

ISSN 2414-3146

Received 15 January 2016 Accepted 21 January 2016

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; indole derivative; hydrogen bonding.

CCDC reference: 1449064

Structural data: full structural data are available from iucrdata.iucr.org

1-[(4-Methoxyphenyl)sulfonyl]-1*H*-indole-3-carbaldehyde

E. A. Jithesh Babu,^a K. S. Vinay Kumar,^b Chandra,^a M. P. Sadashiva^b and M. Mahendra^a*

^aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and ^bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India. *Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

In the molecule of the title compound, $C_{16}H_{13}NO_4S$, the mean plane of the indole ring system and that of the methoxyphenyl ring, which are bridged by a sulfonyl group, are inclined at a dihedral angle of 88.98 (9)°. The crystal structure is stabilized by intermolecular $C-H \cdots O$ hydrogen bonds.

Structure description

Indole is a nitrogen-containing bicyclic heteroaromatic compound comprising a sixmembered benzene ring fused to a five-membered pyrrole ring. Indole is one of the most important scaffolds in drug discovery and its derivatives are used as commercial drugs for many clinical applications (Zhang *et al.*, 2015) and as key building blocks for the preparation of biological and pharmaceutical agents. For example, they find use in antibacterial screening (El-Sayed *et al.*, 2016), antiviral studies (El-Sayed *et al.*, 2016) and as antitumour (Ma *et al.*, 2015) or antimalarial agents (Santos *et al.*, 2015). We have synthesized the title indole derivative and present its crystal structure here.

In the molecular structure, the bond lengths (Allen *et al.*, 1987) and angles of the title compound (Fig. 1) are generally within the normal ranges. The indole moiety is bridged by the N-bound sulfonyl group to the methoxyphenyl unit. The planes of the benzene ring and the indole ring system are inclined at 88.98 (9)°. The carbaldehyde and methoxy groups are in antiperiplanar and synperiplanar conformations with respect to the pyrrole and phenyl rings, as indicated by torsion angles of -172.8 (2) (C9–C8–C10–O11) and -1.7 (3)° (C19–C18–C21–C22). A weak intramolecular C3–H3···O14 hydrogen bond also affects the conformation of the molecule (Table 1). In the crystal, intermolecular C3–H3···O21 hydrogen bonds form chains of molecules along *b*. Additional

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C3−H3···O14	0.93	2.53	3.095 (3)	119
$C3-H3\cdots O21^{i}$ $C22-H22A\cdots O11^{ii}$	0.93 0.96	2.59 2.45	3.345 (3) 3.327 (3)	139 151

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Figure 1

Perspective diagram of the title molecule, shown with 50% probability displacement ellipsoids.

C22-H22A···O11 contacts further stabilize the packing, stacking molecules along the *b*-axis direction (Fig. 2).

Synthesis and crystallization

1*H*-Indole-3-carbaldehyde (3.4 mmol) was dissolved in *N*,*N*-dimethylformamide (DMF) and K₂CO₃ (4.1 mmol) was added. The solution was stirred for 15 min and then 4-meth-oxybenzenesulfonyl chloride (3.5 mmol) was added portionwise to the ice-cold solution. The reaction continued for 6 h and was monitored by thin-layer chromatography (TLC). On completion, the reaction mixture was diluted with water (50 ml). The aqueous layer was extracted with ethyl acetate (3 \times 20 ml) and the combined ethyl acetate layers were washed with brine (2 \times 25 ml). The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to afford the crude product. This was purified by column chromatography over silica gel (60–120 mesh)

Figure 2

The packing of the title compound, viewed along the *b*-axis direction.

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$C_{16}H_{13}NO_4S$
M _r	315.34
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	6.9942 (7), 8.2942 (9), 24.598 (3)
β (°)	96.814 (2)
$V(Å^3)$	1416.9 (3)
Z	4
Radiation type	Cu Ka
$\mu (\mathrm{mm}^{-1})$	2.20
Crystal size (mm)	$0.30 \times 0.25 \times 0.20$
Data collection	
Diffractometer	Bruker X8 Proteum
No. of measured, independent and	10500, 2291, 2220
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.038
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.584
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.106, 1.10
No. of reflections	2291
No. of parameters	200
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.22, -0.43

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

using hexane–ethyl acetate (8:2 v/v) as eluent. The pure compound was crystallized from ethyl acetate and hexane as colourless single crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

MM thanks UGC, New Delhi, Government of India, for the award of project No. 41-920/2012(SR) (dated: 25–07–2012). Also, KSV gratefully acknowledges UGC–BSR, New Delhi, for financial support.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2009). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Sayed, M. T., Suzen, S., Altanlar, N., Ohlsen, K. & Hilgeroth, A. (2016). Bioorg. Med. Chem. Lett. 26, 218–221.
- Ma, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). *Eur. J. Med. Chem.* 96, 173–186.
- Santos, S. A., Lukens, A. K., Coelho, L., Nogueira, F., Wirth, D. F., Mazitschek, R., Moreira, R. & Paulo, A. (2015). *Eur. J. Med. Chem.* 102, 320–333.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Zhang, M.-Z., Chen, Q. & Yang, G.-F. (2015). Eur. J. Med. Chem. 89, 421–441.

full crystallographic data

IUCrData (2016). **1**, x160141 [doi:10.1107/S2414314616001413]

1-[(4-Methoxyphenyl)sulfonyl]-1H-indole-3-carbaldehyde

E. A. Jithesh Babu, K. S. Vinay Kumar, Chandra, M. P. Sadashiva and M. Mahendra

1-[(4-Methoxyphenyl)sulfonyl]-1H-indole-3-carbaldehyde

Crystal data

C₁₆H₁₃NO₄S $M_r = 315.34$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.9942 (7) Å b = 8.2942 (9) Å c = 24.598 (3) Å $\beta = 96.814$ (2)° V = 1416.9 (3) Å³ Z = 4

Data collection

Bruker X8 Proteum diffractometer Radiation source: Bruker MicroStar microfocus rotating anode Helios multilayer optics monochromator Detector resolution: 10.7 pixels mm⁻¹ φ and ω scans 10500 measured reflections

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.039$ Hydrogen site location: inferred from $wR(F^2) = 0.106$ neighbouring sites S = 1.10H-atom parameters constrained 2291 reflections $w = 1/[\sigma^2(F_0^2) + (0.0496P)^2 + 1.4084P]$ where $P = (F_0^2 + 2F_c^2)/3$ 200 parameters 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

F(000) = 656 $D_x = 1.478 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 2291 reflections $\theta = 6.4-64.3^{\circ}$ $\mu = 2.20 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.30 \times 0.25 \times 0.20 \text{ mm}$

2291 independent reflections 2220 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 64.3^\circ, \ \theta_{min} = 6.4^\circ$ $h = -8 \rightarrow 8$ $k = -9 \rightarrow 8$ $l = -28 \rightarrow 28$ **Refinement**. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
S12	0.89891 (7)	0.41020 (6)	0.42187 (2)	0.0189 (2)
011	0.9913 (2)	0.4522 (2)	0.17498 (6)	0.0352 (5)
O13	1.0955 (2)	0.45093 (19)	0.43860 (6)	0.0244 (5)
O14	0.8108 (2)	0.27610 (18)	0.44527 (6)	0.0242 (5)
O21	0.4462 (2)	1.00075 (18)	0.43282 (6)	0.0245 (5)
N1	0.8930 (2)	0.3701 (2)	0.35443 (7)	0.0194 (5)
C2	0.7317 (3)	0.3124 (2)	0.31978 (8)	0.0187 (6)
C3	0.5632 (3)	0.2421 (3)	0.33293 (9)	0.0218 (6)
C4	0.4314 (3)	0.1927 (3)	0.28930 (9)	0.0263 (7)
C5	0.4673 (3)	0.2143 (3)	0.23517 (9)	0.0278 (7)
C6	0.6348 (3)	0.2847 (3)	0.22240 (9)	0.0253 (7)
C7	0.7704 (3)	0.3354 (3)	0.26557 (8)	0.0200 (6)
C8	0.9589 (3)	0.4099 (3)	0.26807 (8)	0.0210 (6)
С9	1.0265 (3)	0.4299 (3)	0.32206 (8)	0.0202 (6)
C10	1.0620 (3)	0.4573 (3)	0.22269 (9)	0.0252 (7)
C15	0.7541 (3)	0.5802 (3)	0.42364 (8)	0.0187 (6)
C16	0.8295 (3)	0.7300 (3)	0.41079 (8)	0.0219 (6)
C17	0.7212 (3)	0.8668 (3)	0.41341 (8)	0.0232 (6)
C18	0.5359 (3)	0.8571 (3)	0.42915 (8)	0.0209 (6)
C19	0.4582 (3)	0.7078 (3)	0.44049 (8)	0.0211 (6)
C20	0.5677 (3)	0.5690 (3)	0.43757 (8)	0.0214 (6)
C22	0.2546 (3)	1.0020 (3)	0.44815 (9)	0.0264 (7)
H3	0.53960	0.22880	0.36910	0.0260*
H4	0.31700	0.14430	0.29640	0.0320*
Н5	0.37590	0.18020	0.20700	0.0330*
H6	0.65720	0.29830	0.18620	0.0300*
Н9	1.14400	0.47640	0.33510	0.0240*
H10	1.18830	0.49330	0.23040	0.0300*
H16	0.95290	0.73660	0.40050	0.0260*
H17	0.77100	0.96620	0.40470	0.0280*
H19	0.33360	0.70120	0.45000	0.0250*
H20	0.51650	0.46900	0.44490	0.0260*
H22A	0.16780	0.95410	0.41950	0.0400*
H22B	0.21600	1.11110	0.45390	0.0400*
H22C	0.25190	0.94150	0.48130	0.0400*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
S12	0.0204 (3)	0.0209 (3)	0.0153 (3)	-0.0019 (2)	0.0015 (2)	0.0010 (2)

011	0.0343 (9)	0.0517 (11)	0.0205 (8)	0.0046 (8)	0.0076 (7)	-0.0002 (7)
O13	0.0192 (7)	0.0304 (9)	0.0226 (8)	-0.0017 (6)	-0.0015 (6)	-0.0006 (6)
014	0.0281 (8)	0.0224 (8)	0.0225 (8)	-0.0041 (6)	0.0050 (6)	0.0042 (6)
O21	0.0222 (8)	0.0228 (9)	0.0297 (8)	0.0008 (6)	0.0077 (6)	0.0027 (6)
N1	0.0191 (8)	0.0217 (9)	0.0175 (8)	-0.0026 (7)	0.0022 (7)	-0.0011 (7)
C2	0.0195 (10)	0.0148 (10)	0.0210 (10)	0.0010 (8)	-0.0006 (8)	-0.0020 (8)
C3	0.0221 (10)	0.0184 (11)	0.0251 (11)	-0.0009 (9)	0.0038 (8)	0.0001 (8)
C4	0.0205 (11)	0.0200 (11)	0.0374 (12)	-0.0030 (9)	-0.0004 (9)	-0.0011 (9)
C5	0.0264 (12)	0.0231 (12)	0.0312 (12)	0.0003 (9)	-0.0076 (9)	-0.0038 (9)
C6	0.0283 (12)	0.0257 (12)	0.0207 (10)	0.0038 (10)	-0.0026 (8)	-0.0012 (9)
C7	0.0219 (10)	0.0170 (11)	0.0210 (10)	0.0045 (9)	0.0021 (8)	-0.0003 (8)
C8	0.0219 (11)	0.0201 (12)	0.0213 (10)	0.0022 (8)	0.0044 (8)	-0.0002 (8)
C9	0.0176 (10)	0.0208 (11)	0.0226 (11)	-0.0010 (8)	0.0040 (8)	-0.0008 (8)
C10	0.0240 (11)	0.0276 (12)	0.0248 (12)	0.0055 (10)	0.0069 (9)	-0.0003 (9)
C15	0.0213 (10)	0.0210 (11)	0.0137 (9)	-0.0039 (8)	0.0013 (8)	-0.0003 (8)
C16	0.0212 (10)	0.0235 (12)	0.0220 (10)	-0.0034 (9)	0.0068 (8)	-0.0005 (8)
C17	0.0246 (11)	0.0204 (11)	0.0257 (11)	-0.0047 (9)	0.0073 (9)	0.0020 (9)
C18	0.0216 (10)	0.0247 (12)	0.0162 (9)	0.0001 (9)	0.0015 (8)	-0.0007 (8)
C19	0.0198 (10)	0.0243 (12)	0.0196 (10)	-0.0061 (9)	0.0046 (8)	-0.0007 (8)
C20	0.0229 (11)	0.0235 (12)	0.0182 (10)	-0.0047 (9)	0.0043 (8)	-0.0005 (8)
C22	0.0180 (10)	0.0339 (13)	0.0273 (11)	0.0008 (9)	0.0028 (8)	0.0009 (9)

Geometric parameters (Å, °)

S12—O13	1.4282 (15)	C15—C20	1.390 (3)
S12—O14	1.4256 (16)	C16—C17	1.370 (3)
S12—N1	1.6875 (18)	C17—C18	1.398 (3)
S12—C15	1.740 (2)	C18—C19	1.394 (3)
O11—C10	1.219 (3)	C19—C20	1.389 (3)
O21—C18	1.355 (3)	С3—Н3	0.9300
O21—C22	1.435 (3)	C4—H4	0.9300
N1—C2	1.414 (3)	С5—Н5	0.9300
N1—C9	1.389 (3)	С6—Н6	0.9300
C2—C3	1.387 (3)	С9—Н9	0.9300
C2—C7	1.405 (3)	C10—H10	0.9300
C3—C4	1.391 (3)	C16—H16	0.9300
C4—C5	1.396 (3)	C17—H17	0.9300
C5—C6	1.378 (3)	C19—H19	0.9300
С6—С7	1.402 (3)	C20—H20	0.9300
C7—C8	1.451 (3)	C22—H22A	0.9600
С8—С9	1.366 (3)	C22—H22B	0.9600
C8—C10	1.453 (3)	C22—H22C	0.9600
C15—C16	1.401 (3)		
S12…H3	3.0800	C6…H10 ⁱⁱ	2.8900
O11…C6	3.193 (3)	C7····H4 ^{vi}	3.0100
O11···C22 ⁱ	3.327 (3)	C7…H10 ⁱⁱ	2.8500
O11…C16 ⁱⁱ	3.170 (3)	C8····H4 ^{vi}	3.0500

		or a state	
011····C17 ⁿ	3.211 (3)	C10····H4 ^{vi}	3.0600
O13…C19 ⁱⁱⁱ	3.309 (3)	C16…H22A ⁱⁱⁱ	3.0000
O14…C3	3.095 (3)	C17···H22C ^{iv}	3.0300
O21···C22 ^{iv}	3.391 (3)	C18····H6 ^{vi}	3.0300
O21…C3 ^v	3.345 (3)	C18····H22C ^{iv}	3.0100
O11…H6	2.7100	C19…H22A	2.8800
O11····H22A ⁱ	2.4500	C19…H22C	2.6800
O11…H17 ⁱⁱ	2.7200	C20····H20 ^{viii}	3.0300
O11…H16 ⁱⁱ	2.6400	C22…H19	2.5500
O11····H4 ^{vi}	2.8400	H3…S12	3.0800
О13…Н9	2.6200	H3…O14	2.5300
O13…H16	2.7000	H3…O21 ^{vii}	2.5900
O13…H19 ⁱⁱⁱ	2.6600	H4…O11 ⁱ	2.8400
O14····H17 ^{vii}	2.7600	H4…C6 ⁱ	3.0400
O14…H19 ^{viii}	2.8800	H4…C7 ⁱ	3.0100
O14···H22C ^{viii}	2.6300	H4···C8 ⁱ	3.0500
014H20	2 6100	$H4\cdots C10^{i}$	3 0600
014H3	2 5300	H6O11	2 7100
$O21\cdots H3^{v}$	2 5900	$H6\cdots C18^{i}$	3.0300
$O21 \cdots H22C^{iv}$	2.8400	H0013	2 6200
C_{2} C_{10}^{ii}	2.0400	H10C5 ⁱⁱⁱ	3 0200
$C_{2} = C_{10}$	3,005 (3)	H10····C2×	3 0000
C_{2} O_{2} 1vii	3.095(3)	H10 C2	3.0000
C4C6i	3.343(3)		2 8000
C4C7	3.423(4)	H10C7x	2.8900
C5 C7	5.485 (3) 2.554 (2)	H10····C/*	2.8500
C5C7.	3.334 (3)		2.7000
	3.462 (3)	$H16\cdots H22A^{m}$	2.3600
	3.193 (3)		2.6400
	3.423 (4)		2.7600
C/C5vi	3.554 (3)	H17····OII ^x	2.7200
$C7\cdots C4^{v_1}$	3.485 (3)	H19…O13 ^{1x}	2.6600
C7…C10 ⁱⁱ	3.348 (3)	H19…C22	2.5500
C10…C2 ^x	3.494 (3)	H19…H22A	2.4700
C10…C5 ⁱⁱⁱ	3.462 (3)	H19…H22C	2.2400
C10…C7 ^x	3.348 (3)	H19····O14 ^{viii}	2.8800
C16…O11 ^x	3.170 (3)	H20…O14	2.6100
C17…O11 ^x	3.211 (3)	H20····C20 ^{viii}	3.0300
C17C22 ^{iv}	3.560 (3)	H22A…C16 ^{ix}	3.0000
C18····C22 ^{iv}	3.402 (3)	H22A…C19	2.8800
C19…O13 ^{ix}	3.309 (3)	H22A…H16 ^{ix}	2.3600
C20····C20 ^{viii}	3.511 (3)	H22A…H19	2.4700
C22O21 ^{iv}	3.391 (3)	H22A…O11 ^{vi}	2.4500
C22…C18 ^{iv}	3.402 (3)	H22C…C19	2.6800
C22…C17 ^{iv}	3.560 (3)	H22C…H19	2.2400
C22…O11 ^{vi}	3.327 (3)	H22C…O14 ^{viiii}	2.6300
C2…H10 ⁱⁱ	3.0000	H22C····O21 ^{iv}	2.8400
C5…H10 ⁱⁱ	3.0700	H22C····C17 ^{iv}	3.0300
C5…H10 ^{ix}	3.0200	H22C····C18 ^{iv}	3.0100
-			

C6…H4 ^{vi}	3.0400		
O13—S12—O14	121.04 (9)	O21—C18—C19	124.99 (19)
O13—S12—N1	103.91 (8)	C17—C18—C19	120.2 (2)
O13—S12—C15	110.15 (10)	C18—C19—C20	119.7 (2)
O14—S12—N1	106.37 (9)	C15—C20—C19	119.8 (2)
O14—S12—C15	109.96 (10)	С2—С3—Н3	122.00
N1—S12—C15	103.77 (9)	С4—С3—Н3	122.00
C18—O21—C22	118.58 (17)	C3—C4—H4	119.00
S12—N1—C2	125.72 (13)	C5—C4—H4	119.00
S12—N1—C9	123.61 (14)	C4—C5—H5	119.00
C2—N1—C9	108.54 (16)	С6—С5—Н5	119.00
N1—C2—C3	129.85 (18)	С5—С6—Н6	121.00
N1—C2—C7	107.24 (17)	С7—С6—Н6	121.00
C3—C2—C7	122.90 (19)	N1—C9—H9	125.00
C2—C3—C4	116.6 (2)	С8—С9—Н9	125.00
C3—C4—C5	121.4 (2)	O11-C10-H10	118.00
C4-C5-C6	121.7(2)	C8-C10-H10	118.00
C5—C6—C7	118.1(2)	C_{15} $-C_{16}$ $-H_{16}$	120.00
$C^2 - C^7 - C^6$	119 3 (2)	C17-C16-H16	120.00
$C_{2}^{-}C_{7}^{-}C_{8}^{-}$	107.10(17)	C_{16} C_{17} H_{17}	120.00
C6-C7-C8	133 61 (19)	$C_{18} - C_{17} - H_{17}$	120.00
C7—C8—C9	107.51 (18)	C18-C19-H19	120.00
C7 - C8 - C10	127 88 (18)	C_{20} C_{19} H_{19}	120.00
C9 - C8 - C10	124.6(2)	$C_{15} - C_{20} - H_{20}$	120.00
N1 - C9 - C8	121.0(2) 109 60 (19)	C_{19} C_{20} H_{20}	120.00
011 - C10 - C8	103.00(13)	021 - C22 - H22A	109.00
S12-C15-C16	118 52 (16)	021 - C22 - H22R	109.00
S12-C15-C20	121.20(19)	021 - C22 - H22C	109.00
$C_{16} - C_{15} - C_{20}$	121.20(1)	$H_{22}A = C_{22} = H_{22}B$	110.00
C_{15} C_{16} C_{17}	1199(2)	H22A - C22 - H22C	109.00
$C_{16} - C_{17} - C_{18}$	1201(2)	$H_{22}R_{-C_{22}}H_{22}C$	109.00
021-C18-C17	120.1(2) 114 8 (2)		109.00
021 010 017	111.0 (2)		
013— <u>812</u> —N1—C2	175.17 (15)	C3—C2—C7—C8	-179.4(2)
014 - 12 - 11 - 02	46 38 (17)	$C_{2}^{2} - C_{3}^{2} - C_{4}^{2} - C_{5}^{2}$	-0.5(3)
C_{15} S_{12} N_{1} C_{2}	-69.61(17)	C_{3} C_{4} C_{5} C_{6}	0.3(4)
013 - S12 - N1 - C9	-23.36(19)	C4-C5-C6-C7	-0.2(4)
014 - 12 - 11 - 29	-152.15(17)	$C_{5} - C_{6} - C_{7} - C_{8}$	1789(3)
C_{15} S_{12} N_{1} C_{9}	91 86 (18)	$C_{5} - C_{6} - C_{7} - C_{2}$	0.3(3)
N1 - S12 - C15 - C20	103 34 (17)	C_{2} C_{7} C_{8} C_{10}	-180.0(2)
014 - 812 - C15 - C16	169 75 (15)	$C_{6} - C_{7} - C_{8} - C_{9}$	-1790(3)
N1 - S12 - C15 - C16	-76.82(17)	C_{2}^{-} C_{7}^{-} C_{8}^{-} C_{9}^{-}	-0.3(3)
013 - S12 - C15 - C16	33 89 (19)	$C_{6} = C_{7} = C_{8} = C_{10}$	13(5)
014 - 812 - C15 - C20	-101(2)	C7-C8-C9-N1	0.9(3)
013 - 812 - C15 - C20	-145 96 (16)	C_{10} C_{8} C_{9} N_{1}	-1794(2)
$C_{22} = 0.21 = 0.12 = 0.12 = 0.20$	179 34 (17)	C7-C8-C10-O11	68(4)
$C_{22} = 0.21 = C_{10} = C_{17}$	-17(3)	C9-C8-C10-011	$-172 \ 8 \ (2)$
022 021 $010-017$	(5)		1/2.0 (2)

C9—N1—C2—C3	179.9 (2)	S12-C15-C20-C19	177.73 (15)
C2—N1—C9—C8	-1.2 (2)	C16—C15—C20—C19	-2.1 (3)
C9—N1—C2—C7	1.0 (2)	S12-C15-C16-C17	-178.04 (16)
S12—N1—C2—C7	164.81 (15)	C20-C15-C16-C17	1.8 (3)
S12—N1—C2—C3	-16.3 (3)	C15—C16—C17—C18	0.3 (3)
S12—N1—C9—C8	-165.41 (16)	C16—C17—C18—C19	-2.1 (3)
N1—C2—C3—C4	-178.2 (2)	C16—C17—C18—O21	176.95 (18)
N1-C2-C7-C8	-0.5 (2)	O21—C18—C19—C20	-177.17 (18)
C7—C2—C3—C4	0.6 (3)	C17—C18—C19—C20	1.8 (3)
N1-C2-C7-C6	178.5 (2)	C18—C19—C20—C15	0.3 (3)
C3—C2—C7—C6	-0.5 (3)		

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+2, y-1/2, -z+1/2; (iii) x+1, y, z; (iv) -x+1, -y+2, -z+1; (v) x, y+1, z; (vi) -x+1, y+1/2, -z+1/2; (vii) x, y-1, z; (viii) -x+1, -y+1, -z+1; (ix) x-1, y, z; (x) -x+2, y+1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H··· A	
С3—Н3…О14	0.93	2.53	3.095 (3)	119	
C3—H3···O21 ^{vii}	0.93	2.59	3.345 (3)	139	
C22—H22A····O11 ^{vi}	0.96	2.45	3.327 (3)	151	

Symmetry codes: (vi) -*x*+1, *y*+1/2, -*z*+1/2; (vii) *x*, *y*-1, *z*.