-level test object, where each quadrant of the

circle has a unique, uniform thickness of Ta.
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Figure 6
(a) Image of X-ray transmission through the [P, N / N, P] fabricated
15 � 15 gray-level masks with (a) 10 mm pixels and (b) 20 mm pixels.

Figure 7
The 15 � 15 gray-level masks formed from Fig. 6 as P � N with (a) 10 mm pixels and (b) 20 mm pixels. (c) The ideal mask for comparison.

Figure 8
Experimental geometry on the MCT beamline at the Australian
Synchrotron. The mask, sample translation and detector planes define the
coordinates (x, y), while the beam propagates in the +z direction.



5.3. Experimental procedure

The object needs to be over-scanned on each edge by at

least the full size of the mask to obtain valid bucket signals

able to accurately deconvolve up to the object edges. Thus the

acquisition time for 2D images and the size of the required

bucket data scales with the object size, desired spatial reso-

lution and the chosen array size of the mask.

We first scanned different pinholes (one at a time) over a

selection of binary masks. As described above, the number of

images collected for each scan depended on the array size of

the masks. For instance, 31 � 31 images were collected for a

15 � 15 array mask to cover the entire [P, N /N, P] mask. The

exposure time was 0.03 s for each position in these scans. In

addition to the scans, we collected ten flat-field (FF) and ten

dark-field (DF) images, as well as ten mask-field (MF) images

(i.e. images of the mask only). Utilizing the binary masks, we

also scanned other test objects including a bee and a gray-level

circle, as shown in Figs. 9(b) and 9(c), respectively.

After scanning multiple objects with binary masks using

20 keV X-rays, we changed the photon energy to 12.4 keV and

repeated similar experiments using the quaternary masks. The

exposure time was increased to 0.2 s to improve the signal-to-

noise ratio. We first scanned a pinhole over several 11 � 11

quaternary masks and then progressed to 15 � 15 and 32 � 32

masks. In addition to the pinholes, a few binary and gray-level

objects were scanned using 11 � 11 and 15 � 15 quaternary

masks. Again, ten images of the FF, DF and MF were also

collected for each scan.

Once the sets of 2D pixelated images were collected for

each scan, a series of postprocessing analysis was performed to

create four bucket images for each scan:

(i) Average the ten FF and ten DF images.

(ii) Subtract the averaged DF image from both the FF and

scanned images.

(iii) Normalize the scanned images by dividing by the FF

image.

(iv) Identify the coordinates of each mask quadrant [see

colored squares in the example radiograph in Fig. 10(a)].

(v) Integrate the measured intensities over each quadrant

into separate bucket images BN and BP [depicted for an

example raw experimental radiograph in Fig. 10(a)].

(vi) Combine the aligned and normalized P and N bucket

images as BP � BN to give the result of scanning the object

with a Huffman-like array [depicted for an example in

Fig. 10(b)].

(vii) Deconvolve the combined bucket image using the ideal

Huffman-like array to reconstruct an image of the scanned

sample.

6. Experimental results: reconstructed X-ray images

Here we present the results obtained using diffuse X-ray

scanning probes shaped by our masks that are based on
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Figure 9
Optical images of some of the fabricated test objects: (a) 5 mm and 10 mm
pinholes, (b) a binary object (bee image) and (c) disk with four quadrants,
each quadrant having a different uniform thickness (L3 < L2 < L1 < L0).

Figure 10
An example of the process to generate bucket images. A raw experimental radiograph is shown on the left in (a) with the four mask quadrants identified
using colored squares. The center of the mask region is scanned around in the orange square. At each position integrated pixel values in each quadrant
are added to the respective pixels of the bucket images, fB1

P, B1
N , B2

N , B2
Pg, for each quadrant on the right. Note the P and N masks individually produce

bucket values that form a low-pass filtered image of the object being scanned. The positive, fB1
P;B2

Pg, and negative, fB1
N;B2

Ng, bucket image pairs are
combined and subtracted to form the diffuse-probe scanned image shown in (b). This image is deconvolved to produce the result in Fig. 13(a-iii).



Huffman-like arrays. The test object images are reconstructed

from the scanned data (or bucket signals) obtained using both

binary and quaternary fabricated masks of different sizes and

spatial resolutions. The scans are performed by raster scanning

the objects across the stationary patterned illumination probe.

Results for the 15 � 15 binary mask and 32 � 32 quaternary

mask are shown in the following sections. In both cases, the

first object is a pinhole aperture with dimensions similar to

that of the mask pixels. The pinhole test also demonstrates the

resolution of the process. Following that, simple binary objects

were scanned, and finally multilevel (gray) objects were

imaged. Note that there is no difference in computing the

reconstructed images, for each case.

6.1. Pinhole images: binary mask

The 15 � 15 binary mask, in [P, N /N, P] form, has P and N

masks with 45 � 45 subpixels (due to the 3 � 3 subpixel area-

weighting used to accommodate the gray levels [0, 1, 2, 3]).

The binary mask, fabricated with 8 mm subpixels, was used to

illuminate a 20 mm pinhole. This pinhole almost covers the

physical 24 mm width of the full-size mask pixel, i.e. 3 � 3

subpixels. The pinhole was 2D raster scanned, using 24 mm

steps, to produce a 15 � 15 bucket image. Fig. 11(a) shows the

ideal P and N integer arrays and, below, the mean of the two P

and two N X-ray bucket images. On the left of Fig. 11(b) is the

ideal Huffman-like �3 valued array for comparison with the

reassembled X-ray bucket image, i.e. P � N, shown on the

right. The X-ray pinhole mask image clearly resembles the

original Huffman-like array. The surface plot in Fig. 11(c)

shows the reassembled Huffman-like image cross-correlated

with the ideal array.

The binary masks with 8 mm subpixels were fabricated with

an 8 mm gap separating the P and N boundaries of the [P, N /

N, P] layout. The 24 mm steps used to scan the pinhole were

thus spatially misaligned by a third of a pixel after stepping

across the P and N boundary gaps. The raster scan axis was

also rotated by about a degree relative to the mask axis,

meaning the scan and mask locations had some shear. The

end-points of the raster scan were terminated nearly a pixel

short of the mask boundaries, as evident in Fig. 11. Despite the

imaging misalignment and the low signal-to-noise ratio, the

correlation of this diffuse Huffman-like scanned image with

the original array proved to be delta-like, reconstructing the

pinhole faithfully [see Fig. 11(c)].

6.2. Pinhole images: quaternary mask

The 32 � 32 quaternary mask was fabricated with 20 mm

subpixels. This mask was used to illuminate a 20 mm pinhole

with a beam of 12.4 keV X-rays. The pinhole was 2D raster

scanned in 20 mm steps to produce 32 � 32 P and N bucket

images. The mean of the two resulting P and mean of the two

N X-ray bucket image measurements are shown in Figs. 12(a)

and 12(b), respectively. These bucket images were re-

assembled, as P � N, to recover the Huffman-like scanning

probe image, as shown in Fig. 12(d). The X-ray Huffman-like

probe image very closely resembles the ideal Huffman-like

array depicted in Fig. 12(c).

The cross-correlation of the 32 � 32 Huffman-like X-ray

probe image with the ideal array was delta-like, thereby

reconstructing the pinhole well. The values in the area around

the peak are given in Table 3. This result confirms that the

broad X-ray probe (with a footprint spread over an area of
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Figure 11
Pinhole images of the binary 15 � 15 mask. (a) Top row: original P and N integer arrays, black = 0, white = 3. Bottom row: X-ray bucket images obtained
for the P and N mask. (b) Left: original Huffman-like array, black = � 3, white = +3. Right: reconstructed X-ray pinhole image of the 15 � 15 Huffman-
like mask. (c) A surface plot of the cross-correlation of the original integer array [left image of (b)] with the reconstructed X-ray-image of the mask [right
image of (b)]. The correlation is delta-like. The vertical scale has been normalized to set the maximum of the central peak to have value 1000.



1024 pixels) is indeed able to be sharply focused to a pixel-like

point when deconvolved.

6.3. Binary and gray-level object images: binary mask

Fig. 13(a-i) shows, in the highlighted region, an X-ray

radiograph of a binary object (a ‘bee’) to give context of the

surrounding region that is also included to some degree in the

scan. Fig. 13(a-ii) shows this region rescaled and binned to

the same FOV and pixel size as the reconstructed image in

Fig. 13(a-iii). This last image is the Huffman-like X-ray probe

image obtained from the 15 � 15 binary mask (with 15 mm

pixels) scanned over this object, after being deconvolved by

the ideal Huffman-like array. The radiograph in Fig. 13(a-ii)

and reconstructed diffuse scanning-probe image in Fig. 13(a-

iii) show close agreement.

Fig. 13(b-i) shows an X-ray radiograph of a circular disk,

printed with subquadrants of different but uniform Ta thick-

ness to provide a (gray-level) range of transmitted intensities.

Fig. 13(b-ii) shows this region rescaled and binned to the same

FOV and pixel size as the reconstructed image in Fig. 13(b-iii).

Fig. 13(b-iii) was obtained after deconvolving the P � N

Huffman-like X-ray probe image obtained by scanning the

15 � 15 binary mask (with 15 mm subpixels) over this ‘gray’

disk. As for the binary mask results, the radiograph in

Fig. 13(b-ii) and the reconstructed diffuse scanning-probe

image in Fig. 13(b-iii) show close agreement.

research papers

14 of 18 Alaleh Aminzadeh et al. � High-resolution X-ray scanning J. Synchrotron Rad. (2025). 32

Figure 12
Pinhole images of the 32 � 32 quaternary mask. (a) Mean X-ray bucket image obtained for the P mask. (b) Mean bucket image for the N mask.
(c) Original Huffman-like array, black = � 3, white = +3. (d) Reconstructed X-ray pinhole image of the 32 � 32 Huffman-like mask.

Figure 13
(a-i) Binary image of a bee, and (b-i) multiple gray-level circle with quadrants of different intensities. (iii) Recovered images compared with (ii) the
expected images using a quaternary 15 � 15 Huffman like array created using 3 � 3 binary subpixels with pitch 15 mm.

Table 3
Values for the 5 � 5 area around the central peak of the cross-correlation
of the 32 � 32 mask X-ray pinhole image with the ideal Huffman-like
array (values are given as the percentage of the central peak shown in
bold).

� 0.4 � 1.6 � 4.9 � 2.0 0.8

0.0 6.6 5.9 0.8 0.2
� 3.1 22.6 100.0 19.0 � 0.4
� 0.4 13.2 23.8 0.2 0.1

2.0 4.5 1.1 1.6 0.6



6.4. Binary and gray-level object images: quaternary mask

Fig. 14(a-i) shows, in the highlighted region, a projected

X-ray image of a binary object (a ‘bee’). Fig. 14(a-ii) shows this

region rescaled and binned to the same FOV and pixel size

as the reconstructed image in Fig. 14(a-iii). The image in

Fig. 14(a-iii) shows the P � N Huffman-like X-ray probe

image obtained from the 15 � 15 mask (with 10 mm pixels)

scanned over this object, after being deconvolved by the ideal

Huffman-like array.

Fig. 14(b-i) shows an X-ray radiograph of another printed

(‘bee’) object, this time combined with several layers of

aluminium folded into strips across the bee body to provide a

range of object thicknesses. Fig. 14(b-ii) shows the highlighted

region rescaled and binned to the same FOV and pixel size

as the reconstructed image in Fig. 14(b-iii). The image in

Fig. 14(b-iii) was obtained from the P � N Huffman-like X-ray

probe image obtained by scanning the 15 � 15 mask (with

20 mm pixels) over this ‘gray’ object. The radiographs in

Figs. 14(a-ii) and 14(b-ii) compare well with the Huffman-like

mask reconstructed images in Figs. 14(a-iii) and 14(b-iii).

7. Discussion and future work

The patterns used here for diffuse X-ray scanning probes

based on Huffman-like arrays have been shown to have the

ability to produce high-resolution images. In this case the

resolution is dictated by the scanning step size and mask pixel

size rather than the overall probe beam dimensions. The

tailored size and shape of these beams serve as a means to

distribute the equivalent energy of a sharp probe over a much

wider footprint. A broad, diffuse incident beam lessens the

potential radiation damage to the specimen and reduces

thermal/structural changes.

We note that larger masks can spread the same energy of an

equivalent beam much more thinly. However, they are harder

to design while also retaining a small range of gray levels and

require more complicated structures. Also, masks with a large

footprint require objects to be overscanned by at least the

mask width outside the object edges to accurately recover

internal detail out to the object edges. We observed that

fabrication of masks with pixels of larger size (here 20 mm

pixels rather than 10 mm) was shown to provide more uniform

levels of transmission with more regular and sharply defined

pixel edges.

Huffman-like masks, as differential filters, are signed

operators. Masks that project positive beam intensities need to

be split into positive, P, and negative, N, masks. The P and N

masks are scanned individually over test objects, with P and N

bucket values being collected individually (or as a group

comprising several mask regions, e.g. [P, N /N, P]). This

duplication of scanning in both row and column directions

increases the total imaging time, including the need to

over-scan the areas around the object being imaged.

However, scanning with the [P, N /N, P] group of low-pass

mask filters provides redundancy and choice in how to

compute the differential Huffman-like mask, P � N, which

can be composed in nine distinct ways [i.e. top-row

differences Pt � Nt , bottom row Pb � Nb or combinations

(Pt + Pb) � Nt , Pt � (Nt + Nb), etc.]. The difference in timing

where each of the four masks synchronize to scan the

same point of the object also permits the possibility of

correcting for variations in the brightness and uniformity

of the incident illumination.
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Figure 14
(a-i) Image of a binary bee and (b-i) a multiple gray-level bee partially covered with several folded layers of Al tape. The recovered images (a-iii) and
(b-iii) compare well relative to the expected images (a-ii) and (b-ii), respectively. The 15 � 15 Huffman-like arrays were created from quaternary masks
using pixels with pitch: (a) 10 mm, (b) 20 mm.



Huffman-like masks with multiple transmission levels are

shown here to perform better as imaging probes when used for

the aperiodic scanning of objects than do binary masks based

on perfect periodic arrays. Fabrication of masks with a smaller

number of transmission levels is technically more robust, as

significantly fewer sequential deposition and removal opera-

tions are required. However, fabricating Huffman-like arrays

with a larger number of transmission levels would have

permitted significantly better autocorrelation metrics. For

example, allowing the integer range of our 11 � 11 Huffman-

like arrays to increase to �4 from �3 would have improved

the autocorrelation peak-to-side-lobe ratio to 26 from 20, the

merit factor to 37 from 24, have flattened the Fourier spectra

(0.47 from 0.52), and lowered the condition number (to 1.24

from 1.33).

Binary masks are simpler to fabricate (with single Ta layer

deposition) but require spatially larger pixels since they must

be divided into subpixels over which the area of ‘open’

transmission can be varied to accommodate a range of gray-

level transmission of X-rays. The pixel area scales up with the

range of transmitted intensities, further decreasing the spatial

resolution of the probe. Orthogonal patterns of area filling of

these sub-pixels are needed to reduce cross-pixel correlations.

Any low-pass correlations between sub-pixels act to reduce

the delta-like property of the masks.

An alternative method to make gray-weighted P and N

masks that use a binary layer for transmission would be to

switch pixel-sized micro-mirrors in or out for fractions of the

total exposure time at each scan point. Such a method seems

impractical for current X-ray imaging. However the Huffman-

like masks developed here for X-rays are well suited for

optical imaging applications. A recently published special

issue (Dainese et al., 2024) addresses the shaping of optical

beams at sub-wavelength scales to achieve a wide variety of

probe objectives.

We note that a major constraint on the experimental work

reported here was the time required between acquiring

successive raster-scan data points. A combination of beam

switching, translation stage movement and detector resetting

meant about 3 s were required for each scan point. This

limitation prohibited us from scanning larger test objects.

Even for a pinhole, we needed to over-scan the test objects by

at least the width of the Huffman-like mask. Scanning a

pinhole with a 32 � 32 mask in [P, N /N, P] mode then took

over an hour to complete; the small bee images took longer.

Future experiments should reduce the scan-time by several

orders-of-magnitude, using steps that match the actual beam

exposure time used per point.

In future experiments it may be useful to track the (x, y) co-

ordinates of the center of the probe pattern as the beam

propagates along the z direction. Similar work using Airy

beams was reported by Zhou et al. (2020). The masks designed

by Svalbe et al. (2021) may be useful here, as the delta-like

mask planes also project as sharp delta-functions for several

directions.

The design of 3D Huffman-like masks with a small range of

intensity levels (�3) has been investigated briefly, with

encouraging results for the construction of 11 � 11 � 11 voxel

arrays that have good autocorrelation metrics and condition

number (an example is given in the supporting information).

This diffuse-probe concept can be applied to existing

scanning probe techniques such as X-ray fluorescence (XRF)

imaging (Paunesku et al., 2006). Some consideration of how to

employ the P and N masks separately is required. XRF

microscopy involves a microfocused (pencil beam) X-ray

probe scanned over a small (100 mm to 10 mm diameter)

object and the X-rays fluorescing from the object are recorded

with an energy-dispersive detector. The samples are typically

biological and the focused beam can damage the sample. A

Huffman-like diffuse probe would minimize radiation damage

at the cost of a slightly larger scanning range. Since beam

masking is used rather than beam focusing, the concept could

also enable such a technique to be applied more easily with a

laboratory X-ray source. How this concept could translate to

more complicated scanning techniques such as ptychography

(Pfeiffer, 2018) is scope for future research. There are also

future avenues to apply larger (high throughput) [P, N /N, P]

Huffman array masks in a static configuration as effective

lenses in an aforementioned coded aperture context (Feni-

more & Cannon, 1978; Cieślak et al., 2016), to enable low-dose

pinhole images via large flux, with sharp reconstruction. A

comprehensive study on spatial resolution and exposure dose

is also within the scope of future work. To this end, the

pinhole results of Section 6.1 and Section 6.2 demonstrate the

requisite stability to mask imperfections and slight misalign-

ment issues.

Such coded aperture decorrelation would require a pixel-

ated camera, rather than the bucket detector used in this work.

Pixelated cameras in conjunction with Huffman encoding

could potentially enhance scanning image modalities that

utilize cross-correlation, since 2D Huffman arrays possess

sharp delta-like autocorrelation. One possible example

includes the aforementioned strain-mapping in convergent

beam electron diffraction, whereby a patterned 2D illumina-

tion aperture is tracked in raster-scanned far-field diffraction

patterns using cross-correlation between the known binary

mask and the aperture shape imprinted onto Bragg disks

(Zeltmann et al., 2020). In that setting, cross-correlation is

used to sensitively map the expansion and contraction of

Bragg angles due to spatial variations in strain, measured via

robust detection of noisy Bragg disks. The binary forms of our

[P, N /N, P] masks could be used in that setting as probe-

forming apertures, to enhance the cross-correlation response

via Huffman decoding of the far-field patterns. Given the small

scale of electron microscope apertures and the complexity of

our 2D binary designs, it remains to be seen whether litho-

graphs of sufficient fidelity can be realized in this proposed

implementation.

Another related potential application of Huffman encoding

is for differential phase contrast imaging, which convention-

ally measures the refraction-induced deflection of a beam in

the far-field (Dekkers & de Lang, 1974) or in the near-field

(McCartney et al., 1996; de Jonge et al., 2008; Morgan et al.,

2011). For smoothly varying refraction, the sought deflections
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can be obfuscated by other sources of contrast that dominate

deflection measurements such as the center of mass. To

counter these issues in the context of spatially mapping

magnetic refraction, it has been demonstrated that cross-

correlation of circular aperture edges can separate the sought

beam displacement from confounding artifacts such as strong

modulation of Bragg diffraction contrast (Krajnak et al., 2016).

Again, the delta-like autocorrelation response of Huffman

arrays appears ideally suited to enhance the tracking of

refraction-induced deflections. Though not explored in this

work, the Huffman mask could be transmitted through a

refracting specimen using a raster scan much simpler than our

encoding strategy, with deflections measured by pixelated

images of displaced [P, N /N, P] masks in the near field.

Similarly to the case of strain-mapping, one could also envi-

sage measurements of this kind in the far-field, with the

Huffman mask acting as a probe-forming aperture, for suffi-

ciently small convergence angles in the illumination.

8. Summary and conclusions

We have successfully designed and fabricated a variety of

Huffman-like masks, made as layers of tantalum deposited on

a silica wafer. The masks, in sizes from 11 � 11 to 86 � 86

pixels, were fabricated with pixel widths that ranged from

8 mm to 20 mm. The masks were built to transmit discrete

Huffman-like patterns of X-ray illumination with four distinct

stepped levels of intensity.

The masks were exposed to near-monochromatic and

uniform intensity incident X-ray beams. The radiographs of

these masks, taken on a finely pixelated detector with 6.5 mm

pixel pitch, bore close resemblance to the designed patterns.

The autocorrelation of each reassembled mask X-ray image

demonstrated a sharp delta-like pattern.

We acquired bucket signal images of various simple test

objects using these masks. The bucket images from scanning

the masks over a 20 mm pinhole aperture faithfully reproduced

the designed array pattern. The deconvolved bucket X-ray

images of the pinhole apertures also produced a delta-like

correlation that confirmed that the pairs of low-pass bucket

signals retained the broadband response expected from

Huffman-like masks. The pinhole test images were a critical

test of the mask practical functionality, as, with the pinhole

illuminating only a tiny fraction of the area of the bucket

detector, the image signal-to-noise is at a minimum.

The bucket images obtained using these fabricated masks

on simple binary and stepped gray-level objects yielded

realistic reconstructed high-resolution images of these objects

after deconvolving the bucket images using the ideal integer

arrays. This again confirms that the masks, as fabricated and

imaged by the X-ray bucket signals, were able to replicate and

conserve the delta-like properties of the Huffman-like arrays

as designed.

Future work may consider applying similar masks to

structure broad X-ray beams for X-ray fluorescence imaging

applications and other existing scanning probe techniques.

9. Related literature

The following reference, not cited in the main body of the

paper, has been cited in the supporting information: Arhatari

et al. (2023).
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