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In bone-imaging research, in situ synchrotron radiation micro-computed

tomography (SRmCT) mechanical tests are used to investigate the mechanical

properties of bone in relation to its microstructure. Low-dose computed

tomography (CT) is used to preserve bone’s mechanical properties from

radiation damage, though it increases noise. To reduce this noise, the self-

supervised deep learning method Noise2Inverse was used on low-dose SRmCT

images where segmentation using traditional thresholding techniques was not

possible. Simulated-dose datasets were created by sampling projection data at

full, one-half, one-third, one-fourth and one-sixth frequencies of an in situ

SRmCT mechanical test. After convolutional neural networks were trained,

Noise2Inverse performance on all dose simulations was assessed visually and

by analyzing bone microstructural features. Visually, high image quality was

recovered for each simulated dose. Lacunae volume, lacunae aspect ratio and

mineralization distributions shifted slightly in full, one-half and one-third dose

network results, but were distorted in one-fourth and one-sixth dose network

results. Following this, new models were trained using a larger dataset to

determine differences between full dose and one-third dose simulations.

Significant changes were found for all parameters of bone microstructure,

indicating that a separate validation scan may be necessary to apply this tech-

nique for microstructure quantification. Noise present during data acquisition

from the testing setup was determined to be the primary source of concern for

Noise2Inverse viability. While these limitations exist, incorporating dose

calculations and optimal imaging parameters enables self-supervised deep

learning methods such as Noise2Inverse to be integrated into existing experi-

ments to decrease radiation dose.

1. Introduction

In mechanical engineering, materials science and biomedical

research, micro-computed tomography (mCT) is widely used

to provide 3D images of a material’s internal structure at the

microscale (Schladitz, 2011; Ritman, 2011). In particular, mCT

is extremely relevant in the realm of biological materials, such

as bone, due to their characteristically complex hierarchical

microstructures (Obata et al., 2020). Synchrotron radiation

micro-computed tomography (SRmCT) takes advantage of

high-flux X-ray beams available at synchrotron facilities to

image at high speed, high resolution and in 3D at the micro-

scale (Salomé et al., 1999). With short acquisition time and

high resolution, SRmCT is well suited for in situ mechanical

testing under temperature, pressure or loading to determine

how material microstructure evolves under realistic failure

conditions (Barnard et al., 2016). SRmCT imaging of the

evolution of a material over time is referred to as 4D SRmCT
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and is used to investigate spatial microstructural changes as a

function of a fourth dimension – time (Voltolini et al., 2017).

In bone, SRmCT has been shown to successfully resolve

internal microstructural changes associated with aging and

diseases (Peyrin, 2009; Zimmermann et al., 2011; Woolley et

al., 2023), and possesses high potential to investigate the

evolution of failure mechanisms through in situ SRmCT

mechanical testing (Peña Fernández et al., 2021; Claro et al.,

2023; Madi et al., 2020).

While in situ SRmCT mechanical testing enables imaging of

microstructural features during damage evolution, this comes

at the cost of repeated X-ray exposures, and thus increased

radiation dose (Peter & Peyrin, 2011). The challenge in

biological tissues (i.e. bone) is that exposure to high levels

of synchrotron radiation deteriorates collagen’s natural

mechanical properties (Sauer et al., 2022; Barth et al., 2011).

As a consequence, there is a need to limit scanning time and

exposure time for biological tissues and materials prone to

radiation damage. Both exposure time and the number of

images taken during an SRmCT scan can be reduced to lower

the total radiation dose. Both factors tend to reduce image

quality and increase noise (Bayat et al., 2005); thus, an

approach for improving SRmCT image quality through

denoising must be pursued to expand the feasibility of in situ

SRmCT testing to biological tissues.

Machine learning has emerged as the state-of-the-art

approach for denoising images (Kaur et al., 2018; Thakur et al.,

2021). Specifically, deep learning methods using convolutional

neural networks (CNNs) have had success in complex tasks

such as denoising and segmenting SRmCT images (Zhang et

al., 2022). Combining low-dose imaging and deep learning

methods for denoising and segmentation may greatly enhance

the feasibility of in situ SRmCT mechanical testing for biolo-

gical tissues. Of the many CNN methods for denoising SRmCT

images, both supervised and unsupervised denoising techni-

ques have garnered interest in recent years (Yu et al., 2023; Liu

et al., 2020; Bazrafkan et al., 2021; Meng et al., 2020; Kim et al.,

2020). Supervised learning involves the use of labeled training

data, in this case a high-quality reference scan, for a denoising

CNN to use as a target (Rajoub, 2020; Muller et al., 2023). In

contrast, unsupervised learning does not require labeled data,

i.e. a high-quality reference scan (Usama et al., 2019). Both

supervised and unsupervised methods have been active areas

of research in the past decade, with network architectures such

as U-Net (Ronneberger et al., 2015; Siddique et al., 2021), the

mixed-scale dense (MSD) network (Pelt & Sethian, 2018), and

variations of those, having much success with denoising and

segmenting SRmCT images.

In the unsupervised learning space, Noise2Inverse (N2I)

was first introduced by Hendriksen et al. (2020, 2021) as a deep

learning method to denoise images without high-quality

reference data. In bone research, this method is highly

advantageous because high-quality reference data come at the

cost of radiation damage in biological tissues. Instead of using

a high-quality input, N2I splits a sinogram from SRmCT

images to obtain several sub-reconstructions of lower quality,

which are typically trained against one another. Since then,

several variations and improvements have been suggested for

this training method (Lagerwerf et al., 2020; Wirtensohn et al.,

2023). Recently, Sparse2Inverse has been proposed as a self-

supervised method that uses a loss function in the projection

domain to reduce low-projection artefacts (Gruber et al.,

2024). Rotationally augmented N2I takes advantage of the

equivariant property of the rotation transform to also aid in

reducing low-projection artefacts (Xu & Perelli, 2024). While

these networks have indeed shown great promise for appli-

cation in the bone research field, direct application of unsu-

pervised/self-supervised techniques to SRmCT data is

currently limited due to the emerging developing state of

these techniques.

Supervised methods of denoising and segmentation were

recently used to quantify bone-crack growth mechanisms from

low-dose in situ SRmCT imaging by Sieverts et al. (2022),

which serves as the backbone for this work. While fractures

were quantified, the volume and shape of lacunae in bovine

bone were not assessed in our previous work. Microcracks and

lacunae area were quantified in human trabecular bone during

an in situ SRmCT compression test by Buccino et al. (2023),

though individual lacunae volumes and mineralization were

not compared with typical values. There is a need to test

network performance, not only with network performance

metrics but also with commonly used metrics from each

research field. In this study, we seek to examine metrics that

are relevant to bone disease or mechanical properties such as

lacunar volume, aspect ratio and mineralization.

In this work, we address the problem of radiation dose to

make in situ SRmCT imaging of bone possible while also

assessing the performance of N2I through common bone

quality measures such as lacunar volume and mineralization.

Previously, we performed in situ SRmCT imaging on bovine

bone in a saline solution bath with low-dose imaging para-

meters (Sieverts et al., 2022). In the first experiment in the

present work, we trained multiple networks using N2I on low-

dose datasets at full, one-half, one-third, one-fourth and one-

sixth simulated doses to determine the lowest dose that can be

delivered while maintaining high image quality. Using simu-

lated doses, we assessed the performance of each network with

parameters commonly studied in bone SRmCT imaging. In a

second experiment, N2I was trained and applied on larger

datasets with more training data at full and one-third simu-

lated doses to determine its applicability, benefits and limita-

tions for larger datasets of noisy data.

2. Methods

2.1. Study design

This study aims to determine the viability of N2I on in situ

SRmCT mechanical testing. To this aim, in situ data acquired

from a previous study were used to perform two experiments.

The first experiment involves training five neural networks

using N2I to denoise low-dose SRmCT images. The five neural

networks correspond to five simulated radiation doses that

were used to determine the most feasible balance between
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radiation dose, image quality and microstructure quantifica-

tion. The doses were full dose, one-half dose, one-third dose,

one-fourth dose and one-sixth dose. Training during this

experiment was performed on one SRmCT scan to quickly

determine the most promising of the five simulated doses.

After a promising simulated dose level was determined, a

second experiment was performed to determine differences

between a network trained on low-dose images and a network

trained on full-dose images. For this second experiment, the

two neural networks were trained using N2I on eight SRmCT

scans and statistically compared by quantifying micro-

structural features.

2.2. Bone sample preparation

Bone sample preparation and imaging were performed

according to our previous study (Sieverts et al., 2022). Cortical

bone samples were processed from the mid-diaphysis of adult

bovine femurs obtained from a local butcher shop. First, bone

samples were cut longitudinally with a low-speed diamond

saw. Subsequently, they were ground and polished under

irrigation to dimensions of 1 mm � 2 mm � 10 mm. All bone

samples were pre-notched with a custom-made razor micro-

notcher under irrigation with a diamond suspension in

preparation for fracture toughness testing [Fig. 1(a)].

2.3. Imaging of bovine bone samples at a synchrotron

microtomography beamline

Following bone sample preparation, samples were scanned

at the Advanced Light Source, beamline 8.3.2, at Lawrence

Berkeley National Laboratory [Fig. 1(b)]. An X-ray energy of

24 keV with a 50 mm LuAG scintillator was used to obtain an

image with a 3.4 mm field of view and 1.6 mm pixel size. A

reference high-quality scan followed by low-quality scans were

taken of the same sample with 3937 and 657 projections,

respectively, and 100 ms exposure time at each step during

incremental in situ imaging. For this work, the high-quality

scan is sampled into low-dose simulated datasets. A detailed

procedure for the in situ test protocol was outlined in a

previous work (Sieverts et al., 2022). Each bovine bone sample

was imaged in an environmental chamber, submerged in a

bath of phosphate-buffered saline (PBS) solution to simulate

physiological conditions. Reconstruction of SRmCT data was

performed using filtered back projection in Python open-

source package Tomopy (Gürsoy et al., 2014), and visualiza-

tion was performed in Dragonfly (Comet Technologies,

2022.2). For visual comparison of some results, Paganin phase

retrieval was performed (Paganin et al., 2002; Mokso et al.,

2013). Furthermore, � (1.1378 � 10� 6) and � (4.8945 � 10� 9)

coefficients were determined using the Center for X-ray

research papers

J. Synchrotron Rad. (2025). 32 Yoshihiro Obata et al. � Enhancing micro-CT images using deep learning 3 of 10

Figure 1
Experimental workflow for using N2I on in situ SRmCT tested samples. (a) Bone samples were extracted from the mid-diaphysis of a bovine femur.
(b) These samples were subsequently notched and scanned in a hydrated in situ testing chamber where reference scans were obtained. (c) The sinogram
was then split into K = 2 sub-reconstructions. The projections were also sampled to obtain varying dose simulations (Hendriksen et al., 2020, 2021).
(d) The images obtained through splitting and sampling of SRmCT data were used to train using N2I with the MSD network [portions of figure adapted
from Pelt & Sethian (2018)].



Optics Database with parameters corresponding to hydro-

xyapatite, and phase retrieval was performed using Python

(Henke et al., 1993; Sieverts et al., 2024).

2.4. Dose-simulation datasets

To determine the performance of N2I in several scanning

scenarios, dose simulations were created using the high-quality

dataset, 3937 projections, from the in situ experiment. These

projections were sampled to create sub-reconstructions at

ratios of one-half, one-third, one-fourth and one-sixth of the

original full dose, 3937 projections. With this method, each

sub-reconstruction can still be compared with the reference

full-dose image.

To determine practical radiation doses, the radiation dose

imparted by each simulated scan was calculated using para-

meters of image acquisition and parameters of the beamline

itself. Initially, the mass-attenuation coefficients for each

medium the beam traveled through during the scan (water and

bone) were obtained from the National Institute of Standards

and Technology (NIST) database (Hubbell & Seltzer, 2004).

The geometry of the testing chamber was used to estimate the

thickness of each medium through which the beam had to

pass to reach the region of interest for the sample at each

given projection angle. These thickness values were used to

estimate effective flux densities of between 25300 and

137000 photons s� 1 mm� 2, depending on the orientation of

the testing setup and transmission of the materials passed

through. While the beam traveled through a larger region

within the bone, the cross section of the region of interest used

for radiation-dose calculations was �3.28 mm2. A shutter was

used during imaging to minimize the radiation dose delivered

during the continuous rotation scan. Radiation-dose calcula-

tion equations were obtained from Barth et al. (2010) and are

detailed in Section 2 of the supporting information. The

number of projections, estimated dose and number of scans

were calculated to ensure they remained below the recom-

mended threshold of 35 kGy (Barth et al., 2011), and are

summarized in Table 1.

2.5. Denoising SRmCT images with Noise2Inverse

After the simulated-dose datasets were reconstructed, an

MSD network architecture was used to train N2I with 100

layers (depth = 100) and 32-bit grayscale reconstructed

SRmCT images as training data. A window of 1024 � 1024

pixels on 800 image slices was used during training for this first

experiment. This same region was also used to quantify the

mineralization and lacunae within the bone. The MSD

network was trained using a learning rate of 10� 3, an input

slab size of 5, and a batch size of 12 based on a hyper-para-

meter grid search of several learning rates and batch sizes. A

training–validation split of 80–20 was used in the first dose

experiments, with the data itself used as the test set.

To create the sub-reconstructions, each sinogram is split

into sub-sinograms by taking every Kth angle, �. The number

of splits, K, is a hyper-parameter of this technique; for this

study, K = 2 [Fig. 1(c)]. This K was chosen because the number

of projections in the low-quality tomography data was 657.

This relatively low amount of projections is not suitable for a

higher number of splits, K, because although the theory of the

N2I technique shows that uncorrelated noise can be removed

from images, reconstruction artefacts from low projections

would be present. For example, K = 3 splits in a scan with 657

projections would result in 219 projections per sub-sinogram,

resulting in severe low-projection artefacts in the final

reconstruction.

These sub-sinograms were then reconstructed using filtered

back projection, resulting in K = 2 sub-reconstructions of our

low-quality data. A typical N2I approach involves taking the

mean of K � 1 sub-reconstructions and using the remaining

sub-reconstruction as the target; however, with K = 2, one sub-

reconstruction can simply be trained as the input with the

other as the target. In the case of K > 2, the mean of the new

combination of sub-reconstructions would need to be taken

again to be used as the input to the network. After training,

the MSD network is applied to all sub-reconstructions, K, and

the network output is averaged to obtain the final output of

the trained network [Fig. 1(d)].

In the first experiment, this process was performed on the

full dose, one-half dose, one-third dose, one-fourth dose and

one-sixth dose simulation datasets, resulting in network

outputs from five different low-dose imaging scenarios. In the

second experiment, networks were trained on a larger dataset

for the full dose and one-third of simulated doses, as these

possessed promise for application on in situ experiments. A

total of eight samples were used, with 8072 images used for

training and 890 images used for validation. The same process

for creating the simulated-dose data for training and valida-

tion was employed from the first dose-simulation experiment.

After the networks were trained, microstructural features

were analyzed in all the samples and compared using a paired

t-test to assess changes in quantification.

2.6. Quantification of lacunae and mineralization in bone

After the networks were trained and applied to the input

image data, lacunae were segmented using a Yen threshold in

ImageJ (Fiji) (Schindelin et al., 2012). This technique was

chosen to uniformly and accurately segment lacunae in each of

the samples without introducing human bias in threshold

selection. After segmenting the lacunae, the lacunae image

masks were imported into the image-processing software

Dragonfly (Comet Technologies, 2022.2) for quantification. A

connected component analysis was performed using a 26-

connected particle labeling scheme and only particles of

volume 50–2000 mm3 were considered. This range was chosen
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Table 1
Simulated radiation doses and number of scans until radiation damage.

Simulated dose Full One-half One-third One-fourth One-sixth

Projections 3937 1969 1313 985 657

Dose (kGy) 8.0 4.0 2.7 2.0 1.3
Full scans before

radiation damage
4 8 13 17 26

http://doi.org/10.1107/S1600577525001833


based on other studies measuring lacunae in 3D (Carter et al.,

2013; Dong et al., 2014). Mode lacunae volume and aspect-

ratio data were exported for each simulated dose and analyzed

in Python. In the second experiment, a paired t-test was used

to compare the one-third- and full-dose datasets. Prior to

performing the test, a Shapiro–Wilk test for normality and a

Levene test for equal variance were performed on the data.

Mineralization in the bone tissue was calculated after a

correction for absorption through various media. First, the

density of the surrounding media (water/phosphate-buffered

saline solution) and the top roller used for three-point bend

testing (alumina) were calculated using the coefficient of

attenuation for each material according to NIST (Hubbell &

Seltzer, 2004). The values obtained from this conversion were

compared with known densities of water and alumina. A linear

conversion equation was subsequently derived from the

calculated values and the known values and applied to the

hydroxyapatite in bone tissue. This process was performed for

each dose simulation to determine the final mineral density of

bone tissue in each sample. Quantification of mode miner-

alization was performed in ImageJ (Fiji) and analysis was

performed in Python. In the second experiment, a paired

t-test was used to compare the one-third- and full-dose data-

sets. Prior to performing the test, a Shapiro–Wilk test for

normality and a Levene test for equal variance were

performed on the data.

3. Results

3.1. Comparison of one-sixth dose simulated data with

equivalent in situ experimental data

To determine the difference between the dose-simulation

datasets and an experimental dataset acquiring the same

number of projections, a simulated one-sixth dose recon-

struction was compared with the previously acquired low-

quality images. Mean squared error (MSE), peak signal-to-

noise ratio (PSNR) and structural similarity index (SSIM)

were calculated, and are shown in Table 2. In the simulated

dataset, MSE, PSNR and SSIM changed by � 17.3%, 4.1% and

34.3%, respectively. Simulated datasets possess lower MSE

and higher PSNR and SSIM as expected because they are

directly derived from the high-quality data. In contrast, the

experimental low-quality data are taken sequentially after the

high-quality reference data, resulting in minor changes. While

the simulated data of the one-sixth dose simulation outper-

form the experimental data, the metrics remain within reason

for estimation of experimental data.

3.2. Network performance for simulated doses using

Noise2Inverse

N2I reduced noise in all dose simulations (Fig. 2). Simu-

lated-dose reconstructions, created with filtered back projec-

tion, are shown in the top row of Fig. 2 and the network output

trained with N2I is shown in the bottom row. As the simulated

dose decreases, the filtered back projection images become

noisier. Additionally, at low simulated doses, streaking arte-

facts in the reconstruction are prominent in the background.

After denoising with N2I on each dataset, the noise in each

image is greatly reduced, as shown visually for every simulated

dose. Although all simulated doses experience improved

clarity, subtle changes in the shape of features are present and

are exhibited when quantifying the lacunae and mineral

content in the bone tissue.

3.3. Lacunae volume and aspect ratio distributions are shifted

with lower simulated doses

Lacunae volume and aspect ratio are altered with dose

reduction below one-third simulated doses (Fig. 3). We

calculated a mode lacunar volume of 393 mm3 for the full-dose
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Table 2
Simulated dataset and experimental dataset comparison.

Dataset One-sixth experimental One-sixth simulated

MSE 0.00225 0.00186

PSNR 26.87 27.96
SSIM 0.35 0.47

Figure 2
N2I results for full, one-half, one-third, one-fourth and one-sixth dose images are shown with their corresponding equivalent simulated-dose recon-
struction. All N2I outputs (bottom row) are considerably denoised compared with the filtered back projection reconstructions (top row). Notable streak
artefacts are found in the one-sixth dose image (wavy lines/ripples), where a lack of projection data induces artefacts in the background.



network, with one-half and one-third simulated doses exhi-

biting values of 417 mm3 and 368 mm3, respectively (6%

change and � 6% change).

The one-fourth and one-sixth simulated dose data under-

estimate the lacunar volume, with volumes of 336 mm3 and

287 mm3, respectively (� 14% change and � 27% change).

Lacunae aspect ratios, or the ratio of the minimum to the

maximum eigenvectors of each lacunae, for each subsequent

dose simulation increased. This indicates rounder more

spherical lacunae compared with the full-dose network results

(0.46). Specifically, aspect ratios for the one-half, one-third,

one-fourth and one-sixth simulated dose samples were 0.51,

0.54, 0.56 and 0.55, respectively (12.3%, 17.6%, 22.0% and

19.3% increase).

3.4. Mineralization distribution shifts to lower values with

each simulated dose

Mineralization was also assessed for each of the simulated

doses to determine possible changes induced by N2I (Fig. 4).

Full-dose simulated results for mineralization (1202 mgHA

cm� 3, � 2.0% change) were very similar to those typically

observed in bovine bone (gray curve, 1226 mgHA cm� 3).

Each subsequent simulated dose reduced the mineralization

calculated and increased the width of the distribution. Speci-

fically, one-half, one-third, one-fourth and one-sixth dose

samples possessed mineralization values of 1177 mgHA cm� 3,

1146 mgHA cm� 3, 1118 mgHA cm� 3 and 1088 mgHA cm� 3,

corresponding to � 4.1%, � 6.6%, � 8.8% and � 11% changes.

3.5. Noise2Inverse allows segmentation of images where

thresholding is not sufficient

After performing the first dose experiment to determine the

most promising doses for experimental use, the second

experiment was performed where the full dose and one-third

dose samples were trained on a larger dataset of eight SRmCT

scans to assess statistical differences on the one-third dose

simulation (Fig. 5). These datasets were also compared

visually with a median filter as well as Paganin phase retrieval,
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Figure 3
Shape and volume of lacunae from images denoised with N2I. (a) Lacunar volume was assessed for each of the networks, revealing that full-dose, half-
dose and one-third dose experiments possessed similar lacunae volume distributions compared with the one-fourth and one-sixth dose simulated data.
(b) Lacunae aspect ratio, the ratio of the minimum to the maximum eigenvectors of each lacunae, was compared for each of the simulated doses,
revealing that lacunae tended to become more circle- or sphere-like as dose decreased compared with the more rod-like shape in the full-dose lacunae.
(c)–(g) Representative 3D SRmCT images show the similarity between the full dose and one-third dose lacunae segmentations, whereas lacunae in the
one-sixth dose segmentation may be larger and fewer.



popular methods of denoising SRmCT images (Sun & Neuvo,

1994). In Fig. 5, the top row indicates the image unthre-

sholded, while the bottom row displays the same image with

an Otsu threshold applied to demonstrate segmentability. The

raw full-dose image was not segmentable with an Otsu

threshold. The median filter applied to the raw data improved

the Otsu segmentation; however, many small particles of noise

are present in this image. Using Paganin phase retrieval on the

full-dose image, Otsu thresholding was enabled with features

clearly visible. Both the full dose and one-third dose N2I allow

for segmentation of pores with a simple Otsu threshold.

Notably, the one-third dose N2I output enabled similar

performance to the full-dose images with Paganin phase

retrieval and the full-dose N2I output.

3.6. Quantification of microstructure shows differences in

dose simulations

To assess the variance of the network results, each network

was applied to eight samples and microstructural features
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Figure 4
Mineralization of each simulated dose. (a) Mineralization distributions for each simulated dose and an averaged mineralization curve for several bovine
bones. (b)–(d) Bone volumes in order of full, one-third and one-sixth dose simulations showing mineralization. As the simulated dose decreases, the
values for mineralization shift to lower values.

Figure 5
Input images, median-filter results, Paganin phase retrieval results and N2I results trained on eight samples for full-dose and one-third dose experiments
(top row) are shown alongside an Otsu threshold (bottom row). In both the full-dose input image and the full-dose input image with a median filter
applied, excess noise is captured, making segmentation of features using traditional thresholding techniques impossible. The full-dose image with
Paganin phase retrieval was smoothed with features segmented using an Otsu threshold.



were quantified. Histograms for lacunar volume, aspect ratio

and mineralization are shown for all eight samples in

Figs. 6(a)–6(c), with mean distributions highlighted. The mode

of each distribution significantly changed between the full-

dose experiment and the one-third dose experiment, with

� 26% change in lacunae volume, 10% change in lacunae

aspect ratio and � 3.4% change in mineralization [p < 0.01 for

all, Figs. 6(d)–6( f)].

4. Discussion

In applications with time-resolved experiments where taking a

high-quality reference scan is not feasible, N2I possesses high

applicability due to its lack of reliance on high-quality training

data. When using a supervised training approach, high-quality

reference images can either be taken before or, preferably,

after a test is performed; however, training data would be

limited by the number of samples tested. Using N2I, training

data scale with the number of sub-reconstructions, K,

providing more examples for a network to train on. Perfor-

mance of N2I may vary depending on whether the data are

trained using reconstructed data or data in the projection

domain, but this was not explored in the current work. In the

projection domain, changes to some methods such as altering

the loss function may be required, as shown by Gruber et al.

(2024) with Sparse2Inverse. Additionally, the creation of K

sub-reconstructions for each scanned sample increases the

amount of training data available, and, in turn, increases the

total data required. While not affecting data acquisition, this

makes data management during training for generalized

models a difficult task because many terabytes of data typi-

cally need to be managed with this technique.

While all images exhibited significant denoising, differences

emerged when quantifying microstructural characteristics in

each of the network outputs. In the first experiment, the

distribution of lacunar volumes changed slightly in the outputs

corresponding to full, half and one-third doses. In contrast,

those from one-fourth and one-sixth doses displayed a

noticeable shift towards lower volumes [Fig. 3(a)]. For the data

trained on the single sample here, reducing the number of

projections by one-third and applying N2I had a smaller effect

on bone lacunae and mineralization measurements, showing

promise. Based on Table 1, one-half and one-third dose (4–

2.7 kGy) data in this study are well suited for in situ SRmCT

experiments with multiple time steps required. However, all

lacunae in the one-half to one-sixth dose experiments exhib-

ited higher aspect ratios (more spherical than rod-like)

compared with lacunae in the full-dose network. This was

further investigated in the second experiment.

In the second experiment with the larger dataset, significant

changes were observed in lacunar volume and aspect ratio in a

paired t-test (Fig. 6). Thus, validation of measurements on data

denoised using N2I in cases with noisy non-segmentable

reference images is recommended. For example, lacunae

measurements could be validated with a scan not taken under

in situ imaging conditions and many projections if volumetric

accuracy is desired. Accuracy of measurements is dependent

on feature size as well, as lacunae are on the smallest end of

features accurately quantifiable using the pixel size of 1.6 mm

(Williams et al., 2021). Based on work from the original N2I
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Figure 6
Quantification of microstructural features for all samples used in full-dose and one-third dose N2I training. (a) Lacunae volume distributions varied
significantly from the full-dose to the one-third dose experiments. The one-third dose experiments measured lower-volume lacunae. (b) Lacunae aspect
ratio increased in the one-third dose simulations compared with the full-dose simulations. (c) Mineralization significantly decreased in the one-third dose
simulations compared with that of the full-dose experiments. (d)–( f ) Lacunae-volume, aspect-ratio and mineralization mode values are significantly
shifted in the one-third simulated-dose samples compared with the full-dose simulated data ( p < 0.01 for all). Data are given as the mean � standard
deviation. All statistics were performed with a paired t-test in Python.



study (Hendriksen et al., 2020) with an absolute ground truth,

N2I is successful for denoising mCT images; however, in this

work we see the effect of sampling projections from a refer-

ence dataset that is not an ideal ground truth. Additionally, the

original work from Hendriksen et al. (2020) includes a math-

ematical proof that states that N2I converges to the unknown

noise-free reconstruction when given an infinite number of

training examples. In practice, the number of training exam-

ples is finite, but this principle suggests that when the amount

of training data is sufficiently large (e.g. by combining multiple

datasets), distortions of the volume and shape of small

features may be mitigated.

To further examine the causes of the small feature distor-

tions, N2I was employed on a separate bovine bone scan with

1969 projections. This scan was sampled to its half dose (984

projections), where K = 2 sub-reconstructions were then

taken. The sample was mounted vertically while the beam

passed through no other medium than air (Fig. 1 of the

supporting information). A 5% change in lacunae volume and

a 10% change in lacunae aspect ratio were observed in the

half-dose N2I compared with the ground truth. This change

was statistically significant, showing that increases to lacunae

volume and shape certainly occur as a result of sampling scans

with too few projections. The projections used in this test

correspond to the same number of projections as the one-

fourth dose scan. Although the data had low noise with 1969

projections, the simulated half dose may not have possessed

enough projection data when sub-sampled for accurate results.

This shift is another important consideration when small-

feature quantification is desired. Based on the work here,

lacunae quantification in low-dose datasets is challenging for a

pixel size of 1.6 mm.

Despite the implementation of a gray-value correction in

each simulated-dose output, a trend towards decreased

mineralization is evident with decreasing simulated dose. Low-

projection artefacts, manifested as streaking, are observed in

simulated doses at one-third and below, particularly notice-

able within the PBS background of the image. Although

predominantly observed in the background, these streaks are

also discernible within the bone tissue, potentially influencing

mineralization measurements, given their linear relationship

with gray values in the image. Given that several bone

pathologies are characterized by diminished mineralization

levels, caution should be exercised when extrapolating impli-

cations for bone diseases from outputs generated by low-dose

networks with noisy reference data. Despite the small 3%

change in mineralization, this statistically significant change

indicates that drastic measures of decreasing radiation dose

introduce error in calculated mineralization when reference

data are noisy.

Through investigation of lacunae, mineralization, and by

testing N2I on a conventional SRmCT scan, we have deter-

mined that there are two sources of feature distortion: low

number of projections in sub-reconstructions and high noise in

the reference images. We believe high noise in the reference

images stems from two main factors of our in situ mechanical

test. Firstly, high X-ray attenuation; imaging through the PBS

solution attenuates the X-rays, reducing the signal (Li & Tang,

2019). Secondly, the sample is larger than the field-of-view and

has complex structure, creating distortions during recon-

struction. Combined, these factors are likely responsible for

the high noise in the reference scans and, in turn, the feature

distortion of lacunae. Although some of these factors, such as

the size of the sample, may not be flexible to change for each

in situ SRmCT experiment, future in situ experiments can

optimize data acquisition with these factors in consideration.

Based on the results from each experiment performed

in this work, we can make four recommendations when

using N2I:

(1) Performing dose calculations prior to testing as well as

estimating the number of scans necessary for each experiment/

sample is imperative. During this step, planning low-dose scan

parameters with a beamline scientist is useful because

acquired data from a low-dose scan will be noisy. This noise

makes real-time reconstruction of the data an unclear method

of ensuring quality because a neural network will not be ready

for denoising data immediately as it is acquired. In turn, the

extent to which the data are denoised for analysis is not known

directly at the time of imaging.

(2) Imaging with parameters to achieve 4–2.7 kGy (one-

third to one-half dose in this work) per scan is preferable from

an experimental perspective, as numerous scans can be

obtained without exceeding the 35 kGy recommended limit

(Barth et al., 2010). This also reiterates the importance of

performing dose calculations prior to testing, as imaging

parameters and X-ray flux can vary from beamline to beam-

line.

(3) Based on the use of N2I here, the number of projections

acquired during data acquisition should be maximized for a

given dose to reduce low-projection artefacts when the sino-

gram is split. To achieve this, optimum scanning parameters

for N2I may require more projections and less exposure time

than general low-dose tomography parameters.

(4) For accurate microstructural features, attenuation of the

X-ray beam must be mitigated. This can be achieved by

removing attenuating media, such as PBS, from the in situ test

setup prior to imaging. Some pivotal factors such as sample

geometry and orientation relative to the beam may introduce

noise and be restricted by the experimental setup.

With these four considerations, N2I can effectively be

applied to low-dose in situ synchrotron experiments.

5. Conclusions

Self-supervised methods for denoising have merit in dose-

sensitive in situ SRmCT experiments. In particular, N2I shows

promise for application to data that are obtained without a

high-quality reference dataset, especially for data that cannot

to be thresholded. The results here show comparable miner-

alization and lacunae morphology for self-supervised methods

for simulated doses in the one-third to one-half dose range

in this study. When training with more samples, significant

changes in lacunae volume, aspect ratio and mineralization

were observed. This shows that while self-supervised methods
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of deep learning show promise in the field of bone imaging,

lack of projection data, sample geometry and experimental

setup must be considered for small features and gray values

to be representative of the ground truth. To prevent these

feature distortions, optimizing scanning parameters specifi-

cally for N2I by increasing projections and decreasing expo-

sure time may help to alleviate or eliminate these effects.

Funding information

This work was funded by the National Science Foundation

under NSF CAREER Grant CMMI 2045363. This work used

resources from the Advanced Light Source at beamline 8.3.2,

a US DOE Office of Science User Facility under contract No.

DE-AC02-05CH11231.

References

Barnard, H. S., MacDowell, A., Parkinson, D., Venkatakrishnan, S.,
Panerai, F. & Mansour, N. (2016). Proc. SPIE, 9967, 99671H.

Barth, H. D., Launey, M. E., MacDowell, A. A., Ager, J. W. III &
Ritchie, R. O. (2010). Bone, 46, 1475–1485.

Barth, H. D., Zimmermann, E. A., Schaible, E., Tang, S. Y., Alliston,
T. & Ritchie, R. O. (2011). Biomaterials, 32, 8892–8904.

Bayat, S., Apostol, L., Boller, E., Brochard, T. & Peyrin, F. (2005).
Nucl. Instrum. Methods Phys. Res. A, 548, 247–252.

Bazrafkan, S., Van Nieuwenhove, V., Soons, J., De Beenhouwer, J. &
Sijbers, J. (2021). Artif. Intell. 10, 65–81.

Buccino, F., Aiazzi, I., Casto, A., Liu, B., Sbarra, M. C., Ziarelli, G.,
Banfi, G. & Vergani, L. M. (2023). J. Mech. Behav. Biomed. Mater.
137, 105576.

Carter, Y., Thomas, C. D. L., Clement, J. G. & Cooper, D. M. (2013). J.
Struct. Biol. 183, 519–526.

Claro, P. I., Borges, E. P., Schleder, G. R., Archilha, N. L., Pinto, A.,
Carvalho, M., Driemeier, C. E., Fazzio, A. & Gouveia, R. F. (2023).
Appl. Phys. Rev. 10, 021302.

Dong, P., Haupert, S., Hesse, B., Langer, M., Gouttenoire, P.-J.,
Bousson, V. & Peyrin, F. (2014). Bone, 60, 172–185.

Gruber, N., Schwab, J., Gizewski, E. & Haltmeier, M. (2024).
arXiv : 2402.16921.

Gürsoy, D., De Carlo, F., Xiao, X. & Jacobsen, C. (2014). J.
Synchrotron Rad. 21, 1188–1193.

Hendriksen, A. A., Bührer, M., Leone, L., Merlini, M., Vigano, N.,
Pelt, D. M., Marone, F., di Michiel, M. & Batenburg, K. J. (2021).
Sci. Rep. 11, 11895.

Hendriksen, A. A., Pelt, D. M. & Batenburg, K. J. (2020). IEEE
Trans. Comput. Imaging, 6, 1320–1335.

Henke, B. L., Gullikson, E. M. & Davis, J. C. (1993). At. Data Nucl.
Data Tables, 54, 181–342.

Hubbell, J. H. & Seltzer, S. M. (2004). Tables of X-ray Mass
Attenuation Coefficients and Mass Energy-Absorption Coefficients
from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48. Additional
Substances of Dosimetric Interest. Technical Report. USA.
Washington: Department of Commerce.

Kaur, P., Singh, G. & Kaur, P. (2018). Curr. Med. Imaging, 14, 675–
685.

Kim, K., Soltanayev, S. & Chun, S. Y. (2020). IEEE J. Sel. Top. Signal.
Process. 14, 1112–1125.

Lagerwerf, M. J., Hendriksen, A. A., Buurlage, J.-W. & Batenburg, K.
J. (2020). Mach. Learn.: Sci. Technol. 2, 015012.

Li, Z.-S. & Tang, L.-S. (2019). Adv. Mater. Sci. Eng. 2019, 7147283.
Liu, Z., Bicer, T., Kettimuthu, R., Gursoy, D., De Carlo, F. & Foster, I.

(2020). J. Opt. Soc. Am. A, 37, 422–434.

Madi, K., Staines, K. A., Bay, B. K., Javaheri, B., Geng, H., Bodey, A.
J., Cartmell, S., Pitsillides, A. A. & Lee, P. D. (2020). Nat. Biomed.
Eng. 4, 343–354.

Meng, M., Li, D., Li, S., Zhu, M., Wang, L., Gao, Q., Bian, Z., Zhang,
X., Huang, J., Zeng, D., et al. (2020). Proc. SPIE, 11312, 1013–1019.

Mokso, R., Marone, F., Irvine, S., Nyvlt, M., Schwyn, D., Mader, K.,
Taylor, G., Krapp, H., Skeren, M. & Stampanoni, M. (2013). J. Phys.
D Appl. Phys. 46, 494004.

Muller, F. M., Maebe, J., Vanhove, C. & Vandenberghe, S. (2023).
Med. Phys. 50, 5643–5656.

Obata, Y., Bale, H. A., Barnard, H. S., Parkinson, D. Y., Alliston, T. &
Acevedo, C. (2020). J. Mech. Behav. Biomed. Mater. 110, 103887.

Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W.
(2002). J. Microsc. 206, 33–40.

Pelt, D. M. & Sethian, J. A. (2018). Proc. Natl Acad. Sci. USA, 115,
254–259.

Peña Fernández, M., Kao, A. P., Bonithon, R., Howells, D., Bodey, A.
J., Wanelik, K., Witte, F., Johnston, R., Arora, H. & Tozzi, G. (2021).
Acta Biomater. 131, 424–439.

Peter, Z.-A. & Peyrin, F. (2011). Theory and Applications of CT
Imaging and Analysis, edited by Noriyasu Hommapp, pp. 233–254.
InTechOpen.

Peyrin, F. (2009). Osteoporos. Int. 20, 1057–1063.
Rajoub, B. (2020). Biomedical Signal Processing and Artificial Intel-

ligence in Healthcare, pp. 51–89. Elsevier.
Ritman, E. L. (2011). Annu. Rev. Biomed. Eng. 13, 531–552.
Ronneberger, O., Fischer, P. & Brox, T. (2015). Proceedings of the

18th International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI2015), 5–9 October 2015,
Munich, Germany, Part III, pp. 234–241. Springer.
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