
computer programs

J. Synchrotron Rad. (2025). 32 https://doi.org/10.1107/S1600577525002115 1 of 14

ISSN 1600-5775

Received 13 December 2024

Accepted 5 March 2025

Edited by M. Yamamoto, RIKEN SPring-8

Center, Japan

Keywords: data streaming; real-time data

processing; computing frameworks; PvaPy;

EPICS pvAccess; Python applications.

Published under a CC BY 4.0 licence

PvaPy streaming framework for real-time data
processing

Siniša Veseli,* John Hammonds, Steven Henke, Hannah Parraga, Barbara Frosik

and Nicholas Schwarz

Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA. *Correspondence e-mail:

sveseli@anl.gov

User facility upgrades, new measurement techniques, advances in data analysis

algorithms as well as advances in detector capabilities result in an increasing

amount of data collected at X-ray beamlines. Some of these data must be

analyzed and reconstructed on demand to help execute experiments dynami-

cally and modify them in real time. In turn, this requires a computing framework

for real-time processing capable of moving data quickly from the detector to

local or remote computing resources, processing data, and returning results to

users. In this paper, we discuss the streaming framework built on top of PvaPy,

a Python API for the EPICS pvAccess protocol. We describe the framework

architecture and capabilities, and discuss scientific use cases and applications

that benefit from streaming workflows implemented on top of this framework.

We also illustrate the framework’s performance in terms of achievable data-

processing rates for various detector image sizes.

1. Introduction

Large scientific user facilities, such as the synchrotron and

free-electron laser light sources, can help to solve some of the

most challenging scientific problems, ranging from efficient

energy storage and transportation to the design of new

materials for different purposes, to understanding the struc-

ture and motion of protein molecules. In search of answers to

these problems, and aided by facility upgrades, technological

advances in detectors, new measurement techniques, multi-

modal data utilization and advances in data analysis algo-

rithms, user experiments will generate larger and larger

amounts of data. For example, after recent completion of its

accelerator upgrade (Borland et al., 2018), the combined

output of X-ray beamlines at the Advanced Photon Source

(APS) is expected to exceed 100 PB of uncompressed data per

year, generated at over 100 GB s� 1 (Carder et al., 2022;

Schwarz, 2022). The same trend of increased data generation

volumes and rates has been observed at other similar new or

upgraded experimental facilities (Schwarz et al., 2020). By the

end of this decade, the combined total of data generated

across all the US light sources is estimated to be in the exabyte

range, the processing of which will require large amounts of

computing resources. It is clear that scientific discovery on this

scale will present numerous challenges for data management

and data analysis, as well as for the integration of user

instruments and applications with storage, networking and

computing resources.

At APS beamlines most of the existing production data

analysis workflows are file based. Data are either written

directly by X-ray detectors to the APS central storage system

or are copied there from local beamline storage by the APS

https://doi.org/10.1107/S1600577525002115
https://journals.iucr.org/s
https://scripts.iucr.org/cgi-bin/full_search?words=data%20streaming&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=real-time%20data%20processing&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=real-time%20data%20processing&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=computing%20frameworks&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=PvaPy&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=EPICS%20pvAccess&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=Python%20applications&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Veseli,%20S.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Hammonds,%20J.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Henke,%20S.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Parraga,%20H.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Frosik,%20B.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Schwarz,%20N.
mailto:sveseli@anl.gov
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577525002115&domain=pdf&date_stamp=2025-04-25


Data Management System (Veseli et al., 2018). From there raw

data files are copied using Globus (Foster, 2011) to the storage

system visible to Polaris supercomputer nodes at the Argonne

Leadership Computing Facility (ALCF) (Parraga et al., 2023).

After processing the raw data files, the results are typically

copied back to APS storage in order to be visible to beamline

scientists and facility users. The file-based workflows usually

work well in cases where data analysis is not strictly time

constrained, but they do come with overheads related to

scheduling, executing and monitoring file transfers, scheduling

batch jobs, as well as with file I/O operations required by data-

processing applications.

Given continually increasing data volumes collected at

experimental facilities, it is becoming increasingly important

to analyze some of the collected data immediately, and

provide feedback that can be used to adjust experiments in

real time. This is especially significant for various machine-

learning (ML) approaches for data processing and experiment

control (Liu et al., 2021; Yanxon et al., 2023; Yanxon et al.,

2024; Babu et al., 2023). For these cases where some or all the

raw data must be processed in real time, there is a clear benefit

to eliminating any unnecessary delays, including those asso-

ciated with job scheduling, file transfers and file I/O.

Since a large percentage of X-ray beamlines use the

Experimental Physics and Industrial Control System (EPICS)

software (Dalesio et al., 1991; Dalesio, 1993; Dalesio et al.,

1994) together with the areaDetector application (Rivers,

2024), this opens the possibility of developing EPICS-based

streaming workflows for processing detector data in real time.

Here we discuss the PvaPy streaming framework (https://

github.com/epics-base/pvaPy/blob/master/documentation/

streamingFramework.md), which allows users to set up

distributed Python-based analysis workflows with very little

effort, and without having to worry about details related

to data serialization, networking protocols or integrating

external software packages. We describe various framework

components, user interfaces and available command line

utilities. We outline several potential use cases and work-

flow configurations, as well as provide measurements for

throughput and metadata handling tests that illustrate system

performance. Finally, we also discuss a number of analysis

applications that utilize streaming workflows and demonstrate

the benefits of using PvaPy for their implementation.

2. Streaming framework

2.1. Foundation

The EPICS software is a collection of open source tools,

libraries and applications used to create a distributed soft real-

time control system for a variety of scientific instruments, such

as particle accelerators and telescopes. It is developed colla-

boratively by a large community of developers and is used

worldwide by hundreds of companies, universities, govern-

ment laboratories and other scientific institutions.

EPICS uses two different protocols for communication

between hardware and software devices and client applica-

tions. The Channel Access (CA) protocol (Hill, 1990) has been

a part of EPICS since its beginning and is still used in most

software applications. The pvAccess protocol (EPICS v4

Working Group, https://github.com/epics-base/pvAccessCPP/

wiki/protocol) has been developed more recently and its usage

is slowly increasing. Among other things, the pvAccess

protocol provides the foundation for a service-oriented

architecture, the ability to exchange complex data structures

between server and client applications, optimized data trans-

fers, as well as support for high-level data and image proces-

sing via EPICS normative types (https://docs.epics-controls.

org/en/latest/specs/Normative-Types-Specification.html).

The areaDetector application provides a general-purpose

interface for controlling 2D detectors using EPICS. It

supports a wide variety of detectors and cameras and its

architecture allows for processing images via a large number

of included plugins. One of the included plugins, the pvAccess

Server plugin, serves image data and its attributes over the

pvAccess protocol using EPICS NTND Array normative

types. The ability to retrieve images directly from this plugin

using standard EPICS application programming interfaces

(APIs) and command line interface tools is one of the major

advantages of using pvAccess for streaming image data.

PvaPy (Veseli, 2015) uses the Boost Python library (https://

www.boost.org) to provide a Python interface to EPICS C++

APIs. Some of its main C++-based features include:

(i) Support for both CA and pvAccess protocols used by

EPICS software.

(ii) Support for scalars, structures and unions, as well as for

EPICS Normative Types.

(iii) Integration with Python NumPy.

(iv) pvAccess server, including its Data Distributor

plugin (https://github.com/epics-base/pvaPy/blob/master/

documentation/dataDistributorPlugin.md), which enables

several modes of distributing EPICS channel data to multiple

client applications.

(v) CA input/output controller (IOC). This allows hosting

standard EPICS CA database records directly from Python

applications.

(vi) Mirror server, which is used for isolating data streams

from clients that are not part of a particular workflow, for IOC

protection from high client loads, or as a bridge between

different networks or network subnets.

(vii) Support for channel and multichannel monitoring and

client operations.

(viii) Remote Procedure Call (RPC) server/client. Unlike

standard EPICS pvAccess servers, RPC servers do not support

get/put/monitor operations on pvAccess channels, but instead

provide client applications with the ability to invoke remote

operations that take pvAccess structures as input.

2.2. Components

The PvaPy streaming framework is written directly in

Python and relies on its C++-based components for consuming

and serving EPICS channel data (see Fig. 1). At its heart are

the data consumer and data collector controller classes which

computer programs

2 of 14 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing J. Synchrotron Rad. (2025). 32

https://github.com/epics-base/pvaPy/blob/master/documentation/streamingFramework.md
https://github.com/epics-base/pvaPy/blob/master/documentation/streamingFramework.md
https://github.com/epics-base/pvaPy/blob/master/documentation/streamingFramework.md
https://github.com/epics-base/pvAccessCPP/wiki/protocol
https://github.com/epics-base/pvAccessCPP/wiki/protocol
https://docs.epics-controls.org/en/latest/specs/Normative-Types-Specification.html
https://docs.epics-controls.org/en/latest/specs/Normative-Types-Specification.html
https://www.boost.org
https://www.boost.org
https://github.com/epics-base/pvaPy/blob/master/documentation/dataDistributorPlugin.md
https://github.com/epics-base/pvaPy/blob/master/documentation/dataDistributorPlugin.md


are responsible for handling all common aspects of a proces-

sing workflow, such as managing processes that instantiate and

configure user processing code, establishing input channel

monitoring, providing workflow output channels, retrieving

application statistics, invoking user processing code, and

publishing its output. The two main command line interfaces

corresponding to the consumer and collector controllers

are pvapy-hpc-consumer and pvapy-hpc-collector. The

consumer command is used for splitting input network

streams and for processing stream data objects, whereas the

collector command enables the user to gather data

streams that were previously split for processing. In addition

to those commands, the framework provides two commands

that may be useful for constructing, developing and testing

analysis workflows: pvapy-mirror-server can be used

for data stream isolation and as a bridge between two different

networks; and pvapy-ad-sim-server is an areaDetector

simulator capable of generating and publishing EPICS NTND

Array objects, and is typically used for testing and develop-

ment of image-processing workflows.

Users interface with the framework by implementing a data

processor class, shown in Fig. 2. This class provides hooks

called at different workflow stages, including methods for

application startup and shutdown, runtime configuration,

statistics generation, as well as the method for processing

input channel data. The data processing method is called after

the input channel monitor receives new data and is the only

interface hook that must be implemented. From a framework

perspective, a user application will see the data as a generic

EPICS structure, which is similar to a Python dictionary.

Applications that connect to an areaDetector pvAccess Server

plugin receive data as EPICS NTND Array. In addition to the

image data itself, this structure also contains image metadata

that may be needed for processing, such as image dimensions

and data type, color mode, compression algorithm, and other

custom attributes. The user data processor class and its input,

which is a JSON string representing a Python dictionary, are

passed as arguments to the framework command line inter-

face, which then establishes all framework processes on a

given node.

computer programs

J. Synchrotron Rad. (2025). 32 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing 3 of 14

Figure 1
PvaPy uses Boost Python to wrap EPICS C++ APIs and provide corresponding functionality in Python.

Figure 2
Streaming framework user interface hooks offered by the base processor
class.



2.3. Features

In addition to being straightforward to integrate and use,

some of the other features offered by this framework are

illustrated in Fig. 3 and listed below:

(i) Ability to receive and process generic EPICS structures

as stream objects.

(ii) Support for a wide variety of workflow configurations,

such as processing chains, and splitting and gathering streams.

(iii) Ability to receive metadata from additional CA or

pvAccess channels that may be needed for processing main

input stream objects.

(iv) Distribution of data processing between multiple

consumer processes using the data distributor pvAccess server

plugin.

(v) The system can easily spawn and manage multiple data

consumer processes on a single node, and coordinate those

with processes running on other nodes.

(vi) Runtime application configuration, monitoring perfor-

mance and publishing output over additional pvAccess chan-

nels provided by the framework.

(vii) Protection against data loss via the server and client-

side queues.

(viii) Support for data encryption. Note that the underlying

pvAccess protocol does not support encryption as of the most

recent EPICS 7.0.x release.

(ix) Standard EPICS utilities and APIs can be used for

monitoring and interacting with the streaming framework.

Although EPICS pvAccess servers support limiting access

to channels based on client usernames or hostnames, these

features have not yet been implemented by the streaming

framework. At the time of writing, EPICS and pvAccess do

not support authentication methods, such as passwords or

tokens. Any pvAccess client that has network access to

systems serving channels created by the areaDetector appli-

cation or by the data consumer processes, and knows the

channel names and server port, could in principle connect to

pvAccess data streams.

In the subsequent sections we expand on data distribution,

data queuing capabilities and encryption support.

2.3.1. Data distribution

Under normal circumstances all EPICS pvAccess or CA

channel updates are served to all client applications. This

mode of operation can become a problem when the network

bandwidth is not large enough to send all updates to all clients

continuously, or when data processing in client applications

cannot keep up with channel updates. Real-time processing of

areaDetector images generated at very high rates is one use

case where these issues might occur. The pvAccess Server Data

Distributor plugin solves these problems by enabling distri-

bution of channel data between multiple client applications.

The plugin considers two basic use cases for a group of clients:

(i) For simple parallel processing where client applications

do not need to share data, all clients in a group receive N

sequential updates in a round-robin fashion: client 1 sees the

first N updates, client 2 the second N updates and so on.

(ii) For data analysis where several cooperating client

applications must all see the same data to process, the appli-

cations are grouped into sets, and each set of clients receives

the same number of sequential updates. The first N updates

are sent to all members of client set 1, the second N updates

are sent to all members of client set 2 and so on.

Parameters that determine how each client should receive

data are configured during the initial connection via the

channel request string. Different client groups are completely

independent of each other, and the distributor plugin does not

affect clients that do not explicitly request it.

2.3.2. Protection against data loss

Both server-side and client-side queues can be arbitrarily

large and can be used to smooth out variations in network

bandwidth or application processing. The client-side queues

are part of the PvaPy channel monitoring capabilities. They

are initialized by the streaming framework based on user

command line arguments and do not require any additional

work by the user data processor class. The server-side queues

are provided by the EPICS pvAccess Server and are estab-

lished for each individual client upon connection. Those

computer programs

4 of 14 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing J. Synchrotron Rad. (2025). 32

Figure 3
Streaming framework offers support for distributed processing, protection from lost stream objects, and the ability to monitor and interact with data
consumer processes.



queues hold channel updates until the client can process the

data, thereby providing protection against data loss that is

only limited by the available memory of the system running

the server.

2.3.3. Data encryption

The streaming framework provides support for encrypting

EPICS data structures before publishing them over pvAccess,

as well as for decrypting received data structures before

processing them. In case of EPICS NTND Arrays, the

framework also provides encryption and decryption data

processors that can be used out of the box. This allows one to

construct workflows that work with encrypted data, even

though following the EPICS release 7.0.x encryption is not yet

available in the pvAccess protocol (see Fig. 4).

Placing the burden of encrypting and decrypting data on

users rather than providing it as part of the protocol itself is

certainly more complex, but it also does provide users with

more control over where and how encryption takes place. This

may be advantageous if there are performance concerns with a

specific processing workflow, given that the encryption process

adds computational overhead. For example, one might distri-

bute data before encryption rather than encrypting it directly

at the source, which would spread the encryption load

between multiple systems. Another possibility would be to

only encrypt sensitive parts of the data, which would reduce

overheads.

A different approach for data encryption is to use SSH

tunnels between machines running server and client-side

applications. Although this approach generally requires no

changes to user applications, it provides less flexibility as far

as constructing processing workflows, and it can also raise

potential security concerns related directly to SSH tunnels,

such as uncontrolled port forwarding, network traffic obfus-

cation etc.

2.4. Comparison with alternative approaches

There are a plethora of available protocols optimized for

streaming data, networking libraries and distributed messa-

ging platforms that one could use for this purpose. Each of

these choices has their own set of advantages and disadvan-

tages. In terms of functionality and features, ZeroMQ (https://

zeromq.org) is probably the most similar to the system

described in this paper. It is a widely used embeddable

networking library that also acts like a concurrency frame-

work. ZeroMQ allows connecting sockets N-to-N with a

variety of patterns like publish/subscribe, fan-out, task distri-

bution, request/reply and client/server. As can be seen in

computer programs

J. Synchrotron Rad. (2025). 32 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing 5 of 14

Figure 4
Streaming framework contains support for encrypting and decrypting generic EPICS data structures.

https://zeromq.org
https://zeromq.org


Section 3, these patterns are very similar to workflow config-

urations that can be constructed with the framework described

in this work. Much like pvAccess, ZeroMQ is designed for high

throughput and low latency, but it also comes with native

support for authentication and encryption, which is something

that pvAccess protocol lacks at this time.

The main advantage that pvAccess has over ZeroMQ and

any other choice for streaming data from detectors and

sensors is its tight integration within the EPICS ecosystem.

This integration makes the barrier to entry for EPICS-based

applications relatively low when integrating with existing

beamline software. It is easily deployed on beamlines that

already use EPICS, and has the potential to ease reuse on

other beamlines. There is no need to implement serialization

and deserialization of data, write additional areaDetector

plugins to publish data over a different protocol, or to write

client applications for interacting with data, as would be the

case when utilizing a different streaming tool.

3. Workflow configurations

One of the advantages of this streaming framework is its

flexibility; it can be adapted to a wide variety of workflow

configurations and analysis use cases. In this section we discuss

some of the possible configurations and note that the frame-

work documentation contains additional use cases as well as

detailed framework usage and data processing examples that

should work out of the box.

3.1. Processing chains

This workflow configuration demonstrates how stream

processing can be implemented in multiple stages, with each

stage running on a different computer or a set of computers

(see Fig. 5). This is accomplished using the output of the first

set of consumers as input to the second set of consumers. The

Mirror Server is used for forwarding streamed objects from the

source to the first set of consumers. This may be needed in case

the raw data source (e.g. areaDetector) uses an older version of

EPICS that does not have the data distributor plugin, or if

consumers do not have direct access to the same network as

the raw data source.

3.2. Splitting and stitching images

The example shown in Fig. 6 demonstrates how one can split

the original raw image and distribute resulting tiles for

computer programs

6 of 14 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing J. Synchrotron Rad. (2025). 32

Figure 5
Example workflow that uses a processing chain configuration.



processing between multiple consumers, and then stitch

processed tiles back together. The last stage uses the data

collector to gather streams resulting from processing of indi-

vidual image tiles.

3.3. Image metadata handling

In many cases images need to be associated with various

pieces of metadata, such as position information, before

processing. The streaming framework allows one to receive

PV updates from any number of metadata channels, using CA

or pvAccess, which are made available to the user processing

module as a dictionary of metadata channel names and queues

(see Fig. 7). Note that the streaming framework itself does not

care what structure metadata channels produce, as anything

that comes out of those channels is simply added to the

corresponding metadata queues. However, the actual user

processor must know the structure of the metadata object to

make use of it.

4. System performance

All tests described in this section have been performed with

PvaPy (version 5.4.1) on a 64-bit Linux computer with 96

computer programs

J. Synchrotron Rad. (2025). 32 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing 7 of 14

Figure 6
Example workflow for splitting and stitching images.



logical CPU cores (Intel Xeon Gold 6342 CPU with hyper-

threading enabled) running at 3.5 GHz, 2 TB of RAM and

with a dual NVIDIA RTX A6000 GPU. Note that the image

server and all consumers were running on the same computer

using the loopback device. If these tests were performed using

multiple computers, results might vary significantly depending

on the network connection and configuration between the

computers.

4.1. Throughput tests

To assess how much data can be pushed through the

framework, we ran a series of tests using the base system, pass-

through, user processor that does not manipulate images or

encrypt data, and does not generate any additional load on the

test system. We generated test images using the simulation

server mentioned earlier, which is able to reliably generate

images at stable rates of up to 26 kHz. Going beyond that

number, the resulting output frame rate varied more than 1–

2 Hz and was not deemed to be stable enough for testing. The

server queue size varied with the test image size and was, in all

test cases, set to keep less than a seconds worth of data per

consumer. A given test was deemed successful if no frames

were missed during the 60 s server runtime. Results for the

maximum simulated detector rate that image consumers

were able to sustain without missing any frames are shown in

Tables 1 and 2 for 4096 � 4096 and 512 � 512 images,

respectively. Note that the system was able to handle data

throughput of more than 20 GB s� 1 with larger images and a

frame rate of up to 26 kHz with smaller images.

A similar set of tests was performed in the context of

streaming unencrypted data from APS beamline computers to

the ALCF Polaris supercomputer over a 200 Gbps network

connection (Veseli et al., 2023). For comparison with the

results discussed above, the highest frame rate achieved in

these APS/ALCF tests with 512 � 512 images was 24 kHz,

and the highest data throughput observed with 4096 � 4096

images was 14.8 GB s� 1.

4.2. Metadata handling tests

Metadata handling tests allow the assessment of how much

unencrypted data can be pushed through the system in

combination with metadata. Those tests used the sample

areaDetector metadata processor module with six pvAccess

metadata channels that were updated every time a new image

computer programs

8 of 14 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing J. Synchrotron Rad. (2025). 32

Figure 7
Example workflow for handling metadata available over CA or pvAccess channels.



was generated. A given test was deemed successful if no

frames and metadata updates were missed during the 60 s

server runtime, and if all images were associated with meta-

data without any errors. Results for the maximum simulated

detector rate that image consumers were able to sustain and

process are shown in Tables 3 and 4 for 4096� 4096 and 512�

512 images, respectively.

As the number of data consumers increases, the number of

metadata updates that each consumer must discard increases

as well, and hence gains in processing capabilities and in the

corresponding data throughput decrease. This becomes more

apparent with smaller images and higher frame rates; with 10

consumers the system handled a total of 4200 metadata

updates per consumer per second for 4096 � 4096 images,

compared with a total of 18000 metadata updates per

consumer per second for 512 � 512 images. Some optimiza-

tions are achieved by batching sequential images received by

consumers, as well as by reducing client load on the image data

source via the Mirror Server or using parallel processing

chains.

5. Applications

Real-time feedback for dynamic experiment execution is

becoming increasingly important, especially given the larger

amounts of data being collected at X-ray beamlines. Streaming

data directly from the detector into processing applications

allows one to eliminate various delays typically associated

with file-based analysis workflows. These delays are illustrated

in Fig. 8, which shows execution times for different MIDAS

(Sharma et al., 2012a; Sharma et al., 2012b) workflow stages in

different Polaris supercomputer jobs processing the same

input dataset. Because of their advantages in real-time

processing, more and more streaming-based workflows are

under development. For example, a solution for the real-

time streaming tomographic reconstruction together with

capability for 3D zooming to a volume of interest is presented

by Nikitin et al. (2022). This helps users at the APS 2-BM

beamline to set optimal environmental control system condi-

tions, such as cooling temperature, pressure and loading

forces, which is of crucial importance for experiments where

the X-ray beam itself affects the sample state. It also allows

users to overcome one of the main challenges in studying fast

processes, the selection of a representative region of interest

where dynamic processes start and evolve over time.

The work described above, as well as other applications

discussed in this section, already use PvaPy for implementing

streaming-related parts of their analysis workflows. The

streaming framework brings the potential for significant

performance improvements by distributing data to multiple

application instances, the ability to use different streaming

workflow configurations out of the box and reusing parts of

the code common to most streaming workflows.

5.1. PtychoNN

One such example of streaming analysis involves PtychoNN

(Cherukara et al., 2020; Babu et al., 2023), which uses a deep

convolutional neural network to solve the ptychography phase

retrieval problem. Phase retrieval algorithms are computa-

tionally expensive, which typically prevents real-time imaging.

Using ML to predict a real-space structure and phase at each

scan point solely from the corresponding diffraction data is

hundreds of times faster than standard ptychography recon-

struction packages and significantly accelerates data acquisi-

tion and analysis, which in turn has implications for the

imaging of dose sensitive, dynamic and extremely voluminous

samples.

PtychoNN demonstrated real-time inversion capable of

processing streamed raw 128 � 128 (int16, 32.77 KB) images

at rates of up to 2 kHz on an NVIDIA RTX A6000 GPU

(Babu et al., 2023). After converting PtychoNN code to use the

computer programs

J. Synchrotron Rad. (2025). 32 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing 9 of 14

Table 2
Maximum system throughput for 512 � 512 (uint8, 0.26 MB) images with
N consumers.

N
Frame rate/N
(fps)

Frame rate
(fps)

Data rate/N
(GB s� 1)

Data rate
(GB s� 1)

1 16 000 16 000 4.19 4.19
4 6500 26 000 1.70 6.82

Table 1
Maximum system throughput for 4096 � 4096 (uint8, 16.78 MB) images
with N consumers.

Results are shown in terms of frames per second (fps) and data rates in
gigabytes per second (GB s� 1).

N
Frame rate/N
(fps)

Frame rate
(fps)

Data rate/N
(GB s� 1)

Data rate
(GB s� 1)

1 200 200 3.36 3.36
4 165 660 2.77 11.07

8 130 1040 2.18 17.44
10 125 1250 2.10 20.97

Table 4
Maximum system throughput for 512 � 512 (uint8, 0.26 MB) images with
N consumers and six pvAccess metadata channels, each updating with
every new frame.

N
Frame rate/N
(fps)

Frame rate
(fps)

MD rate/N
(mps)

MD rate
(mps)

Data rate/N
(GB s� 1)

Data rate
(GB s� 1)

1 2000 2000 12 000 12 000 0.52 0.52
4 600 2400 14 400 57 600 0.16 0.63
8 350 2800 16 800 67 200 0.09 0.73
10 300 3000 18 000 180 000 0.08 0.78

Table 3
Maximum system throughput for 4096 � 4096 (uint8, 16.78 MB) images
with N consumers and six pvAccess metadata channels, each updating
with every new frame.

MD: metadata updates per second (mps).

N
Frame rate/N
(fps)

Frame rate
(fps)

MD rate/N
(mps)

MD rate
(mps)

Data rate/N
(GB s� 1)

Data rate
(GB s� 1)

1 200 200 1,200 1200 3.36 3.36
4 105 420 2520 10 080 1.76 7.04
8 75 600 3600 28 800 1.26 10.07
10 70 700 4200 42 000 1.17 11.74



streaming framework (Veseli, 2024a), the code-base was not

only reduced by about 40% but the system was also capable of

handling significantly higher data rates. When used in a mode

where image processing is split between four consumers (two

processes on each of the two RTX A6000 GPUs available,

with each process receiving images in batches of eight) in a

simple configuration illustrated in Fig. 3, we were able to keep

up with detector rates of up to 8 kHz without any frame loss.

The computer used for testing was the same one on which the

results reported by Babu et al. (2023) were obtained. See

Section 4 for more details. The system was able to handle the

same detector rate even after adding a second set of four

consumers in a processing chain configuration (see Fig. 5) that

was responsible for saving processed images onto the local

NVMe-based storage. At this 8 kHz detector rate, the system

processed and saved 480000 images, about 15.7 GB of data, in

60 s. The same performance results were obtained with the

PvaPy Mirror Server responsible for distributing data to the

PtychoNN consumers, and the PvaPy data collector process

responsible for collecting PtychoNN output and distributing it

for processing to a second set of consumers (see Fig. 9). Since

the processor used for saving files to local storage is already

a part of PvaPy, there was no need for any additional user-

supplied code.

In a slightly more complex configuration, where the original

raw data stream is split into two parallel streams using the

pass-through data processor layer, and each of those then

distributed processing between four PtychoNN consumers

(see Fig. 10), the system was able to handle detector rates

of 12 kHz without losing any frames. Note that in this case

the pass-through layer split the 12 kHz raw data stream into

two parallel 6 kHz streams, while each of the two RTX

A6000 GPUs was running four PtychoNN processors

receiving and analyzing images in batches of eight, and at a

rate of 1.5 kHz.

5.2. BraggNN

Similar to PtychoNN, BraggNN is a deep-learning based

method that helps to overcome computational costs associated

with analysis of images obtained using high-energy diffraction

microscopy (HEDM) (Liu et al., 2021; Liu et al., 2022). HEDM

relies on knowledge of the positions of diffraction peaks,

which are usually found by fitting the observed intensities in

raw detector data to a theoretical peak shape such as Pseudo–

Voigt (Bernier et al., 2020). With increasing complexity of

X-ray experiments, the computational costs associated with

peak-shape fitting become an almost insurmountable obstacle

for real-time analysis needed for the real-time feedback in

experiments. The BraggNN approach has the potential to

solve this problem and deliver significant performance

improvements relative to conventional methods. The original

BraggNN code was recently converted to use this streaming

framework (Veseli, 2022), which offers similar capabilities and

performance enhancements as those discussed in the context

of PtychoNN.

5.3. Ptychodus

Ptychodus (Henke, 2024) is a ptychography analysis appli-

cation that is used at several APS beamlines, which are

predicted to be among the highest data producers after the

recent upgrade of the APS accelerator. In order to help

beamline scientists assess data quality in real time during

acquisition, the streaming framework interface was added to

Ptychodus. The streaming data processor receives diffraction

pattern and scan position data streams directly from an

computer programs

10 of 14 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing J. Synchrotron Rad. (2025). 32

Figure 8
Execution runtime in seconds for different MIDAS workflow stages. The same raw dataset of 11 GB in size was processed by number of different jobs on
the Polaris supercomputer.



instrument, and Ptychodus then uses timing information from

the ingested data streams to robustly match diffraction

patterns with their corresponding scan positions so the dataset

can be reconstructed. The streaming workflow in Ptychodus is

not yet production ready, as conventional iterative recon-

structions cannot keep up with data acquisition speeds, and

the workflow needs to be able to make use of multiple

application instances reconstructing different scans in parallel.

In addition, reconstruction algorithms based on neural

networks and a continual learning process similar to those

being used in PtychoNN (Babu et al., 2023) are being added

to Ptychodus.

5.4. Cohere

Bragg coherent diffraction imaging (BCDI) (Robinson &

Harder, 2009; Harder & Robinson, 2013) is able to provide 3D

information about internal strain, shape and lattice defects

computer programs

J. Synchrotron Rad. (2025). 32 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing 11 of 14

Figure 9
Streaming workflow used for PtychoNN processing (first set of four consumers) and for saving output frames to local storage (second set of four
consumers). On a machine with a dual RTX A6000 GPU, the system was able to keep up with 8 kHz detector rates for 128� 128 (int16) images without
lost frames.



for nanometre-sized crystals. The Cohere toolkit (Frosik &

Harder, 2024), developed in Python for the APS 34-IDC

beamline, offers a complete solution for reading and pre-

processing BCDI data, as well as for its reconstruction and

visualization. The package design allows different software

components to be used independently or as a whole. It also

allows software to be customized for different instruments.

Although at present Cohere is still aimed at file-based analysis

workflows, the recent development work (Veseli, 2024b)

started adding streaming-based processing capabilities into

the toolkit, with a future goal of using the PvaPy streaming

framework for enabling real-time analysis of BCDI data.

5.5. Accelerator data processing

The recent APS upgrade (Borland et al., 2018) will result in

a significant increase in volumes of data produced not only at

APS beamlines but also data produced by the new multi-bend

achromat (MBA) storage ring accelerator. The new storage

ring uses state-of-the-art embedded controllers coupled to

various technical subsystems that have the ability to collect

large amounts of data. The MBA Data Acquisition System

(DAQ) (Veseli et al., 2020) interfaces with a number of those

subsystems to provide time-correlated and synchronously

sampled data acquisition for statistics, diagnostics, perfor-

mance monitoring and fault recording. For example, the

storage ring radio frequency beam position monitors (BPMs)

provide turn-by-turn (TBT) data that are collected by 20 TBT

DAQ servers located around the storage ring accelerator.

Each server receives beam position data from its TBT aggre-

gator field-programmable gate array (FPGA) board. It

generates a stream of DAQ pvAccess data objects at roughly

10 Hz. Individual double sector objects contain data for

approximately 27000 turns obtained from 28 BPMs. In a

default configuration the combined output of all DAQ TBT

servers (560 BPMs) is about 95 MB s� 1, which can be

increased to about 245 MB s� 1, if all available BPM data fields

are collected.

In some use cases that require full TBT storage ring data

using a single application instance for processing would not be

able to keep up with the TBT data rates, and hence real-time

analysis would have to be distributed between multiple

application instances running on a local compute cluster. This

workflow is illustrated in Fig. 11. The DAQ Double Sector

Aggregator (Veseli, 2023) is a utility capable of collecting

individual raw DAQ pvAccess objects from all servers, and

combining them into a full storage ring DAQ pvAccess object.

The stream of aggregated TBT objects can be distributed for

processing between several application instances running as

PvaPy data consumers and their individual output streams can

be combined into a single output stream using the PvaPy data

collector. One example application where distributed real-

time processing of TBT data would be extremely useful is

beam orbit generation, which is important for keeping the

beam focused. The existing DAQ Orbit application (Veseli,

2020), which was heavily utilized during the machine

commissioning and is now used during machine studies for

accelerator performance tuning and diagnostics, cannot keep

computer programs

12 of 14 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing J. Synchrotron Rad. (2025). 32

Figure 10
Streaming workflow used for PtychoNN processing via two parallel input streams (two sets of four consumers each). On a machine with a dual RTX
A6000 GPU, the system was able to keep up with 12 kHz detector rates for 128 � 128 (int16) images without lost frames.



up with the full TBT data rate, and can only process up to a

thousand turns at a 10 Hz rate. Implementing this application

on top of the streaming framework is planned for the future.

6. Conclusions

We have discussed the PvaPy streaming framework developed

for real-time processing of X-ray detector images, or any other

types of objects being served over the EPICS pvAccess

protocol. We have outlined framework features and illustrated

possible streaming workflow configurations. The initial testing

indicates very good performance with regard to data through-

put. Using multiple pass-through consumer processes, the

system has demonstrated the ability to handle frame rates of

26 kHz for small 0.26 MB images, and data rates of over

20 GB s� 1 for large 16.78 MB images. We also discussed

several applications that utilize streaming workflows and

demonstrated advantages gained from implementing these

workflows using the framework.

In addition to expanding the framework’s usage to different

APS beamlines and scientific analysis applications, we also

anticipate that work in the near future will focus on inte-

grating the framework with systems that facilitate streaming

between producers and consumers that lack direct network

connectivity, such as SciStream (Chung et al., 2022) and

EJFAT (Sheldon et al., 2023). The authors will also monitor

EPICS developments regarding data encryption, authentica-

tion and authorization, and will consider them for imple-

mentation in this framework.

Funding information

This work is supported by the US Department of Energy

(DOE), Office of Science-Basic Energy Sciences award

Collaborative Machine Learning Platform for Scientific

Discovery 2.0. Use of the APS was supported by the US DOE,

Office of Science, Office of Basic Energy Sciences (contract

No. DE-AC02-06CH11357). This research used resources of

the Argonne Leadership Computing Facility, which is a DOE,

Office of Science User Facility (contract No. DE-AC02-

06CH11357).

References

Babu, A. V., Zhou, T., Kandel, S., Bicer, T., Liu, Z., Judge, W., Ching,
D. J., Jiang, Y., Veseli, S., Henke, S., Chard, R., Yao, Y., Sirazitdi-
nova, E., Gupta, G., Holt, M. V., Foster, I. T., Miceli, A. & Cher-
ukara, M. J. (2023). Nat. Commun. 14, 7059.

Bernier, J. V., Suter, R. M., Rollett, A. D. & Almer, J. D. (2020). Annu.
Rev. Mater. Res. 50, 395–436.

Borland, M., Abliz, M., Arnold, N., Berenc, T., Byrd, J., Calvey, J.,
Carter, J., Carwardine, J., Cease, H., Conway, Z., Decker, G.,
Dooling, J., Emery, L., Fuerst, J., Harkay, K., Jain, A., Jaski, M.,
Kallakuri, P., Kelly, M., Kim, S. H., Lill, R., Lindberg, R., Liu, J.,
Liu, Z., Nudell, J., Preissner, C., Sajaev, V., Sereno, N., Sun, X., Sun,
Y., Veseli, S., Wang, J., Wienands, U., Xiao, A., Yao, C. & Blednykh,
A. (2018). Proceedings of the Ninth International Particle Accel-
erator Conference (IPAC2018), 29 April–4 May 2018, Vancouver,
Canada, pp. 2872–2877. THXGBD1.

Carder, D., Dart, E., Graf, M., Hawk, C., Holder, A., Jacob, D.,
Lessner, E., Miller, K., Rotermund, C., Russell, T., Sefat, A.,
Wiedlea, A. & Zurawski, J. (2022). Basic Energy Sciences Network
Requirements Review (Final Report). Technical Report LBNL-
2001490. Lawerence Berkeley National Laboratory, Berkeley, USA
(https://escholarship.org/uc/item/3jj0h54n).

Cherukara, M. J., Zhou, T., Nashed, Y., Enfedaque, P., Hexemer,
A., Harder, R. J. & Holt, M. V. (2020). Appl. Phys. Lett. 117,
044103.

Chung, J., Zacherek, W., Wisniewski, A., Liu, Z., Bicer, T., Ketti-
muthu, R. & Foster, I. (2022). Proceedings of the 31st International
Symposium on High-Performance Parallel and Distributed

computer programs

J. Synchrotron Rad. (2025). 32 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing 13 of 14

Figure 11
Distributed processing of the APS DAQ TBT data workflow. Raw BPM data around the storage ring are collected by the TBT FPGA and sent to the
DAQ server, which publishes its raw DAQ pvAccess object. Individual pvAccess objects are combined into a full storage ring DAQ pvAccess object by
the DAQ aggregator. The aggregator distributes processing of the raw storage ring DAQ pvAccess objects between a number of user application
instances running as data consumers, and their individual output streams are combined and published as a single processed TBT stream by the PvaPy
data collector.

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB7


Computing (HPDC’22), June 27–July 1 2022, Minneapolis, MN,
USA, pp. 185–198.

Dalesio, L. R. (1993). Proceedings of the 5th International Conference
on Accelerator and Large Experimental Physics Control Systems
(ICALEPCS 93), 18–22 October 1993, Berlin, Germany.

Dalesio, L. R., Hill, J. O., Kraimer, M., Lewis, S., Murray, D., Hunt, S.,
Watson, W., Clausen, M. & Dalesio, J. (1994). Nucl. Instrum.
Methods Phys. Res. A, 352, 179–184.

Dalesio, L. R., Kozubal, A. J. & Kraimer, M. R. (1991). Proceedings of
the 2nd International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS1991), 11–15
November 1991, Tsukuba, Japan, pp. 278–282.

Foster, I. (2011). IEEE Internet Comput. 15, 70–73.
Frosik, B. & Harder, R. (2024). Cohere Toolkit for Reconstruction of

Images Obtained using Bragg Coherent Diffraction Imaging, https://
github.com/advancedPhotonSource/cohere.

Harder, R. & Robinson, I. K. (2013). JOM, 65, 1202–1207.
Henke, S. (2024). Ptychodus, https://github.com/AdvancedPhoton

Source/ptychodus.
Hill, J. (1990). Nucl. Instrum. Methods Phys. Res. A, 293, 352–355.
Liu, Z., Ali, A., Kenesei, P., Miceli, A., Sharma, H., Schwarz, N.,

Trujillo, D., Yoo, H., Coffee, R., Layad, N., Thayer, J., Herbst, R.,
Yoon, C. & Foster, I. (2021). Proceedings of the 3rd Annual
Workshop on Extreme-Scale Experiment-in-the-Loop Computing
(XLOOP), 19 November 2021, St. Louis, MO, USA, pp. 15–23.
IEEE.

Liu, Z., Sharma, H., Park, J.-S., Kenesei, P., Miceli, A., Almer, J.,
Kettimuthu, R. & Foster, I. (2022). IUCrJ, 9, 104–113.

Nikitin, V., Tekawade, A., Duchkov, A., Shevchenko, P. & De Carlo,
F. (2022). J. Synchrotron Rad. 29, 816–828.

Parraga, H., Hammonds, J., Henke, S., Veseli, S., Allcock, W., Côté, B.,
Chard, R., Narayanan, S. & Schwarz, N. (2023). Proceedings of the
SC’23 Workshops of the International Conference on High Perfor-
mance Computing, Network, Storage, and Analysis (SC-W’23), 12–
17 November 2023, Denver, CO, USA, pp. 2126–2132.

Rivers, M. (2024). The areaDetector Application Framework, https://
areadetector.github.io/areaDetector/index.html.

Robinson, I. & Harder, R. (2009). Nat. Mater. 8, 291–298.
Schwarz, N. (2022). The APS Scientific Computing Strategy. Technical

Report. Argonne National Laboratory, Argonne, Il, USA (https://
www.aps.anl.gov/files/APS-Uploads/XSD/XSD-Strategic-Plans/
APSScientificComputingStrategy-2024-09-11-FINAL.pdf.

Schwarz, N., Campbell, S., Hexemer, A., Mehta, A. & Thayer, J.
(2020). Driving Scientific and Engineering Discoveries Through the
Convergence of HPC, Big Data and AI, edited by J. Nichols,

B. Verastegui, A. B. Maccabe, O. Hernandez, S. Parete-Koon &
T. Ahearn, pp. 145–156.

Sharma, H., Huizenga, R. M. & Offerman, S. E. (2012a). J. Appl.
Cryst. 45, 693–704.

Sharma, H., Huizenga, R. M. & Offerman, S. E. (2012b). J. Appl.
Cryst. 45, 705–718.

Sheldon, S., Kumar, Y., Goodrich, M. & Heyes, G. (2023).
arXiv : 2303.16351.

Veseli, S. (2015). Proceedings of the 2015 International Conference on
Accelerator and Large Experimental Physics Control Systems
(ICALEPCS2015), 17–23 October 2015, Melbourne, Australia, pp.
970–973. WEPGF116.

Veseli, S. (2020). DAQ Orbit Utility, https://git.aps.anl.gov/C2/daq/
apps/daq-orbit.

Veseli, S. (2022). BraggNN Implementation Based on the PvaPy
Streaming Framework, https://github.com/sveseli/edgeBragg/blob/
main/README-SF.md.

Veseli, S. (2023). DAQ Double Sector Aggregator, https://git.aps.anl.
gov/C2/daq/apps/daq-aggregator.

Veseli, S. (2024a). PvaPy Streaming Framework Implementation of
PtychoNN, https://github.com/sveseli/edgePtychoNN/blob/master/
README-SF.md.

Veseli, S. (2024b). Cohere Streaming Demo, https://github.com/
sveseli/cohere-ui/blob/main/cohere-scripts/
README-STREAMING.md.

Veseli, S., Arnold, N., Berenc, T., Carwardine, J., Decker, G., Fors, T.,
Madden, T., Shen, G. & Shoaf, S. (2020). Proceedings of the 17th
International Conference on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS2019), 5–11 October 2019,
New York, NY, USA, pp. 841–846. TUDPP02.

Veseli, S., Hammonds, J., Henke, S., Parraga, H. & Schwarz, N. (2023).
Proceedings of the SC’23 Workshops of the International Confer-
ence on High Performance Computing, Network, Storage, and
Analysis (SC-W’23), 12–17 November 2023, Denver, CO, USA, pp.
2110–2117.

Veseli, S., Schwarz, N. & Schmitz, C. (2018). J. Synchrotron Rad. 25,
1574–1580.

Yanxon, H., Weng, J., Parraga, H., Xu, W., Ruett, U. & Schwarz, N.
(2023). J. Synchrotron Rad. 30, 137–146.

Yanxon, H., Weng, J., Parraga, H., Xu, W., Ruett, U. & Schwarz, N.
(2024). Proceedings of the 2023 Intelligent Systems and Applications
Conference (IntelliSys2023), 7–8 September 2023, Amsterdam, The
Netherlands, edited by K. Arai, pp. 508–515. Springer Nature
Switzerland.

computer programs

14 of 14 Siniša Veseli et al. � PvaPy streaming framework for real-time data processing J. Synchrotron Rad. (2025). 32

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB14
https://github.com/advancedPhotonSource/cohere
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB346
https://github.com/AdvancedPhotonSource/ptychodus
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB22
https://areadetector.github.io/areaDetector/index.html
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB24
https://www.aps.anl.gov/files/APS-Uploads/XSD/XSD-Strategic-Plans/APSScientificComputingStrategy-2024-09-11-FINAL.pdf
https://www.aps.anl.gov/files/APS-Uploads/XSD/XSD-Strategic-Plans/APSScientificComputingStrategy-2024-09-11-FINAL.pdf
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB31
https://git.aps.anl.gov/C2/daq/apps/daq-orbit
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB32
https://github.com/sveseli/edgeBragg/blob/main/README-SF.md
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB33
https://git.aps.anl.gov/C2/daq/apps/daq-aggregator
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB35
https://github.com/sveseli/edgePtychoNN/blob/master/README-SF.md
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB34
https://github.com/sveseli/cohere-ui/blob/main/cohere-scripts/README-STREAMING.md
https://github.com/sveseli/cohere-ui/blob/main/cohere-scripts/README-STREAMING.md
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5121&bbid=BB40

	Abstract
	1. Introduction
	2. Streaming framework
	2.1. Foundation
	2.2. Components
	2.3. Features
	2.3.1. Data distribution
	2.3.2. Protection against data loss
	2.3.3. Data encryption

	2.4. Comparison with alternative approaches

	3. Workflow configurations
	3.1. Processing chains
	3.2. Splitting and stitching images
	3.3. Image metadata handling

	4. System performance
	4.1. Throughput tests
	4.2. Metadata handling tests

	5. Applications
	5.1. PtychoNN
	5.2. BraggNN
	5.3. Ptychodus
	5.4. Cohere
	5.5. Accelerator data processing

	6. Conclusions
	Funding information
	References

