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The plane grating monochromator (PGM) is an optical instrument used in the

majority of soft X-ray beamlines. Despite its ubiquity, the PGM efficiency can

easily be overestimated, because the geometry of many modern PGMs can lead

to unexpected blocking of the beam. We have developed a new workflow in

Python for simulating PGMs, thus extending the capabilities of SHADOW3, a

well established ray tracing software tool. We have used our method to simulate

the flux on branch C of the Versatile Soft X-ray (VerSoX) beamline B07 at

Diamond Light Source. The simulation results demonstrate qualitative agree-

ment with the experimental measurements, confirming the robustness of the

proposed methodology.

1. Introduction

A significant proportion of soft X-ray beamlines use a plane

grating monochromator (PGM) to provide a monochromatic

X-ray beam. PGMs consist of a mirror followed by a plane

grating, producing an energy-dispersed X-ray beam with a

fixed trajectory (Kunz et al., 1968; Follath, 2001; Wang et al.,

2025). Such monochromators combine ease of use with

substantial flexibility in operation compared with alternative

soft X-ray monochromators.

The design of the PGM directly impacts the performance of

the beamline. Beamline properties such as the energy reso-

lution and the photon flux are critical to the success of

experiments such as X-ray absorption, X-ray emission or

X-ray photoemission spectroscopies (XAS, XES, XPS) and

are routinely predicted using ray tracing simulations. PGMs

work by using the dispersive property of the grating, which is

described by the grating equation,

n� ¼ g ðsin �þ sin �Þ; ð1Þ

where n is the order of diffraction, � is the wavelength of the

outgoing radiation, g is the grating period, and � and � are the

angles of incidence and diffraction, respectively. For any given

values of n, � and g there are multiple pairs of (�, �) values

that can satisfy equation (1). One way to specify a unique

solution is to define a property of the PGM known as the

fixed-focus constant, cff (Petersen, 1982),

cff ¼ cos �= cos�: ð2Þ

We can then use cff and � (or photon energy) to define unique

values of � and � for a grating with a given period g operating

in the nth order.
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It is possible to simultaneously diffract multiple diffraction

orders from a grating, which can lead to higher-order

contamination issues. This is a problem frequently encoun-

tered in the soft X-ray range (Waki et al., 1989; Frommherz

et al., 2010; Sokolov et al., 2018). Such issues are ideally

addressed during the design of the beamline, which can then

be mitigated by optimizing the grating parameters and/or the

PGM mirror coatings.

Currently, there are several challenges surrounding the

modelling of PGMs. Most PGMs that allow the user to vary

the PGM mirror grazing angle use a mechanical scheme first

used in SX-700 PGMs (Riemer & Torge, 1983). While this

design is very flexible, its geometry is rather complex and

unintuitive (Wang et al., 2025), and as such blocking can occur

during operation, making these SX-700 type PGMs inherently

difficult to model in ray tracing software. Second, incomplete

modelling can mean that issues such as higher-order contam-

ination are not fully appreciated during the design phase,

which can lead to challenges in operation. Third, since colli-

mated PGM schemes allow both the energy and cff to be

selected independently, there is a large 2D parameter space

available that would be rather time-consuming to explore

using traditional approaches.

At Diamond Light Source, the ray tracing software of

choice is SHADOW3 (Sanchez del Rio et al., 2011), which

is used by a significant fraction of the synchrotron optics

community. Although other software packages are available,

such as RAY (Schäfers, 2008) and xrt (Klementiev & Cher-

nikov, 2014), we have concentrated on the implementation of

our methodology in SHADOW3.

By design, SHADOW3 has no a priori knowledge of the

global optical setup and, therefore, is restricted by the

assumption of sequentiality. Due to this design principle of the

underlying codebase, ray tracing is done in the sequence

specified by the user. In the operation of a typical SX-700 type

PGM, the correct sequence met by the rays is the mirror

followed by the grating. In scenarios where the rays are

blocked by the upstream corner of the grating before the

mirror or by the downstream corner of the mirror after

the grating (Wang et al., 2025), the sequence is broken.

SHADOW3 is unaware of the blockages and will transmit

100% of the rays. This is problematic when simulations are

performed for larger energy ranges; SHADOW3 will report an

overestimated intensity in certain configurations of SX-700

type PGMs. Note that for brevity we refer to SX-700 type

PGMs as simply PGMs in the remainder of this work.

A different, but nevertheless important, limitation is the

location and the size of the beam as it impinges on the mirror

and grating. The typical geometry of a PGM means that the

location of the beam footprint on the mirror changes as a

function of the incident angle �. As real mirrors have finite

length, this means that, if � is not within a certain range, part

(or all) of the beam will not be transmitted by the PGM.

Moreover, in certain energy/cff combinations, the footprint

made by the beam on the optical surface of the grating may

become larger than that of the grating itself, leading to a loss

of flux. Compared with self-blockages, these two scenarios are

much more easily handled within SHADOW3, as they do not

break the assumption of sequentiality described earlier.

In this article, we build on our previous work (Wang et al.,

2025), in which analytical expressions of various geometrical

quantities of a PGM were derived. With some modifications

and extensions presented here, these expressions can be used

in SHADOW3 to fully model the nuances of the PGM

geometry for transmission calculations and more. We also

present a programming pipeline and the corresponding code

which could be used to simulate any PGM-based beamline in

the future. The solution we propose is fully autonomous in

modelling all aspects of the PGM and, as such, can fully

automate scans over energy, cff, order of diffraction, etc. This

is in direct contrast to how simulations like these are often

carried out at present, where manual input is typically needed

at multiple stages in the process. The validity of this metho-

dology has been demonstrated via direct comparison of

simulation results with flux measurements performed at the

B07c beamline (Held et al., 2020) at Diamond Light Source.

2. Methodology

A typical current workflow for simulating a beamline with a

PGM is presented in Fig. 1, along with the workflow we

propose in this article. In this section, a step-by-step account of

the proposed methodology will be given.

2.1. Computation of the source flux

At present, it is not possible to use SHADOW3 to perform

flux simulations for bending magnet sources. After ray tracing,
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Figure 1
The current standard workflow for carrying out PGM transmitted flux
simulations as well as the proposed workflow for an integrated model.



the value returned by SHADOW3 is the intensity, which is the

Pythagorean sum of the magnitudes of the electric and

magnetic fields of all of the rays that have been simulated. This

intensity can then be scaled to flux in units of photons per

second by using externally computed data. We have used

SPECTRA (Tanaka, 2021) to calculate the bending magnet

source flux for the simulations for B07c. Fluxes are obtained

by scaling the ray traced intensity to the flux computed by

SPECTRA while correcting for the energy bandwidth.

2.2. Computation of mirror and grating efficiencies

After propagation – either via reflection or diffraction –

from each optical element (OE), some rays may be lost and

the overall intensity will therefore be reduced. For mirrors,

reflectivities depend on the electronic properties of the mirror

coating as well as the roughness of the mirror surface. These

can be computed natively in SHADOW3 using the prepro-

cessors PREREFL (Lai & Cerrina, 1986) and WAVINESS

(Sanchez del Rio & Marcelli, 1992), respectively.

Currently, it is not possible to perform grating efficiency

calculations in SHADOW3. In the calculations performed for

B07c, the grating efficiencies of the 400 and 600 lines mm� 1

gratings have been computed using MLgrating (Walters et al.,

2024). The grating efficiency is a function of energy, order and

cff ; it is therefore required that the grating efficiency for each

combination of energy and cff be computed separately. The

geometrical properties of the gratings, as measured by the

manufacturers, are presented in the supporting information.

The grating efficiencies at different values of energy and cff

were tabulated into JSON files, which can be stored and read

easily. The grating efficiencies were calculated for more than

60000 combinations of energy, order and cff for each grating.

These calculations took approximately 6 h per grating on a

laptop with a six-core Intel Core i7-10810U @ 1.10 GHz.

2.3. Optimizing the simulated energy range

To minimize the number of lost rays in the ray tracing

simulation, the energy range over which the X-ray source is

simulated needs to be optimized. A typical rule-of-thumb is

that the energy range of the source should be at least double

the energy resolution [full width at half-maximum (FWHM)]

achieved by the PGM combined with the exit slit. In this way,

one ensures that the energy range of the source is not signif-

icantly limiting the simulated energy resolution of the beam-

line, while ensuring that one does not waste computing

resources on many rays that will not be transmitted through

the exit slit.

Here we present an automated approach to find an

appropriate energy range for the source for any beamline

configuration (E, cff, n and exit slit opening). An optimal

energy range can be found by a simple while-loop. Starting

with an initial energy range for the source, ray tracing with a

reduced number of rays is carried out. The energy FWHM of

the final beam is doubled and used as the energy range for the

next iteration. We then iterate until the energy resolution

converges to within a certain predefined tolerance relative to

the previous iteration. This method is sufficiently flexible and

fast that it can be done on-the-fly during real simulation runs.

A scatter plot of an iteration process is included in the

supporting information.

2.4. Geometry of the PGM and input to SHADOW3

To be able to correct for geometrical blockages of the PGM

and accurately simulate it in SHADOW3, it is important to

correctly inform SHADOW3 of the coordinates of the optical

elements (OEs) that define the PGM (a plane mirror and a

plane grating) within the reference frames of SHADOW3.

There are two primary areas of concern: (1) when the

incident angle becomes too small or the beam height becomes

too large, the entire beam footprint will not fit the optical

surface of the mirror or grating, leading to a loss of flux, and

(2) where there are geometrical blockages, caused by the

mirror or the grating, the beam will be partially or completely

blocked.

In SHADOW3 the distances and angles of the OEs are

defined relative to the OEs that precede them, and the first

OE is defined relative to the source. One can define the size of

the optical surface directly in SHADOW3. In the context of a

PGM, this information would simply be the sizes of the optical

surfaces of the mirror and grating, which are known. This

input can be easily done by setting the attributes for the

appropriate OE. Throughout the following, we have inputted

the real physical sizes of the optics into SHADOW3 and have

not attempted to make any distinction between these dimen-

sions and the dimensions of their clear apertures.

2.5. SHADOW3 OE offsets

The position of any OE in SHADOW3 is defined relative to

the centre of the beam. In a typical PGM, the centre of the

beam is placed as close to the centre of the grating as possible

by design, but the centre of the beam on the mirror changes

position as a function of grazing angle. By defining the correct

size of the mirror OE in SHADOW3, along with the correct

mirror offset relative to the beam, scenarios where the beam

falls off the mirror can be accounted for in SHADOW3. This

offset is set through the OFFY attribute of the mirror. Using

the parameters presented in Fig. 2(c) (Wang et al., 2025), it can

be shown that the OFFY parameter is given by

mirror:OFFY ¼
Lm

2
� s ð3Þ

¼
Lm

2
þ a �

bþ v � c sin �

cos �
; ð4Þ

where Lm is the length of the mirror. The parameters a, b, c

and v are known offsets of the PGM, and � = (� � �)/2.

Similarly, for the grating, the required offset

grating:OFFY can be shown to be

grating:OFFY ¼
h sin 2� þ v ðcos 2� � 1Þ þ 2c sin � � b

cos �
;

ð5Þ
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where all quantities are known. The correct input of these

offsets, along with the correct dimensions of the optics, allows

SHADOW3 to handle cases where the beam footprint is

partially off the mirror or the grating.

However, enabling SHADOW3 to handle blockages is not

trivial. Formally, OEs in SHADOW3 are treated as infinitely

thin planes with finite sizes. Without modifying the underlying

codebase of SHADOW3, we have implemented the following

workaround. Two additional fictitious slits are included in the

simulated PGM, where one of the defining blades of the first

slit is placed at the upstream corner of the grating, while one of

the defining blades of the second slit is placed at the down-

stream corner of the mirror. To correctly define these two

points, the distances from these fictitious slits to the next

optical element ðT IMAGEÞ also need to be known. This

quantity is essential in correctly accounting for the beam size

when a non-collimated beam passes through the PGM. In

practice, the two parameters that need to be specified for the

slits are the vertical offset from the centre of the slit with

respect to the centre of the beam and the horizontal distance

from the slit to the next OE.

2.6. Blockage by the grating

A slit is defined in SHADOW3 with a height and location of

the centre of the opening relative to the centre of the beam. To

account for blockage by the grating, a slit is introduced in the

optical setup as shown in Fig. 2, where we have defined the

point G to be the bottom left corner of the grating.

Programmatically, the slit height is an arbitrary choice, as long

as it is set larger than the height of any possible synchrotron

beam. Here we chose a value of 1000 mm. As illustrated, the

slit should be translated down so that the bottom of the upper

obstruction is placed at G. The quantity of interest is therefore

the vertical distance from the centre of the beam to G, which is

denoted as �slit1. Defining the origin to be at the centre of the

grating optical surface, G can be expressed as

Gx ¼
l

2
sin �; ð6Þ

Gz ¼ �
l

2
cos �; ð7Þ

where l is the length of the grating. An expression for �slit1 can

then be derived,

�slit1 ¼ Az � Gz ¼ v � c sin � � ðsþ aÞ cos � þ
l

2
cos �; ð8Þ

where Az and Gz are the z components of the points A and G,

respectively. The ðT IMAGEÞ parameter is then the horizontal

distance from G to A,

slit:T IMAGE ¼ Ax � Gx

¼ hþ c cos � � ðsþ aÞ sin � �
l

2
sin �: ð9Þ

2.7. Blockage by the mirror

Similarly, for the blockage by the mirror, the location of the

downstream mirror corner (D) must be known. This position

needs to be defined relative to the centre of the beam B; if we

once again define the origin to be at the centre of the optical

surface of the grating, the x and z components of B can be

extracted,

Bx ¼ grating:OFFY cos �; ð10Þ

Bz ¼ grating:OFFY sin �: ð11Þ

The required offsets are then the horizontal and vertical

distances from the two points,
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Figure 2
(a) Illustration of the slit positioning in SHADOW3 for blocking by the
grating. (b) Illustration of the positioning of the second fictitious slit to
model beam blockage by the mirror. (c) A schematic of the PGM
geometry which contains geometrical quantities used in the derivation
[reproduced from Wang et al. (2025)].



�slit2 ¼ Bx � Dx

¼ grating:OFFY cos �

� �
c

sin �
þ ða � c cot �Þ cos � þ v

h i
; ð12Þ

grating:T IMAGE ¼ Bz � Dz

¼ grating:OFFY sin �

�
�

h �
�
ða � c cot �Þ sin �

��
: ð13Þ

We note that ðT IMAGEÞ for the second slit is not a property of

the slit but a property of the grating OE, as in SHADOW3 the

OEs are defined relative to the previous OE via the attribute

ðT IMAGEÞ. Alternatively, we could have defined this distance

relative to the second slit with the attribute ðT SOURCEÞ. Thus,

the ray trace sequence for the PGM is as follows:

(i) Slit 1, to handle blockage by the upstream edge of the

grating. Defined by �slit1 and mirror:T SOURCE (distance to

the mirror, equivalently, slit1:T IMAGE).

(ii) Mirror, to deflect the rays to meet the grating. Defined

by mirror:OFFY and mirror:T IMAGE (distance to the

grating).

(iii) Grating, to disperse the rays. Defined by

grating:OFFY and ðgrating:T IMAGEÞ (distance to slit 2).

(iv) Slit 2, to handle the blockage by the downstream corner

of the mirror. Defined by �slit2.

All parameters needed to fully model a PGM using

SHADOW3 are therefore known:

(i) Sizes of the OEs (native to SHADOW3).

(ii) Angles � and � [native to SHADOW3, but calculated

using pyplanemono (Wang et al., 2025)].

(iii) Mirror reflectivities [native to SHADOW3 (Lai &

Cerrina, 1986)].

(iv) Grating efficiencies [calculated using MLgrating

(Walters et al., 2024)].

(v) Mirror and grating translations relative to the beam

(this work).

(vi) Positions of the two fictitious slits (this work).

A model of the B07c beamline at Diamond Light Source

(Held et al., 2020) was constructed in ShadowOui (Rebuffi &

Sanchez del Rio, 2016) and, using the Info post-processor, a

Python script was generated. The pyplanemono Python library

(Wang et al., 2025) was extended with an interface to the

SHADOW3 Python API. This configures all the OEs appro-

priately with the correct angles and offsets within the simu-

lation. Scans of energy, cff and diffraction order were

performed simultaneously using the Python internal multi-

processing library. By running 25 processes concurrently, the

complete simulation using precomputed grating efficiencies

took about 12 h to run on a machine with a 48-core Intel Xeon

CPU E5-2650 v4 @ 2.20 GHz.

3. Results

To understand the extent of higher-order contamination on

the B07c beamline, the flux for diffraction orders one through

four were simulated for an existing 400 lines mm� 1 Au-coated

laminar grating (Held et al., 2020). The energy ranges for the

different orders were scaled by the order; energies ranged

from 300 eV to 3000 eV for the first order (covering most of

the core beamline range), up to 6000 eV for the second order,

9000 eV for the third and 12000 eV for the fourth. Simulations

were performed at these energies over a range of cff values

between 1.05 and 3.0.

It is common for PGMs to have several mirror coatings and

several gratings that can be exchanged during operation. The

PGM at B07c has several possible mirror and grating combi-

nations. For the sake of conciseness, here we only present

results for the 400 lines mm� 1 laminar grating and Pt mirror

combination; however, the 600 lines mm� 1 blazed grating and

Pt mirror combination were also fully modelled, and the

results are included in the supporting information. We note

that all the non-PGM mirrors on the B07c beamline have Rh

coatings. The maximum energy of B07c is defined by the fixed

grazing angle (1.1�) of the first mirror M1c, which is located

before the PGM.

Fig. 3 plots the simulated flux at the sample at cff = 1.4 and

2.0, which are two values routinely used on the beamline. Note

that the x-axis plots the first order energy. Due to the nature of

diffraction from a grating, a PGM in a certain geometry will

also transmit integer multiples of the first order energy for

higher orders. As such, in order to understand the total flux

transmitted at a given first order energy setting, we must scale

the energy axes of the higher order flux curves by the reci-

procal of their respective orders; the scaled energies are

referred to as first order energy in subsequent discussions

and figures.
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Figure 3
Flux simulations carried out for orders 1–4 at (a) cff = 1.4 and (c) cff = 2.0.
Both are for the B07c Pt mirror and 400 lines mm� 1 grating combination.
Note that the x-axis plots first order energy, i.e. real photon energy
divided by order. Panels (b) and (d) show the same data but on a linear
y-scale.
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Comparison of our simulation with measured flux also

requires the introduction of a detector flux. The measured

signal of photodiodes, which are typically used to measure

photon flux at X-ray beamlines, is proportional to the product

of flux and photon energy, i.e.

Detector flux ¼
X

i2 fordersg

i� Fi E1st orderð Þ; ð14Þ

where Fi ðE1st orderÞ is the flux of the ith order at first order

energy. The detector flux gives a useful metric, as it much more

closely resembles what the beamline can measure. This

quantity is plotted in Fig. 3 with dashed lines.

Figs. 3(a) and 3(b) show that the lower value cff of 1.4

contains little higher-order contamination without overly

sacrificing first order flux below 1000 eV. The equivalent plots

are presented for cff = 2.0 in Figs. 3(c) and 3(d). The detector

flux is significantly higher, almost double that at cff = 1.4, but

the contribution from higher orders accounts for at least 50%

of the detector flux below 900 eV and up to 80% of the

detector flux at the very lowest energies. We note that, without

the results of our integrated modelling, it would be very

difficult to methodically choose an optimal cff value because

most of the methods of flux measurements are not energy-

resolved.

Furthermore, in Fig. 3, it is observed that with increasing

order the flux decreases. Although the spectrum of the

bending magnet produces higher flux at higher energy (up

to 4000 eV for B07c), the grating efficiency rapidly reduces

with increasing diffraction order. This means that, despite

the advantage higher orders have from the bending magnet

source, they are suppressed by the grating significantly.

However, second order flux still contributes appreciably to the

total flux at the higher cff of 2.0 [see both Figs. 3(c) and 3(d)].

The extent of the higher order transmission can be visua-

lized in the 2D parameter space of energy and cff. In Fig. 4 we

have followed the presentation style used in a previous study

(Sokolov et al., 2016), where the ratios of the transmitted

fluxes of orders two, three and four relative to the first order

flux are plotted as a function of energy and cff. From Fig. 4,

one observes that the second order contributes significantly

more than the third and fourth orders. Up to a first order

energy of �1500 eV (corresponding to the Rh L-edge in

second order), suppression of the second order is especially

poor, with contamination above 25%. This is problematic, as

this is in the core energy range of the beamline. The beamline

has found empirically that operating at a cff of 1.4 reduces the

higher-order contamination by a substantial amount. Our

simulations validate that decision, as Fig. 4(a) shows that a cff

value of 1.4 resides just at the lower edge of the region of high

first order flux [Fig. 4(a)] while minimizing the second order

flux [Fig. 4(b)].

Fig. 4 also shows a general trend of increased contamination

with increasing cff. To compare the performance between

different values of cff, we use an established definition of

spectral purity (Sokolov et al., 2016),

Spectral purity ¼
First order flux

Total flux
� 100%: ð15Þ
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Figure 4
Results presented as four heat maps of (a) first order flux as a function of cff and energy; and second (b), third (c) and fourth (d) order flux relative to the
first order flux as a function of cff and first order energy. Note the logarithmically scaled colour bars.



The contribution of first order flux should therefore ideally be

as close to 100% of the total flux. A selection of spectral

purities at different values of cff is plotted in Fig. 5. The

minimum in the spectral purity observed at all values of cff at

�320 eV is due to the first order flux being suppressed by the

Rh M5 edge. The deterioration of the spectral purity from cff =

1.1 to cff = 1.8 at lower energies is much more rapid compared

with higher values of cff, where the spectral purity slowly

plateaus at around 60% up to 1100 eV. The stagnation of the

decrease in spectral purity can be explained by the fact that

the angles are changing much more drastically as a function of

cff at lower values of cff, significantly changing the reflectivity

of the PGM mirror.

Drastic improvements in spectral purity are observed

independently of cff above 1100 eV and again above 1500 eV.

The first improvement can be accounted for by the M5 edges

of Pt and Au at around 2200 eV (1100 eV in first order energy)

due to the mirror and grating coatings, respectively, greatly

suppressing the transmission of second order flux. Similarly,

one observes an improvement at 1500 eV first order energy

with Rh L3 absorption. The mirrors and grating are acting as

de facto low pass filters, transmitting lower energies while

suppressing higher energies. The low pass filter property of

mirror reflectivities has been previously exploited to build

higher order suppressors (Sokolov et al., 2018; Frommherz et

al., 2010). Figs. 3(c) and 3(d) show that most of the contam-

ination at cff = 2.0 comes from the second order when the first

order energy is between 500 and 1000 eV. There is a smaller

contribution from the third order when the first order energy

is between 300 and 600 eV.

Held et al. (2020) report the detector flux for B07c at the

sample position at a cff of 2. The simulated detector flux, the

simulated first order flux and the measurements reported by

Held et al. (2020) are presented in Fig. 6(a). Fig. 6(b) plots the

ratio of the simulated flux at the sample position to the

measured flux. We note that for this particular case our

modelling of the PGM geometry (described in Section 2.5)

indicates that only part of the beam is reflected from the PGM

mirror above 1900 eV, highlighting the importance of accu-

rately representing the PGM in our model.

In Fig. 6(a), the simulated detector flux very closely

resembles that of the measurement. The drops in the

measured flux around 920 eV and 1840 eV are artefacts of the

silicon photodiode used to measure the flux and are due to

the Si K-edge viewed in second and first order, respectively.

Compared with the first order flux shown in Fig. 6(a) (dashed

purple line), the measured flux has discernible features that

negate the possibility of a pure first order transmittance.

However, the absolute flux in units of photons per second is

different between calculation and measurement. While the

measured flux peaks at 2 � 1011 photons s� 1, the simulation

peaks at around 6 � 1011. We believe that the most prominent

factor in this difference is related to bake-out induced

distortions in the horizontally deflecting first mirror M1 which

have been partially corrected by modifying the temperature of

the cooling water (Hand et al., 2019). The remaining aberra-

tions in the beam are likely to result in a large, non-Gaussian

horizontal beam profile at the exit slit. As the horizontal

opening of the exit slit was set at 0.8 mm (Held et al., 2020), a

significant part of the beam may not have been transmitted

through the exit slit. Note that the simulations presented here
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Figure 6
(a) Simulated detector flux (red) and the first order component (dashed
purple) compared with the measured flux at a cff value of 2 (Held et al.,
2020). (b) Ratio of the simulated detector flux to the measured flux in (a).

Figure 5
Spectral purities of the beam after the final OE as a function of energy.
The grey dotted lines at 1100 and 1500 eV in first order energy corre-
spond to absorption edges in the second order at 2200 eV and 3000 eV.



have assumed that the M1 slope errors are those achieved by

the supplier when the mirror was originally manufactured.

It is also not particularly surprising that there are larger

differences around the Pt and Au absorption edges (above

2100 eV), as here subtle differences in the surface chemistry

can make a big impact on the X-ray reflectivity.

Experimentally, higher order contamination can be detri-

mental to the quality of the data. Indeed, the beamline now

operates almost exclusively at a cff of 1.4 in the energy range

below 1200 eV (cf. Fig. 3). Using the detailed results from the

integrated model presented here, an optimized mode of

operation can be proposed.

There are two factors for consideration, one of first order

flux and the other of higher-order transmission. As the first

order flux is the one desired by the user, it stands to reason

that it should be maximized. The first order flux is plotted in

Fig. 7(a) as a function of cff and energy. In Fig. 7(b), the same

information is shown, but each point was normalized to the

maximum flux at the same energy. This allows for the visua-

lization of flux information in the region where the flux is

generally low, above the Pt and Au edges. Brighter areas

(closer to the value of 1.0) represent energy–cff combinations

where first order flux dominates, darker regions the opposite.

Generally, from Fig. 7(b), the optimal cff oscillates about a

value of �2.0. One may therefore be tempted (without

knowledge of the extent of higher-order transmission) to

operate around that cff.

One way to attempt to simultaneously maximize first order

flux and maximize higher order suppression is to introduce a

figure of merit (FoM) function which combines the two

properties. In the design of a higher order suppressor at

BESSY-II (Sokolov et al., 2018; Sokolov et al., 2016), the

following FoM function was proposed,

FoM ¼ log10

�
S2

�
� F1; ð16Þ

S2 ¼
F1

F2

; ð17Þ

where F1 and F2 are the first and second order fluxes,

respectively, and S2 is the suppression of second order. This

is a purely empirical equation that attempts to balance the

preference between first order flux and higher-order

suppression. The choice was made by Sokolov et al. to omit

orders higher than two, as the grating efficiency decays

significantly leading to low transmission and reflectivity, which

is in agreement with what we have observed in this work. The

FoM presented above has been calculated using our simula-

tion results and is presented in Figs. 7(c) and 7(d).

In Fig. 7(c) the FoM is plotted as written in equation (16),

and in Fig. 7(d) the per-energy-normalized equivalent of c is

shown. Up to around 1500 eV, where first order flux is rela-

tively high [Fig. 7(a)], the transmission of second order is also

high and therefore reduces the FoM [Fig. 7(c)]. In Fig. 7(d) a

fit is provided with the primary intention of providing a quick,

on-the-fly functional form that can be used to estimate the

best combination of energy and cff up to 2250 eV. A simple

linear function was used, with a best fit slope of 4.92 � 10� 4

eV� 1 and an intercept of 1.08. It should be noted that the FoM

does not consider the energy resolution, which generally

decreases with decreasing cff. At lower energies (<1000 eV),

the energy resolution provided by the B07c PGM is still

relatively high, so operating at low values of cff down to
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Figure 7
(a) First order flux as a function of energy and cff . (b) First order flux normalized to per energy. (c) The FoM function. (d) Data after being normalized at
each energy, in the same way as in (b). Note the discontinuity at 1100 eV due to the second order Pt and Au M-edge absorption; the same absorption
occurs at �2200 eV for the first order. The semi-transparent line in (d) shows a fit through the maxima to offer an accessible ‘rule-of-thumb’.



around 1.4 can still provide a sufficiently high energy resolu-

tion. However, depending on the user requirements for a

given experiment, in some cases it may be beneficial to deviate

from the linear fit and increase the cff somewhat to improve

the energy resolution.

4. Conclusion and outlook

In this article, we have presented a set of analytical expres-

sions and corresponding Python code which extend the

capabilities of SHADOW3 in accurately modelling PGM

beamlines. This work provides a collection of tools which

optimize the workflow for future simulations of soft X-ray

beamlines. The code and documentation are publicly available

at https://github.com/MBZN/pyplanemono/.

The newly proposed pipeline was used to carry out a

systematic simulation of the B07c beamline at Diamond Light

Source. The results presented here are highly convincing in

replicating larger structures of the measured energy spectrum

of the beamline. Looking at the data holistically, a set of

recommendations was made using a figure of merit function

described in the literature (Sokolov et al., 2018). A linear

fitting of the maxima of the figure of merit provides a trajec-

tory in energy–cff parameter space that one should follow to

maximize first order flux while minimizing higher order

transmission.

The modelling presented in this work primarily concen-

trated on the issue of higher harmonic contamination.

However, the established methodology can be applied to

simulate other beamline properties of interest, such as the

energy resolution. In the simulations presented here, the exit

slits of the PGM were fixed to be 100 mm in all cases. In reality,

the exit slit opening is adjusted in operation to modify the

energy resolution and the flux simultaneously. The software

tools described in this work straightforwardly allow compre-

hensive simulations to be performed as a function of exit slit

opening. More broadly, our work allows for extensive auto-

mated simulations to be performed which could potentially

help to optimize grating designs. The established workflow

reduces the amount of human input needed to a minimum,

making iterative simulations across energies, cff values, grating

line densities etc. both time-efficient and also more robust.

5. Related literature

The following references, not cited in the main body of the

paper, have been cited in the supporting information: Haynes

& Lide (2015); Henke et al. (1993); Peatman (1997).
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