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Aside from regular beamline experiments at light sources, the preparation steps

before these experiments are also worthy of systematic consideration in terms of

automation; a representative category in these steps is attitude tuning, which

typically appears in contexts like beam focusing, sample alignment etc. With the

goal of saving time and human effort in both writing and using such code, a

Mamba-based attitude-tuning framework is created. It supports flexible input/

output ports, easy integration of diverse evaluation functions and free selection

of optimization algorithms. With the help of Mamba’s infrastructure, machine

learning (ML) and artificial intelligence (AI) technologies can also be readily

integrated. The tuning of a polycapillary lens and of an X-ray emission spec-

trometer are given as examples for the general use of this framework, featuring

powerful command-line interfaces (CLIs) and friendly graphical user interfaces

(GUIs) that allow comfortable human-in-the-loop control. The tuning of a

Raman spectrometer demonstrates more specialized use of the framework with

customized optimization algorithms. With similar applications in mind, this

framework is estimated to be capable of fulfilling most attitude-tuning needs.

Also reported is a virtual-beamline mechanism based on easily customisable

simulated detectors and motors, which facilitates both testing for developers and

training for users, as well as the encapsulation of digital twins.

1. Introduction

In beamline experiments, apart from the main scan steps

(‘counting’, step scans or fly scans, and also including their

data processing), the preparation steps before them can also

be of considerable complexity, and therefore be of particular

interest in terms of automation. Representative categories in

these steps are beam focusing (Hong et al., 2021; Xi et al.,

2017) and sample alignment (Robertson et al., 2015; Zhang et

al., 2023a) etc. At HEPS, the High Energy Photon Source (Xu

et al., 2023), and BSRF, the Beijing Synchrotron Radiation

Facility, we refer to these steps as attitude tuning, borrowing

the term ‘attitude’ from aerospace engineering (the term

‘configuration’ could also be considered, but would be very

ambiguous). In our eyes, the essence of attitude tuning is the

optimization of certain objective parameter(s) by manual or

automated tuning of the corresponding attitude parameters:

e.g. the automatic focusing of cameras is the automatic opti-

mization of some image definition functions by tuning para-

meters like focal lengths. From the information we have

collected from BSRF and HEPS and our colleagues’ visits to

other facilities, we find attitude tuning a ubiquitous require-

ment at these facilities. Given this background, we find that
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most of them are essentially peak finding, albeit often in >1D

configuration spaces.

As HEPS and other advanced light sources have small light

spots and high brightness, traditional scan-based methods for

attitude tuning could not only waste a lot of time (especially in

>1D tuning applications; see Section 3 for one example), but

also potentially result in more radiation damage to samples.

Also, considering that attitude-tuning requirements need to be

implemented for the 15 beamlines in Phase I of HEPS, it is

imperative for us to create an efficient and unified software

framework for attitude tuning. Fortunately, Mamba (Liu et al.,

2022; Dong et al., 2022), the Bluesky-based (Allan et al., 2019)

software environment created for beamline experiments at

HEPS, was also designed with attitude tuning and other

preparation steps in mind from the very beginning. Based on

Mamba, we have created a versatile framework for attitude

tuning, where peak finding can be done in a simple, consistent

and maintainable way. The code for our framework is avail-

able as part of the open-source edition of Mamba at https://

codeberg.org/CasperVector/mamba-ose; in the event of future

changes, this paper refers to version 0.4.4 of it at https://

codeberg.org/CasperVector/mamba-ose/src/commit/47698067.

Although conceptually simple, beamline attitude tuning can

often be complex in practice. While often separable from the

main scan steps and therefore operated by beamline staff,

attitude tuning can also become intertwined with the experi-

ments and may need to be done by regular users. Camera-

assisted automated sample changing can be regarded as an

example of user-oriented tuning; to us, the main challenge with

this kind of tuning is the necessity of a friendly graphical user

interface (GUI). Many kinds of devices can be involved, which

can again vary greatly across different applications. As well as

diverse types of detectors and motors, compound or special

devices like monochromators and robots may also be used;

another major type of device that has recently seen rapid

growth in use is digital twins (Feuer-Forson et al., 2024; Whittle

et al., 2022). In many cases, the objective parameters are

obtained in straightforward ways, e.g. by counting 0D/1D/2D

detectors and perhaps applying region-of-interest (ROI)

processing. Sometimes the processing can be more compli-

cated, and sometimes the objective value after each move may

even need to be obtained by a scan of some sort (ptycho-

graphy, tomography etc.). For light sources that can produce

small light spots, attitude tuning based on ptychographic

wavefront measurement (Takeo et al., 2020) is particularly

crucial. Many optimization algorithms are available: single-

objective or multi-objective, local or global, unbounded or

bounded, gradient-free or gradient-based etc. With recent

advances in machine learning (ML) and artificial intelligence

(AI), their applications in attitude tuning, e.g. Bayesian opti-

mization strategies (Morris et al., 2024; Rebuffi et al., 2023)

and data processing pipelines empowered by deep learning

(Zhang et al., 2024), are also increasingly common. In

Section 2, we will see how these complexities are dealt with in

our attitude-tuning framework, while the cost of imple-

mentation in each case is kept close to the minimum.

2. Architecture of the attitude-tuning framework

As has been noted in Section 1, we treat attitude tuning as a

matter of numerical optimization; therefore the architecture

of a general-purpose attitude-tuning framework (Fig. 1) will

inevitably include some attitude parameters, some objective

parameter(s) and an optimization algorithm. Moreover, since

the objective parameter(s) are actually obtained by physical

measurement instead of purely mathematical computation,

the architecture also needs to include detectors, motors and

evaluation functions which convert the raw data from the

detectors into objective values. Given these architectural

elements, we implemented the AttiOptim class which

cooperates with Bluesky’s unified interfaces for motors

and detectors, as well as optimization libraries like

scipy:optimize. The functions get xð Þ, put xð Þ and

get yð Þ in this class deal with motors and detectors by

interacting with their Bluesky encapsulations. The function

wrapð Þ combines specified processing/evaluation functions

with put xð Þ and get yð Þ into functions with a seemingly

purely mathematical signature, which are required by libraries

like scipy:optimize (Fig. 2).

In Section 3, we will see real-world applications of our

framework, using AttiOptim, on a polycapillary lens and an

X-ray emission spectrometer. The former is more general,

with a straightforward processing/evaluation function; the

latter is more specialized, and demonstrates the use of a much

more complex evaluation function. Then, in Section 4, we will

see an even more specialized application of our framework on

a Raman spectrometer, where the ‘optimization algorithm’

interface (see also Section 5) is ‘abused’ to do parallelized

peak finding of multiple objective parameters, as well as a task

that is not even numerical optimization at all. By customizing

get xð Þ and put xð Þ, it is also possible to manipulate

general motor-like devices, including monochromators and

robots that expose motor-like interfaces. This is based on

Bluesky encapsulation on top of EPICS IOCs and/or Python
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Figure 1
Architecture of the attitude-tuning framework based on AttiOptim.
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IOCs (Li et al., 2024), or in a few cases direct Bluesky

encapsulation of devices (Li et al., 2023a); in Section 4, a

virtual-beamline mechanism will be introduced, which can

also be used to encapsulate digital twins. With more advanced

customization of get yð Þ and wrapð Þ, it is also possible to

encapsulate procedures succinctly to obtain objective values

from scans as ‘mathematical’ functions; one example for this

will be covered in Section 5.

It can be seen from the above that our attitude-tuning

framework handles the complexities resulting from the

diversity of devices and the need sometimes to obtain objec-

tive values from scans by careful modularization. To put it

another way, while AttiOptim may appear simple, based on

it our framework delegates the tasks in attitude tuning to

other dedicated components: device encapsulation to

Bluesky, scans (including their data pipelines) to Mamba etc.

The same approach is followed for the other complexities

noted in Section 1; in this way, our framework helps devel-

opers to compose building blocks in attitude tuning with

maximum freedom yet minimal effort. We place no artificial

restrictions on the optimization algorithms, as long as

they are encapsulated under interfaces similar to

scipy:optimize:minimizeð Þ. ML-based optimization can

also be used, and ML/AI-based data pipelines can be inte-

grated just like their regular counterparts. With the submit/

notify pattern (Li et al., 2024) based on the separation between

backends and frontends, GUIs can be implemented with

minimal amounts of code and degrees of coupling. In combi-

nation with minimal command-line interfaces (see Fig. 2 for

one example) and implementations of the tuning logic behind

them, they minimize the cost of attitude-tuning applications

for both developers and users. From the information we have

collected from HEPS, BSRF and other facilities, even with

all the complexities above, among all the attitude-tuning

requirements at these facilities, most are still peak finding in

essence. For these reasons, we believe our framework is

general enough to handle these kinds of application scenarios,

saving great amounts of time and energy while only requiring

very modest amounts of programming.

Although our attitude-tuning framework supports free

selection of optimization strategies, in our own applications

based on it we still have a certain preference for some stra-

tegies, which is the subject of the rest of this section. In Section

3, we have chosen the local Nelder–Mead algorithm instead of

e.g. the global ML-based Bayesian optimization, and a two-

pass tuning strategy for the polycapillary lens instead of a one-

pass strategy tuning all the axes, and we enforce limits on the

numbers of optimization moves instead of solely relying on

natural convergence of the algorithms [Figs. 3, 4 and 7(a)].

These are because we have learned from prior experience that

the behaviours of the objective parameters are suitable for

local optimization, and in the polycapillary case suitable for

separate tuning of the two groups of axes, both of which help

to save time. A limited financial budget results in the use of

motors without encoders and a preference for simple

resource-efficient algorithms. Both factors make the Nelder–

Mead algorithm preferable in practice, and the former

(together with the decaying beam current of BSRF, Section 3)

also results in a lower total cost when letting the operator

decide the convergence. The minimization of complexity/cost,

or in other words approaching complexity lower bounds, is

the main theme throughout our works. The observation by

Graham (2002) about the succinctness of programming

languages may be interpreted as a proposition that the amount

of information a human can process in a fixed period of time is

constant. This leads to the corollary that human intelligence

coincides with the capability to minimize complexity/cost,

which also corresponds neatly to Hutter’s (2020) treatment of

AI as a matter of information compression. Therefore we

advocate for the collaboration and coevolution of AI with

human intelligence. With an AI, we would ultimately expect

solutions similar to those above, given similar problems and

constraints; as a first step, it should be able to recognize

autonomously the suitability of local optimization and the

separability between different groups of axes.

3. General attitude tuning: a polycapillary lens and an

X-ray emission spectrometer

Our first example concerns the polycapillary lens on the 4W1B

beamline at BSRF, which has four motorized degrees of

freedom: a pitch/tilt angle (M:mCapiPitch), a yaw/pan angle

(M:mCapiYaw), a horizontal shift (M:mCapiH) and a vertical

shift (M:mCapiV). Based on prior experience, they are split
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Figure 2
Notable fragments of lib 4w1b:py with brief usage notes.



into two groups; the rotational parameters are the coarse

tuning parameters, and the translational parameters are the

fine tuning parameters, where the former usually need to be

tuned before the latter. The goodness of the lens’ attitude is

determined by the readings from a Keithley 6482 picoammeter

(D:k6482), which is connected to a photodiode temporarily

placed next to the lens when attitude tuning is performed. The

code fragments used for this tuning based on our framework,

init capi:py and lib 4w1b:py, are available in the

supporting information. The former mainly does Bluesky

encapsulation of the devices involved, while the latter (with

notable fragments and brief usage notes in Fig. 2) contains the

tuning logic. Online visual feedback of the tuning procedure

can be done with our general-purpose GUI for attitude tuning,

mamba:attitude:capi frontend (Fig. 3). A more

feature-complete version of the GUI is shown in Fig. 7(a),

which most notably allows for the manual selection of axes

(called x and y therein) for the 2D visualization in the right-

hand pane; otherwise the GUI would automatically select the

axes based on the latest data update.

Attitude tuning for the polycapillary lens on 4W1B at BSRF

needs to be done roughly once per day during normal

operation of the beamline, where it used to be done by manual

trial and error, each time costing around half an hour. With

our attitude-tuning framework, the procedure has been

greatly accelerated and simplified, costing just a few minutes

each time and demanding much less manual intervention. For

historical reasons, scan-based tuning had not been used on the

beamline, but it is pretty clear from Fig. 3 that this approach

would be significantly less effective. Two-dimensional grid

scans would be slow, while 1D scans would need quite a

number of re-scans for convergence, considering that the

latter are essentially a non-optimal iterative line-search

strategy. Also adding to the complexity is the decaying beam

current of the storage ring when the underlying facility, the

Beijing Electron–Positron Collider II (BEPC II), is running in

its decay mode. We are also aware of the potential need to

tune multiple groups of attitude parameters, where not all

groups are tuned according to the same objective parameter.

In response, our framework is designed to be capable of multi-

objective tuning. A simple example is given in the files

docs=init capi:py and docs=lib capi:py from the

open-source edition of Mamba. In the general-purpose

visualization GUI [Fig. 7(a)], the objective parameter to

visualize can be selected from the z-axis menu.

Another example for our attitude-tuning framework relates

to a full-cylindrical von Hamos spectrometer (Guo et al., 2023)

for X-ray emission spectroscopy (XES), currently used on

4W1B at BSRF. It is also planned to be used on the high

pressure beamline (B6), the X-ray absorption spectroscopy
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Figure 3
Attitude tuning of the polycapillary lens on 4W1B at BSRF. In the bottom left is a command-line backend window where commands provided
by lib 4w1b:py can be entered; other windows on the bottom monitor the detector readings and motor positions. At the top is the
mamba:attitude:capi frontend window, where 1D and 2D projections of the motion trajectories in the configuration space are monitored. In this
window, brighter dots indicate better values for the evaluation function; in the 1D view in the left-hand pane, better values are also plotted with lower
vertical coordinates. We also note that the convergence of the tuning procedure was decided by the operator, mainly depending on the detector readings
after repeated runs, as the motors involved had no encoders and BEPC II was running in its decay mode.

http://doi.org/10.1107/S1600577525003960


beamline (B8) and possibly other beamlines at HEPS. Bragg

reflection from the analyser of the spectrometer produces

circular patterns in images acquired from the detector (Fig. 4).

The pitch/tilt and yaw/pan angles are tuned to optimize the

shape of the circle, so that the sharpest peak is obtained on the

radial distribution curve shown on the lower pane of the main

window in the figure. More precisely, the half-maximum

region of interest (HM-ROI) is computed for the radial

distribution, and then the mean intensity in this ROI is used as

the objective parameter. From the description above it can

already be seen that for the tuning of this spectrometer, the

processing/evaluation function needed must have a non-trivial

complexity. But in addition to this, another main source of

complexity is the selection of the centre (origin) of the circles,

where inappropriately selected origins can result in distorted

peaks and non-optimal attitudes. According to actual tests, the

simple barycentre algorithm often fails to find an optimal

origin, and we currently use numerical optimization of the

HM-ROI mean mentioned above over candidates for the

origin.

Noting that automated origin selection is a computationally

expensive procedure, which however only needs to be done

after significant changes to the attitude, we decided to use a

human-in-the-loop approach for it. An ‘Auto origin’ button is

provided in the GUI [see the more feature-complete version

in Fig. 7(a)] for automated fine tuning of the origin, whose

coarse selection can be done manually by dragging the origin

crosshair shown in the GUI. In the light of the analyses above,

we wrote a specialized attitude-tuning program for this XES

spectrometer as mamba:attitude:xes backend and

mamba:attitude:xes frontend, where the latter is the

main GUI shown in Fig. 4. Considering that radial distribu-

tions and raw images are the main data wanted by users in

normal data acquisition (‘counting’) after attitude tuning has

been done, this program is also written with normal counting

in mind. The GUI provides features desired by users, like

setting the acquisition time and saving experiment data. XES

attitude tuning is normally done by beamline staff, and the

tuning procedure (except for origin selection) is already

convenient enough for them on a command line, so there

is no GUI button for it. Other than the general-purpose

mamba:attitude:capi frontend (as with the poly-

capillary lens above), visualizations in the specialized GUI will

also be automatically updated after each move in the tuning

procedure.

4. Specialized attitude tuning: an XRS spectrometer

Among the instruments on the hard X-ray high-resolution

spectroscopy beamline (B5) of HEPS, currently under active

construction, is an X-ray Raman scattering (XRS) spectro-

meter. Structurally similar to the spectrometer discussed by

Huotari et al. (2017), the XRS spectrometer on B5 at HEPS

has six analyser modules, each containing a detector and a
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Figure 4
Attitude tuning of an XES spectrometer on 4W1B at BSRF. The main window shows the image acquired from the detector, where the circular pattern
can be observed, and its shape needs to be optimized. Also shown are the radial (bottom) and angular (irregular curve in the top left) distributions
computed from the image. The ROI and origin used in the computation are shown (and can be modified), respectively, with the rectangle and the
crosshair in the top left.



3 � 5 array of analysers, where each analyser has three

motorized degrees of freedom – one longitudinal shift and two

latitudinal angles. As shown in Fig. 5, latitudinal tuning (x1 and

x2 for each analyser) moves the X-ray spots around on the

detectors, while longitudinal tuning (x0 for each analyser)

focuses the spots. After the spots are properly distributed and

each of them is correctly assigned to the corresponding

analyser, focus tuning is performed. All these steps can be

done in the GUI of our specialized attitude-tuning program

for this spectrometer, mamba:attitude:raman backend

and mamba:attitude:raman frontend. Spot distribution

is done manually with visual aid from the GUI, spot assign-

ment (ROI detection followed by ROI matching) is auto-

mated, and focus tuning is automated and parallelized. Due to

the use of multiplexers for motion controllers (Li et al., 2024),

the motors in each analyser module are separated into

multiple groups, where two motors in the same group cannot

be moved at the same time. Consequently, in our program the

parallelization of focus tuning is done in multiple passes: the

first motor in every longitudinal group, then the second etc.

Focus tuning of the XRS spectrometer on B5 at HEPS is

based on a 2D generalization of the HM-ROI mean in

Section 3 as the objective parameter. Other than its applica-

tion on spectrometers in this paper, similar evaluation func-

tions have also been used in a few other scenarios, e.g. the

standalone X-ray beam-position monitor (XBPM) program

presented by Li et al. (2024) based on images from area

detectors. The optimization is implemented by multiple calls

to max parascanð Þ, a function that optimizes, in parallel,

the objective parameter for each ROI in the list of ROIs

passed to this function. This function’s signature is similar to

e.g. scipy:optimize:minimizeð Þ, except that its objective

function produces a 1D numerical array instead of a 0D

number. Internally, it first does a coarse inner-product scan [cf.

scanð Þ from Bluesky] for elements of the input parameter,

then does a fine inner-product scan of the input elements in

the reverse direction, and finally sets the input elements to

the peak positions (see Fig. 9 for details). ROI matching is

implemented with perm diffmaxð Þ, a function with a

signature similar to max parascanð Þ; its ‘objective function’

computes all X-ray spots’ barycentres inside their HM-ROIs

(which are also used in the XBPM program mentioned

above), as well as the distance from each barycentre to a

corresponding reference position. For each analyser,

perm diffmaxð Þ sets the reference positions to the initial

positions of the barycentres. It then changes the latitudinal

parameters of this analyser in small steps until a spot/ROI

stands out with a significantly larger distance than all the rest.

This outstanding ROI is assigned to the current analyser and

the latitudinal parameters are reset to the original values.

After that the reference positions are updated to counteract

potential motor backlashes, and then perm diffmaxð Þ

moves on to the next analyser. Finally, perm diffmaxð Þ

returns the mapping table from ROIs to analysers, which is

applied in the command-line backend and GUI frontend of

our program.

To finish this section, we note that while max parascanð Þ

and perm diffmaxð Þ differ from

scipy:optimize:minimizeð Þ, they are actually more like

scipy:optimize:least squaresð Þ (see also Section 5).

The latter may be seen as the simplest kind of optimization

that considers multiple objective parameters simultaneously

instead of successively, unlike the docs=lib capi:py case

in Section 3. This proves the capability of our attitude-tuning

framework to do fully fledged multi-objective tuning (Zhang

et al., 2023b; Rebuffi et al., 2023), noting that it is easy to

substitute least squares with other multi-objective algorithms.

Here we also briefly introduce the virtual-beamline mechanism

which we now use extensively, both in attitude tuning and in

other applications. First, based on the motorMotorSim and

ADSimDetector modules in EPICS, we are already able to

perform many kinds of simulations, also including those

independent of Bluesky, e.g. the Python IOC for motor

multiplexers described by Li et al. (2024). We note that the

former is especially useful because of its realistic simulation of

motor speeds, soft limits etc. Second, we also created the

butils:sim module for Mamba, which provides useful and
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Figure 5
GUI of our XRS attitude-tuning program, doing (a) ROI matching and
(b) focus tuning; the pictures are obtained from a laser-based simulation
of what would eventually be done with X-rays at HEPS. Motor motion
and ROI editing can be done in the top right-hand pane; ROIs can also be
modified with mouse operations on ROI rectangles in the top left-hand
pane, and/or with drag-and-drop operations of table rows in the top right-
hand pane. Automated tuning is currently only implemented for a single
analyser module, while parallelized tuning of multiple modules will be
implemented in the future. Apart from a GUI with a quite different
appearance, the latter would also require coordination between multiple
threads responsible for the tuning of the analyser modules. This is
because the spectrometer on B5 at HEPS uses Lambda Flex detectors,
where multiple detector heads on the analyser modules belong to the
same detector unit and are not triggered individually.



easy-to-use simulation device classes that expose interfaces

similar to those of Bluesky’s classes for real devices. For

example, the SimMotorImage class (Fig. 6) implements a

virtual device that binds to a simulation function and some

motor-like device object(s), whether real motors, simulated

motors like those based on motorMotorSim, or even things

like the energies of monochromators; it produces readings

according to the device positions and the simulation function.

Based on the mechanisms above, we are able to create virtual

beamlines to test programs and train both staff and users,

saving much beamtime and allowing for the development of

software before the required instruments are fully ready. For

instance, with virtual beamlines we can test our attitude-tuning

programs (Fig. 7; all the simulation code is available in the

docs subdirectory of the open-source edition of Mamba)

extensively before their tests on real hardware, and often only

need minor tweaks/fixes in later tests. We also note that this

mechanism may also be used to encapsulate digital twins;

apart from simulations oriented towards testing and training,

it may also facilitate information feedback from the optimi-

zation procedure (where real-world measurement takes place)

to the digital twins (Whittle et al., 2022).

5. Outlook and discussion

The examples in Sections 3 and 4 have demonstrated the use

of complex evaluation functions and customized optimization

algorithms in our attitude-tuning framework. Among the

complexities summarized in Section 1, the only one not yet

responded to in this paper is the use of objective parameters

derived from scans. Our example for that is a reimplementa-

tion of the alignment scheme of Zhang et al. (2023a) for the

rotation axis in tomography (Fig. 8), whose code is given in the

files docs=init tomo:py and docs=lib tomo:py from

the open-source edition of Mamba. As can be seen from

docs=lib tomo:py, with the MambaPlanner mechanism (Li

et al., 2023b), simple step scans are encapsulated under easy-

to-use interfaces like P:grid scanð Þ, and their data

processing pipeline can also be easily customized, e.g. for the

handling of high-throughput data. More complex scans can

also be done in similar ways, e.g. regular grid fly scans with

P:fly gridð Þ, which can be very helpful in speeding up

attitude tuning based on e.g. ptychography or tomography.

With the examples above, and noticing the architectural

versatility of our attitude-tuning framework (Section 2), we

believe this framework is able to cover most attitude-tuning

needs in a simple and maintainable way, especially during the

normal operation of facilities/beamlines. On the other hand,

we are also exploring the use of our framework during the

construction phase of facilities/beamlines, where the relations

between attitude parameters and objective parameters would

often be much more complicated. We are also aware of

requirements outside of beamlines that structurally resemble

attitude tuning, e.g. the tuning of accelerators (Emery et al.,

2021; Whittle et al., 2022) and the calibration of detectors (see

the xspress3-autocalib program for the Xspress3 readout

system for silicon drift detectors and high-purity germanium

detectors); collaboration toward these directions has also

been envisioned.
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Figure 6
A virtual device connected to three motorMotorSim-based motors, based
on the Rosenbrock function widely used to test optimization algorithms,
perturbed by a random noise.

Figure 7
Our (a) XES and (b) XRS attitude-tuning programs running with virtual
beamlines. In comparison with its counterpart in Fig. 4, the window in
panel (a) on the left is extended with widgets to set the ‘counting’
parameters for regular users, and an ‘Auto origin’ button for automated
fine tuning of the origin. In comparison with its counterpart in Fig. 3, the
window in panel (a) at the bottom right is extended with widgets that set
whether to pause plotting, as well as whether to select automatically
which axes and objective parameter to visualize. When the former is
enabled, the added ‘Clear plot’ button can be used. When the latter is
disabled, the attitude parameters for the 2D projection in the right-hand
pane can be selected from the x- and y-axis menu, while the objective
parameter can be selected from the z-axis menu.



In the rest of this section, we would like to discuss a few

issues we have encountered with current numerical optimi-

zation libraries during their application in attitude tuning.

These issues originate from physical factors that are typically

less frequently considered in the field of numerical optimiza-

tion, and we hope the following discussions can raise mathe-

maticians’ awareness of them. One of them concerns the serial

nature of numerical optimization in attitude tuning: except

for the tuning of digital twins, attitude tuning is based on

manipulation of motor-like devices and readings from detec-

tors, which are in general not susceptible to parallelization.

Therefore acceleration strategies based on computational

parallelization of optimization algorithms, like genetic algo-

rithms, particle swarm optimization etc., would often be

unhelpful in attitude tuning. Furthermore, as the efficiency of

attitude tuning often depends not only on the number of

optimization moves, but also on the trajectory length due to

the movement of motors, optimization algorithms that aim to

shorten the trajectory may be a research direction worthy of

systematic consideration. We are glad to learn that Bayesian

optimization may take sampling expense (e.g. the movement

of motors) into account, and is also resistant to the noise issue

to be covered below. We hope other algorithms with similar

advantages, especially those not ML-based, can also be

explored. We additionally note that fly scans may be worth

special attention in this research direction, since they can

quickly sample large numbers of points on the motion

trajectories.

Another issue we find is the precision limits in manipulation

and measurement of physical systems, e.g. the step sizes of

stepping motors. They can lead to pathological behaviours of

some algorithms under certain conditions, which require

workarounds like fix zeroð Þ in the file lib 4w1b:py

(Section 3). On a deeper level, this is because of the

assumption in optimization algorithms that the readback

values of position are always equal to the setpoints. Similarly,

most optimization algorithms do not consider possible

measurement errors in the objective value, except for e.g.

those in the Noisyopt library (Mayer, 2016). Moreover,

depending on the evaluation function (e.g. the one in

docs=lib tomo:py), the objective value can have a lot of

small plateaux, which may even occur with noise at the same

time. A major type of algorithm that suffers from the three

issues above is gradient-based optimization, which works

badly in e.g. the docs=lib tomo:py case above: in

comparison with the Nelder–Mead algorithm, when

scipy:optimize:least squaresð Þ is used, the motors

often jump too far, and the convergence is more often slower

than on par or faster. In comparison with the minor noise

levels in attitude parameters and objective parameters that

stem from precision limits and measurement errors, hysteresis-

like effects (e.g. motor backlashes) and drifting of physical

systems (e.g. beam orbit drifting in accelerators and the decay-

mode operations of storage rings; see Section 3 for the latter)

can result in bigger problems, and may require special treat-

ment in the optimization algorithms used. For instance, for

multiple engineering reasons, the XRS spectrometer in

Section 4 has no limit switches or motor encoders, and instead

only has stopper blocks at the boundaries. So after a focusing

motor becomes stalled by a stopper, the effect in Fig. 9(b) will

be observed on the objective parameter. Consequently, the
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Figure 8
Alignment scheme used by Zhang et al. (2023a) for the rotation (yaw)
axis in tomography, reimplemented in our framework and running with a
virtual beamline, where the detector images acquired during tomographic
scans are monitored in the window in the upper right. To align the
rotation axis precisely perpendicular to the beam direction, a strongly
absorbing particle is added to a calibration sample, and its projection can
be seen from the detector images. The projection’s trajectory during a
tomographic scan with a non-optimal attitude (for the pitch and roll axes)
is an ellipse or a diagonal line, which gradually degenerates into a hori-
zontal line as the attitude improves. The tuning procedure is composed of
a coarse move computed from the initial shape of the trajectory according
to formulae available in the paper above, and then fine tuning of the
attitude based on numerical optimization of the shape.

Figure 9
Objective parameter curves of the max parascanð Þ algorithm for each
motor, where dots indicate scan points: (a) normal part of the coarse scan;
(b) part of the coarse scan that may appear when the motor is stalled by a
stopper; (c) the fine scan, which starts at the rightmost point where the
objective value rises above a first threshold in the coarse scan, and stops
when the objective value falls below a second threshold; (d) the final
move to the peak position, deemed by the algorithm as the centre of the
interval in the fine scan where the objective values were above the second
threshold; (e) intervals skipped by the fine scan to save time.



max parascanð Þ algorithm in Section 4 was designed with

resistance against this effect in mind, and this resistance can be

tuned with its threshold parameters.

6. Conclusion

The preparation steps in beamline experiments can be of

particular interest in terms of automation, and a representa-

tive category in these steps is attitude tuning, including beam

focusing, sample alignment etc. We find attitude tuning a

ubiquitous requirement at light sources, and most of these

requirements are peak finding in essence. Noting the nature of

advanced light sources and the complexity of requirements at

new light sources like HEPS, we have created a versatile

framework for attitude tuning based on Mamba. We treat

attitude tuning as a matter of numerical optimization, so based

on the elements of numerical optimization and physical

measurement, we implemented the AttiOptim class which

cooperates with Bluesky’s interfaces for motors and detectors,

as well as optimization libraries like scipy:optimize. Aside

from simple peak finding, by customizing AttiOptim it is

also possible to manipulate general motor-like devices, and to

achieve effects like using the results from a scan as the raw

data for each position. With help from Mamba’s infra-

structure, ML/AI technologies can also be easily integrated

into our attitude-tuning framework.

The first real-world example for our framework is the atti-

tude tuning of the polycapillary lens on beamline 4W1B at

BSRF, which demonstrates how to do simple peak finding with

straightforward processing/evaluation functions. Also intro-

duced with this example is a general-purpose visualization

GUI for attitude tuning, and the support for multi-objective

tuning in our framework. The next example is the tuning of a

von Hamos XES spectrometer on 4W1B at BSRF, which uses

a much more complex evaluation function. It also shows a way

that human-in-the-loop control can be integrated into attitude

tuning, where the human inputs are reused in normal

‘counting’ after the tuning. The final example is the tuning of

the XRS spectrometer on B5 at HEPS, where the ‘optimiza-

tion algorithm’ interface is ‘abused’ to do parallelized peak

finding of multiple objective parameters, as well as the auto-

mated assignment of X-ray spots to analysers which is not

numerical optimization at all.

With these examples, and noting the architectural versatility

of our framework, we believe it is able to cover most attitude-

tuning needs in a simple and maintainable way. Also reported

is a virtual-beamline mechanism based on easily customisable

simulated detectors and motors, which facilitates both testing

for developers and training for users, as well as the encapsu-

lation of digital twins. We note a few algorithmic issues in

attitude tuning, which stem from physical factors less

commonly considered in the field of numerical optimization,

and which may require attention from mathematicians: the

unsuitability of acceleration strategies based on computational

parallelization; the importance of shortening the trajectory of

optimization; the relevance of fly scans; the difference

between readback values and setpoints; measurement errors

and small plateaux in objective parameters; hysteresis-like

effects; and drifting of physical systems.
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