

ISSN 2414-3146

Received 19 December 2015 Accepted 21 December 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; L-methionine; succinic acid; hydrogen bonding.

CCDC reference: 1443737

Structural data: full structural data are available from iucrdata.iucr.org

L-Methionine-succinic acid (2/1)

M. Nageshwari, S. Kumaresan, M. Lydia Caroline,* G. Mani, C. Rathika Thaya Kumari, S. Sudha and P. Jayaprakash

PG and Research Department of Physics, Arignar Anna Government Arts College, Cheyyar 604 407, Tamil Nadu, India. *Correspondence e-mail: lydiacaroline2006@yahoo.co.in

The asymmetric unit of the title compound, $2C_5H_{11}NO_2S \cdot C_4H_6O_4$, comprises two crystallographically independent methionine residues, which exist in the zwitterionic form, and a neutral succinic acid molecule. Both methionine residues have a *gauche*-I conformation. In the crystal, the various components are linked *via* $O-H \cdots O$, $N-H \cdots O$ and $C-H \cdots O$ hydrogen bonds forming slabs parallel to the *ab* plane

Structure description

Methionine is a sulfur-containing amino acid which is essential for normal metabolism, growth and maintenance of body tissues (Sridhar *et al.*, 2002). In conjunction with our ongoing work on nonlinear optical crystals, among the 20 naturally occurring amino acids we have focused our interest towars methionine, which is one of the essential amino acids for humans. In this paper, the crystal structure of the product of the reaction of L-methionine with succinic acid is reported.

The molecular structure of the title compound is represented in Fig. 1. The asymmetric unit contains two methionine residues and a neutral succinic acid molecule. Both methionine residues exhibit a *gauche* I conformation. The bond distances C5–O6, C5–O5, C10–O7 and C10–O8 are 1.244 (9), 1.248 (9), 1.232 (9) and 1.260 (9) Å, respectively, indicating deprotonated carboxylate groups in each methionine residue. This unsymmetrical unit has bond angles O5–C5–O6 and O8–C10–O7 of 125.6 (7) and 124.7 (7) °, respectively. The backbone torsion angles Ψ 1 for the central methionine of O5–C5–C6–N1 and O6–C5–C6–N1 are 4.8 (9) and –176.1 (6)°, respectively. For the end methionine residue, the backbone torsion angles Ψ 1 of O7–C10–C11–N2 and O8–C10–C11–N2 are 5.8 (9) and –174.4 (6) °, respectively. The side-chain conformation for both methionine residues is *gauche* I *trans gauche* I. All possible rotational

Figure 1

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

isomers are found to exist in the methionine residues (Pandiarajan et al., 2002). In both the methionine residues, the straight side-chain conformation angles $\chi 1$ are in the gauche I form [70.9 (9) and 67.3 (9)°], χ^2 are *trans* [179.5 (6) and 177.6 (6)°] and χ 3 are again gauche I [71.9 (9) and 72.1 (9)°].

In the crystal, the various components are linked via O- $H \cdots O$, $N - H \cdots O$ and $C - H \cdots O$ hydrogen bonds, forming slabs parallel to the *ab* plane (Table 1 and Fig. 2). There are no direct hydrogen-bonding interactions between the succinic acid molecules. The methionine residues are interlinked through the succinic acid molecules. The crystal packing may be visualized as hydrogen-bonded triple layers, a characteristic feature of α -amino acids with hydrocarbon side chains, stacked in such a way that the hydrophobic side chains of the methionine molecules are facing close to each other with respect to succinic acid (Fig. 2).

Synthesis and crystallization

Colourless transparent single crystals of the title compound were obtained by slow evaporation of an aqueous solution of L-methionine and succinic acid, in a stoichiometric ratio of 2:1, over a period of 20 days.

Figure 2

The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1\cdots O5^{1}$	0.82	1.83	2.639 (7)	168
$O4-H4\cdot\cdot O7^{ii}$	0.82	1.84	2.647 (7)	169
$N1-H1C\cdots O1^{iii}$	0.90 (3)	2.59 (8)	3.133 (9)	120 (7)
$N1 - H1C \cdots O2^{iv}$	0.90 (3)	2.09 (7)	2.842 (8)	140 (9)
$N1-H1A\cdots O5^{iii}$	0.90 (3)	2.47 (8)	3.168 (8)	135 (9)
$N1-H1A\cdots O6^{iii}$	0.90 (3)	2.01 (4)	2.866 (8)	160 (10)
$N1 - H1B \cdots O6^{iv}$	0.90 (3)	2.03 (5)	2.897 (8)	161 (10)
$N2-H2C\cdots O3^{v}$	0.89	2.07	2.849 (8)	146
$N2 - H2D \cdots O8^{vi}$	0.89	2.07	2.904 (8)	156
$N2-H2E\cdots O7^{vii}$	0.89	2.45	3.169 (8)	139
$N2-H2E\cdots O8^{vii}$	0.89	2.01	2.875 (8)	163
C6−H6· · · O5 ^{viii}	0.98	2.26	3.206 (9)	162
C11−H11···O7 ⁱ	0.98	2.28	3.210 (9)	159
$C12 - H12B \cdots O8^{vii}$	0.97	2.65	3.415 (10)	136

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y - 1, z + 1; (iii) x - 1, y + 1, z; (iv) x, y + 1, z; (v) x + 1, y + 1, z - 1; (vi) x + 1, y, z; (vii) x + 1, y - 1, z; (viii) x - 1, y, z.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2 Experimental details.

Crystal data	
Chemical formula	$2C_5H_{11}NO_2S \cdot C_4H_6O_4$
M _r	416.50
Crystal system, space group	Triclinic, P1
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	5.0283 (4), 5.0580 (4), 20.8394 (18)
α, β, γ (°)	86.645 (2), 83.338 (3), 68.908 (5)
$V(Å^3)$	491.08 (7)
Ζ	1
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.31
Crystal size (mm)	$0.35 \times 0.30 \times 0.25$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD diffractometer
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2004)
T_{\min}, T_{\max}	0.873, 0.956
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8433, 3428, 3251
R _{int}	0.035
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.063, 0.171, 1.11
No. of reflections	3428
No. of parameters	244
No. of restraints	9
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.56, -0.38
Absolute structure	Flack x determined using 1325 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.06 (4)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008).

Acknowledgements

The authors thank the Sophisticated Analytical Instruments facility, Indian Institute of Technology IITM, Chennai, for providing scientific support in solving the crystal structure. The authors personally thank Professor Subramanian (Retired) Professor of Chemistry, Pachayappa's College, Kanchipuram, Tamilnadu, for his valuable suggestions.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

- Bruker (2004). *APEX2, SAINT, XPREP* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Pandiarajan, S., Sridhar, B. & Rajaram, R. K. (2002). Acta Cryst. E58, 0882–0884.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sridhar, B., Srinivasan, N., Dalhus, B. & Rajaram, R. K. (2002). Acta Cryst. E58, 0779–0781.

full crystallographic data

IUCrData (2016). **1**, x152459 [doi:10.1107/S2414314615024591]

L-Methionine-succinic acid (2/1)

M. Nageshwari, S. Kumaresan, M. Lydia Caroline, G. Mani, C. Rathika Thaya Kumari, S. Sudha and P. Jayaprakash

L-Methionine-succinic acid (2/1)

Crystal data

 $2C_{5}H_{11}NO_{2}S \cdot C_{4}H_{6}O_{4}$ $M_{r} = 416.50$ Triclinic, P1 a = 5.0283 (4) Å b = 5.0580 (4) Å c = 20.8394 (18) Å $a = 86.645 (2)^{\circ}$ $\beta = 83.338 (3)^{\circ}$ $\gamma = 68.908 (5)^{\circ}$ $V = 491.08 (7) Å^{3}$

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.873, T_{\max} = 0.956$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.171$ S = 1.113428 reflections 244 parameters 9 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Z = 1 F(000) = 222 $D_x = 1.408 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5997 reflections $\theta = 3.0-28.3^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.35 \times 0.30 \times 0.25 \text{ mm}$

8433 measured reflections 3428 independent reflections 3251 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 26.0^\circ, \theta_{min} = 3.0^\circ$ $h = -6 \rightarrow 6$ $k = -6 \rightarrow 5$ $l = -25 \rightarrow 25$

Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.048P)^2 + 1.4388P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.56 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 1325 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.06 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	-0.0929 (15)	-0.3017 (17)	1.2684 (3)	0.0267 (16)	
C2	0.0926 (16)	-0.1994 (15)	1.2208 (4)	0.0278 (16)	
H2A	0.1576	-0.0710	1.2419	0.033*	
H2B	-0.0187	-0.0941	1.1866	0.033*	
C3	0.3501 (15)	-0.4389 (17)	1.1917 (4)	0.0294 (17)	
H3A	0.4878	-0.3610	1.1701	0.035*	
H3B	0.4404	-0.5647	1.2262	0.035*	
C4	0.2765 (16)	-0.6065 (15)	1.1445 (3)	0.0256 (15)	
C5	0.2712 (15)	-0.2155 (15)	0.9996 (3)	0.0238 (15)	
C6	-0.0208 (14)	-0.0051 (14)	0.9834 (4)	0.0239 (15)	
H6	-0.1672	-0.0747	1.0051	0.029*	
C7	-0.0529 (17)	0.0129 (17)	0.9119 (4)	0.0340 (18)	
H7A	-0.0575	-0.1664	0.8990	0.041*	
H7B	-0.2363	0.1576	0.9048	0.041*	
C8	0.177 (2)	0.079 (2)	0.8687 (4)	0.050 (2)	
H8A	0.3612	-0.0645	0.8758	0.060*	
H8B	0.1809	0.2597	0.8811	0.060*	
C9	-0.165 (3)	0.420 (3)	0.7771 (6)	0.082 (4)	
H9A	-0.2084	0.4513	0.7330	0.122*	
H9B	-0.3287	0.4079	0.8041	0.122*	
H9C	-0.1182	0.5748	0.7906	0.122*	
C10	0.2140 (15)	0.6224 (16)	0.4123 (4)	0.0259 (16)	
C11	0.4113 (15)	0.3242 (15)	0.4278 (4)	0.0254 (15)	
H11	0.3531	0.1939	0.4047	0.030*	
C12	0.3860 (17)	0.2466 (18)	0.4989 (4)	0.0353 (18)	
H12A	0.1932	0.2486	0.5112	0.042*	
H12B	0.5166	0.0540	0.5049	0.042*	
C13	0.447 (2)	0.433 (2)	0.5437 (4)	0.045 (2)	
H13A	0.3217	0.6271	0.5365	0.054*	
H13B	0.6424	0.4248	0.5327	0.054*	
C14	0.709 (3)	0.027 (3)	0.6336 (7)	0.072 (4)	
H14A	0.7119	-0.0447	0.6773	0.108*	
H14B	0.6967	-0.1123	0.6057	0.108*	
H14C	0.8805	0.0655	0.6206	0.108*	
N1	-0.0777 (13)	0.2796 (12)	1.0094 (3)	0.0280 (14)	
N2	0.7110 (12)	0.2804 (13)	0.4033 (3)	0.0263 (13)	
H2C	0.7204	0.3274	0.3615	0.039*	
H2D	0.7744	0.3884	0.4250	0.039*	
H2E	0.8190	0.0991	0.4086	0.039*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

01	0.4981 (11)	-0.8243 (12)	1.1218 (3)	0.0378 (14)	
H1	0.4469	-0.9096	1.0963	0.057*	
O2	0.0410 (11)	-0.5487 (13)	1.1270 (3)	0.0389 (14)	
O3	-0.0496 (12)	-0.5422 (12)	1.2855 (3)	0.0370 (13)	
O4	-0.3294 (11)	-0.0864 (11)	1.2910 (3)	0.0364 (13)	
H4	-0.4281	-0.1485	1.3172	0.055*	
O5	0.4115 (11)	-0.1349 (11)	1.0347 (3)	0.0343 (13)	
O6	0.3459 (11)	-0.4561 (11)	0.9767 (3)	0.0338 (12)	
O7	0.3106 (11)	0.7815 (11)	0.3784 (3)	0.0332 (13)	
O8	-0.0432 (11)	0.6879 (11)	0.4360 (3)	0.0338 (12)	
S1	0.1337 (7)	0.0957 (6)	0.78374 (14)	0.0737 (10)	
S2	0.4020 (6)	0.3478 (6)	0.62834 (14)	0.0685 (9)	
H1C	-0.08(2)	0.28 (2)	1.0528 (13)	0.082*	
H1A	-0.245 (11)	0.40 (2)	0.997 (4)	0.082*	
H1B	0.065 (15)	0.34 (2)	0.992 (4)	0.082*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.019 (4)	0.031 (5)	0.030 (4)	-0.009 (3)	-0.005 (3)	-0.004 (3)
C2	0.027 (4)	0.019 (4)	0.037 (4)	-0.008 (3)	-0.003 (3)	-0.001 (3)
C3	0.020 (4)	0.040 (5)	0.034 (4)	-0.017 (4)	-0.001 (3)	-0.001 (3)
C4	0.023 (4)	0.022 (4)	0.032 (4)	-0.008(3)	0.000 (3)	-0.001 (3)
C5	0.021 (4)	0.017 (4)	0.033 (4)	-0.006 (3)	-0.003 (3)	0.003 (3)
C6	0.015 (3)	0.016 (4)	0.041 (4)	-0.007(3)	0.000 (3)	-0.003 (3)
C7	0.028 (4)	0.023 (4)	0.052 (5)	-0.008 (3)	-0.015 (3)	-0.004 (3)
C8	0.051 (6)	0.051 (6)	0.041 (5)	-0.009(5)	-0.006 (4)	-0.001 (4)
C9	0.109 (12)	0.081 (10)	0.056 (8)	-0.032 (9)	-0.031 (7)	0.019 (6)
C10	0.015 (3)	0.033 (4)	0.032 (4)	-0.009 (3)	-0.004 (3)	-0.007 (3)
C11	0.015 (3)	0.018 (4)	0.045 (4)	-0.007(3)	-0.002(3)	-0.005 (3)
C12	0.022 (4)	0.025 (4)	0.054 (5)	-0.005 (3)	-0.001 (3)	0.005 (3)
C13	0.055 (6)	0.038 (5)	0.040 (5)	-0.014 (5)	-0.003 (4)	0.000 (4)
C14	0.065 (8)	0.049 (7)	0.090 (9)	-0.001 (6)	-0.031 (7)	0.022 (6)
N1	0.025 (3)	0.010 (3)	0.045 (4)	0.000 (3)	-0.007 (3)	-0.005 (2)
N2	0.017 (3)	0.017 (3)	0.041 (3)	-0.001 (3)	-0.002 (2)	0.001 (3)
01	0.023 (3)	0.031 (3)	0.058 (4)	-0.006 (3)	-0.004(2)	-0.015 (3)
02	0.020 (3)	0.045 (4)	0.050 (3)	-0.007 (3)	-0.005 (2)	-0.015 (3)
03	0.034 (3)	0.022 (3)	0.050 (3)	-0.009 (3)	0.008 (3)	-0.001 (2)
04	0.026 (3)	0.022 (3)	0.055 (4)	-0.005 (3)	0.007 (2)	-0.002 (2)
05	0.024 (3)	0.020 (3)	0.059 (3)	-0.005(2)	-0.014 (2)	-0.005 (2)
06	0.024 (3)	0.017 (3)	0.055 (3)	0.001 (2)	-0.008(2)	-0.006(2)
07	0.022 (3)	0.016 (3)	0.058 (3)	-0.004(2)	0.000(2)	0.005 (2)
08	0.016 (3)	0.028 (3)	0.053 (3)	-0.003 (2)	-0.001 (2)	0.003 (2)
S1	0.098 (2)	0.075 (2)	0.0378 (14)	-0.0181 (19)	-0.0056 (14)	-0.0013 (12)
S2	0.075 (2)	0.080(2)	0.0399 (14)	-0.0173 (17)	-0.0014 (12)	0.0058 (13)

Geometric parameters (Å, °)

C1—03	1.196 (9)	С9—Н9С	0.9600	
C1—04	1.349 (9)	C10—O7	1.232 (9)	
C1—C2	1.480 (10)	C10—O8	1.260 (9)	
C2—C3	1.512 (10)	C10—C11	1.518 (10)	
C2—H2A	0.9700	C11—N2	1.475 (9)	
C2—H2B	0.9700	C11—C12	1.513 (11)	
C3—C4	1.494 (10)	C11—H11	0.9800	
С3—НЗА	0.9700	C12—C13	1.496 (13)	
С3—Н3В	0.9700	C12—H12A	0.9700	
C4—O2	1.208 (9)	C12—H12B	0.9700	
C4—O1	1.317 (9)	C13—S2	1.798 (9)	
C5—O6	1.244 (9)	C13—H13A	0.9700	
C5—O5	1.248 (9)	C13—H13B	0.9700	
С5—С6	1.533 (10)	C14—S2	1.801 (12)	
C6—N1	1.486 (9)	C14—H14A	0.9600	
C6—C7	1.511 (11)	C14—H14B	0.9600	
С6—Н6	0.9800	C14—H14C	0.9600	
C7—C8	1.505 (13)	N1—H1C	0.90 (3)	
С7—Н7А	0.9700	N1—H1A	0.90 (3)	
С7—Н7В	0.9700	N1—H1B	0.90 (3)	
C8—S1	1.802 (9)	N2—H2C	0.8900	
C8—H8A	0.9700	N2—H2D	0.8900	
C8—H8B	0.9700	N2—H2E	0.8900	
C9—S1	1.793 (15)	O1—H1	0.8200	
С9—Н9А	0.9600	O4—H4	0.8200	
С9—Н9В	0.9600			
O3—C1—O4	122.1 (7)	Н9В—С9—Н9С	109.5	
O3—C1—C2	126.5 (7)	O7—C10—O8	124.7 (7)	
O4—C1—C2	111.4 (7)	O7—C10—C11	119.5 (6)	
C1—C2—C3	112.4 (6)	O8—C10—C11	115.8 (6)	
C1—C2—H2A	109.1	N2-C11-C12	111.2 (6)	
С3—С2—Н2А	109.1	N2-C11-C10	111.1 (6)	
C1—C2—H2B	109.1	C12-C11-C10	113.1 (6)	
С3—С2—Н2В	109.1	N2-C11-H11	107.1	
H2A—C2—H2B	107.9	C12—C11—H11	107.1	
C4—C3—C2	113.2 (6)	C10-C11-H11	107.1	
C4—C3—H3A	108.9	C13—C12—C11	115.9 (7)	
С2—С3—НЗА	108.9	C13—C12—H12A	108.3	
C4—C3—H3B	108.9	C11—C12—H12A	108.3	
С2—С3—Н3В	108.9	C13—C12—H12B	108.3	
НЗА—СЗ—НЗВ	107.8	C11—C12—H12B	108.3	
O2—C4—O1	122.2 (7)	H12A—C12—H12B	107.4	
O2—C4—C3	124.6 (7)	C12—C13—S2	115.5 (6)	
O1—C4—C3	113.2 (6)	C12—C13—H13A	108.4	
O6—C5—O5	125.6 (7)	S2—C13—H13A	108.4	

O6—C5—C6	116.1 (6)	C12—C13—H13B	108.4
O5—C5—C6	118.3 (6)	S2—C13—H13B	108.4
N1—C6—C7	111.0 (6)	H13A—C13—H13B	107.5
N1—C6—C5	111.2 (6)	S2—C14—H14A	109.5
C7—C6—C5	112.6 (6)	S2—C14—H14B	109.5
N1—C6—H6	107.2	H14A—C14—H14B	109.5
С7—С6—Н6	107.2	S2—C14—H14C	109.5
С5—С6—Н6	107.2	H14A—C14—H14C	109.5
C8—C7—C6	115.7 (6)	H14B—C14—H14C	109.5
С8—С7—Н7А	108.4	C6—N1—H1C	112 (7)
С6—С7—Н7А	108.4	C6—N1—H1A	109 (8)
С8—С7—Н7В	108.4	H1C—N1—H1A	109 (4)
С6—С7—Н7В	108.4	C6—N1—H1B	107 (7)
H7A—C7—H7B	107.4	H1C—N1—H1B	110 (4)
C7—C8—S1	114.5 (7)	H1A—N1—H1B	110 (4)
С7—С8—Н8А	108.6	C11—N2—H2C	109.5
S1—C8—H8A	108.6	C11—N2—H2D	109.5
С7—С8—Н8В	108.6	H2C—N2—H2D	109.5
S1—C8—H8B	108.6	C11—N2—H2E	109.5
H8A—C8—H8B	107.6	H2C—N2—H2E	109.5
S1—C9—H9A	109.5	H2D—N2—H2E	109.5
S1—C9—H9B	109.5	C4—O1—H1	109.5
H9A—C9—H9B	109.5	C1—O4—H4	109.5
S1—C9—H9C	109.5	C9—S1—C8	102.1 (5)
H9A—C9—H9C	109.5	C13—S2—C14	100.4 (6)
O3—C1—C2—C3	2.7 (10)	C6—C7—C8—S1	179.5 (6)
O4—C1—C2—C3	-176.5 (6)	O7—C10—C11—N2	5.8 (9)
C1—C2—C3—C4	73.3 (8)	O8—C10—C11—N2	-174.4 (6)
C2—C3—C4—O2	5.1 (11)	O7—C10—C11—C12	131.6 (7)
C2-C3-C4-O1	-176.5 (6)	O8—C10—C11—C12	-48.6 (8)
O6-C5-C6-N1	-176.1 (6)	N2-C11-C12-C13	67.3 (9)
O5-C5-C6-N1	4.8 (9)	C10-C11-C12-C13	-58.5 (9)
O6—C5—C6—C7	-50.7 (9)	C11—C12—C13—S2	177.6 (6)
O5—C5—C6—C7	130.2 (7)	C7—C8—S1—C9	71.9 (9)
N1—C6—C7—C8	70.9 (9)	C12—C13—S2—C14	72.1 (9)
C5—C6—C7—C8	-54.5 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	D—H···A
01—H1…O5 ⁱ	0.82	1.83	2.639 (7)	168
O4—H4····O7 ⁱⁱ	0.82	1.84	2.647 (7)	169
N1—H1C···O1 ⁱⁱⁱ	0.90 (3)	2.59 (8)	3.133 (9)	120 (7)
N1—H1C····O2 ^{iv}	0.90 (3)	2.09(7)	2.842 (8)	140 (9)
N1—H1A····O5 ⁱⁱⁱ	0.90 (3)	2.47 (8)	3.168 (8)	135 (9)
N1—H1A····O6 ⁱⁱⁱ	0.90 (3)	2.01 (4)	2.866 (8)	160 (10)
N1—H1 B ···O6 ^{iv}	0.90 (3)	2.03 (5)	2.897 (8)	161 (10)

2.849 (8)	146	
2.904 (8)	156	
3.169 (8)	139	
2.875 (8)	163	
3.206 (9)	162	
3.210 (9)	159	
3.415 (10)	136	
	2.849 (8) 2.904 (8) 3.169 (8) 2.875 (8) 3.206 (9) 3.210 (9) 3.415 (10)	2.849 (8)1462.904 (8)1563.169 (8)1392.875 (8)1633.206 (9)1623.210 (9)1593.415 (10)136

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*-1, *y*-1, *z*+1; (iii) *x*-1, *y*+1, *z*; (iv) *x*, *y*+1, *z*; (v) *x*+1, *y*+1, *z*-1; (vi) *x*+1, *y*, *z*; (vii) *x*+1, *y*-1, *z*; (viii) *x*-1, *y*, *z*.