

ISSN 2414-3146

Received 22 December 2015 Accepted 27 January 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; bisamidinium salt; tetraphenylborate; $C = H \cdots \pi$ interactions.

CCDC reference: 1450255

Structural data: full structural data are available from iucrdata.iucr.org

N,*N*,*N'*,*N''*,*N'''*,*N'''*,*N'''*-Octamethyl(but-2-yne)bisamidinium bis(tetraphenylborate)

Ioannis Tiritiris, Ralf Kress and Willi Kantlehner*

Fakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany. *Correspondence e-mail: willi.kantlehner@hs-aalen.de

The asymmetric unit of the title salt, $C_{12}H_{24}N_4^{2+}.2C_{24}H_{20}B^-$, comprises half a cation and one tetraphenylborate ion. An inversion centre is situated at the midpoint of the triple C=C bond in the cation. The bisamidinium C-N bonds [1.3249 (11) and 1.3267 (11) Å] have double-bond character and both positive charges are delocalized between the dimethylamino groups. The bonds between the N atoms and the terminal C-methyl groups all have values characteristic for a typical single bond [1.4656 (12)–1.4687 (12) Å]. The acetylenic bond length [1.1889 (18) Å] is consistent with a triple C=C bond and the butyne carbon chain is almost linear. C-H··· π interactions between the bisamidinium methyl H atoms and the phenyl C atoms of the tetraphenylborate ions are present. The phenyl rings form aromatic pockets, in which the cations are embedded. This leads to the formation of a two-dimensional supramolecular pattern in the *ab* plane.

Structure description

Recently, we have described the preparation of N, N, N', N'', N'', N''', N''', N'''-octamethyl-(but-2-yne)bisamidinium bis(tetrafluoroborate) by the cleavage of 1,1,1,4,4,4-hexakis-(dimethylamino)-2-butyne with trifluoroacetic anhydride (Drandarov *et al.*, 2012). The salt reacts with nucleophilic reagents, yielding various amidinium and bis(amidinium) salts and ketene aminals (Drandarov *et al.*, 2015). A number of heterocyclic bis-(amidinium) salts could also be prepared by cycloaddition reactions (Drandarov & Kantlehner, 2012). The title salt is the second one in our series, which has been structurally characterized after anion exchange with sodium tetraphenylborate.

The asymmetric unit contains one half of the cation and one tetraphenylborate ion. An inversion centre is situated at the mid-point of the triple $C \equiv C$ bond in the cation. Prominent bond parameters in the bisamidinium ion are: N1-C1 = 1.3249 (11) Å and

The structure of the title compound with displacement ellipsoids at the 50% probability level. All carbon-bonded H atoms have been omitted for clarity.

N2-C1 = 1.3267 (11) Å, indicating N-C double-bond character. Both positive charges are distributed between the dimethylamino groups. The bonds between the N atoms and the terminal C-methyl groups, all have values characteristic for a typical single bond [1.4656 (12)–1.4687 (12) Å]. The butyne carbon chain is almost linear, the $C1-C2-C2^{i}$ angle being $179.0 (1)^{\circ}$. The C2=C2¹ triple bond is 1.1889 (18) Å while the C1-C2 bond length is 1.4377 (12) Å (Fig. 1).

The bond lengths of the dication agree very well with the data from the crystal structure analysis of N,N,N',N',-N'', N'', N'''-octamethyl(but-2-yne)bisamidinium bis(tetrafluoroborate) (Drandarov et al., 2012). In the tetraphenyl-

Figure 2

 $C-H\cdots\pi$ interactions (brown dashed lines) between the H atoms of the bisamidinium ion and the phenyl C atoms (centroids) of the tetraphenylborate ion (ab view). H atoms not involved in hydrogen bonding have been omitted.

Table 1				
Hydrog	en-bond	geometry	(Å.	°).

Cg1, Cg2 and Cg3 are the centroids of the C13-C18, C19-C24 and C25-C30 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C4-H4B\cdots Cg1^{i}$	0.98	2.85	3.401 (1)	116
$C5-H5B\cdots Cg3^{ii}$	0.98	2.59	3.489 (1)	153
$C6-H6B\cdots Cg2^{ii}$	0.98	2.54	3.487 (1)	162

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

borate salt, the angle between the N1-C1-N2 and N1ⁱ-C1ⁱ-N2ⁱ planes is 0° and the C1-C2-C2ⁱ-C1ⁱ torsion angle is $180.0 (1)^{\circ}$. This is completely different from the tetrafluoroborate salt (Drandarov et al., 2012), where the N-C-N planes between the two amidinium units are nearly perpendicular to each other [85.1 (2)°] and $C1-C2-C2^{i}-C1^{i} = 101.3$ (1)°. The bond lengths and angles in the tetraphenylborate ion are in good agreement with the data for alkali metal tetraphenylborates (Behrens et al., 2012).

 $C-H\cdots\pi$ interactions between the hydrogen atoms of $-N(CH_3)_2$ groups of the cation and the phenyl carbon atoms (centroids: Cg1 = C13-C18, Cg2 = C19-C24 and Cg3 = C25-C25C30) of the tetraphenylborate ion are present (Fig. 2), ranging from 2.54 to 2.85 Å (Table 1). The phenyl rings form aromatic pockets in which the cations are embedded. This leads to the formation of a two-dimensional supramolecular pattern along the *ab* plane.

Tab	le	2	
Exp	eri	mental	details.

N F

Crystal data	
Chemical formula	$2(C_{24}H_{20}B) \cdot C_{12}H_{24}N_4$
M _r	862.77
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	13.8527 (5), 10.4892 (4), 16.7462 (6)
β (°)	103.034 (2)
$V(Å^3)$	2370.60 (15)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.07
Crystal size (mm)	$0.35 \times 0.23 \times 0.10$
Data collection	
Diffractometer	Bruker Kappa APEXII Duo
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	50722, 7271, 6046
R _{int}	0.029
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.716
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.113, 1.02
No. of reflections	7271
No. of parameters	302
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.38, -0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2005).

Synthesis and crystallization

The title compound was obtained by reacting an acetonitrile solution of N,N,N',N',N'',N'',N''',N'''-octamethyl(but-2-yne)bisamidinium bis(tetrafluoroborate) (Drandarov *et al.*, 2012*b*) with two equivalents of sodium tetraphenylborate. After stirring for one hour at room temperature, the precipitated sodium tetrafluoroborate was filtered off. The title compound crystallized from a saturated acetonitrile solution after several days at 273 K, forming yellow single crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction

data and Dr K. Drandarov (Institut für Organische Chemie, Universität Stuttgart) for the sample of N, N, N', N', N'', N'', N'''-octamethyl(but-2-yne)bisamidinium bis(tetrafluoroborate).

References

- Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, **31**, 905–913.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Drandarov, K. & Kantlehner, W. (2012). Synthesis, 44, 2408-2412.
- Drandarov, K., Tiritiris, I. & Kantlehner, W. (2015). Z. Naturforsch. Teil B, **70**, 225–241.
- Drandarov, K., Tiritiris, I., Wassiljew, O., Siehl, H.-U. & Kantlehner, W. (2012). *Chem. Eur. J.* **18**, 7224–7228.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). **1**, x160166 [https://doi.org/10.1107/S2414314616001668]

N,*N*,*N'*,*N''*,*N'''*,*N'''*,*N'''*,*N'''*-Octamethyl(but-2-yne)bisamidinium bis(tetraphenyl-borate)

F(000) = 924

 $\theta = 1.7 - 30.6^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$

Block, yellow

 $0.35 \times 0.23 \times 0.10 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.209 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 50722 reflections

Ioannis Tiritiris, Ralf Kress and Willi Kantlehner

N,N,N',N',N'',N''',N''',Octamethylbut-2-yne)bisamidinium bis(tetraphenylborate)

Crystal data

 $2(C_{24}H_{20}B) \cdot C_{12}H_{24}N_4$ $M_r = 862.77$ Monoclinic, $P2_1/n$ a = 13.8527 (5) Å b = 10.4892 (4) Å c = 16.7462 (6) Å $\beta = 103.034$ (2)° V = 2370.60 (15) Å³ Z = 2

Data collection

Bruker Kappa APEXII Duo	6046 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.029$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 30.6^{\circ}, \theta_{\rm min} = 1.7^{\circ}$
Triumph monochromator	$h = -19 \rightarrow 19$
φ scans, and ω scans	$k = -14 \rightarrow 14$
50722 measured reflections	$l = -23 \rightarrow 23$
7271 independent reflections	
-	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.113$	neighbouring sites
S = 1.02 7271 reflections 302 parameters	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0612P)^2 + 0.7005P]$ where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\text{max}} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{\text{max}} = 0.38 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta\rho_{\text{min}} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The crystal was refined as a 2-component inversion twin.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.35927 (6)	0.47150 (8)	0.10360 (5)	0.01587 (15)	
C1	0.36503 (6)	0.50484 (8)	0.02850 (5)	0.01380 (16)	
N2	0.28770 (5)	0.54206 (8)	-0.02893 (5)	0.01533 (15)	
C2	0.46046 (7)	0.50074 (9)	0.00825 (5)	0.01554 (17)	
C3	0.44900 (7)	0.46323 (11)	0.16970 (6)	0.02152 (19)	
H3A	0.4792	0.3789	0.1688	0.032*	
H3B	0.4315	0.4763	0.2226	0.032*	
H3C	0.4962	0.5290	0.1618	0.032*	
C4	0.26820 (7)	0.41956 (11)	0.12146 (6)	0.0228 (2)	
H4A	0.2361	0.4851	0.1482	0.034*	
H4B	0.2844	0.3458	0.1579	0.034*	
H4C	0.2232	0.3931	0.0702	0.034*	
C5	0.29145 (7)	0.53857 (11)	-0.11567 (6)	0.02100 (19)	
H5A	0.3159	0.6204	-0.1312	0.032*	
H5B	0.2249	0.5228	-0.1492	0.032*	
H5C	0.3361	0.4702	-0.1246	0.032*	
C6	0.20340 (7)	0.60966 (10)	-0.00906 (6)	0.02072 (19)	
H6A	0.1480	0.5503	-0.0124	0.031*	
H6B	0.1831	0.6795	-0.0481	0.031*	
H6C	0.2228	0.6444	0.0466	0.031*	
B1	0.48759 (7)	0.85310 (10)	0.22798 (6)	0.01361 (17)	
C7	0.51523 (7)	0.83135 (9)	0.13802 (5)	0.01530 (17)	
C8	0.44148 (7)	0.82171 (9)	0.06504 (6)	0.01623 (17)	
H8	0.3741	0.8182	0.0688	0.019*	
C9	0.46258 (7)	0.81705 (9)	-0.01235 (6)	0.01939 (18)	
H9	0.4099	0.8123	-0.0597	0.023*	
C10	0.55982 (8)	0.81925 (10)	-0.02087 (6)	0.02158 (19)	
H10	0.5745	0.8168	-0.0736	0.026*	
C11	0.63533 (7)	0.82504 (10)	0.04943 (6)	0.0224 (2)	
H11	0.7025	0.8245	0.0450	0.027*	
C12	0.61303 (7)	0.83171 (10)	0.12652 (6)	0.01945 (18)	
H12	0.6662	0.8367	0.1735	0.023*	
C13	0.36643 (6)	0.86150 (9)	0.21106 (5)	0.01375 (16)	
C14	0.31746 (7)	0.97595 (9)	0.18302 (6)	0.01610 (17)	
H14	0.3559	1.0508	0.1825	0.019*	
C15	0.21492 (7)	0.98402 (9)	0.15596 (6)	0.01789 (18)	
H15	0.1850	1.0629	0.1363	0.021*	
C16	0.15618 (7)	0.87675 (10)	0.15760 (6)	0.01854 (18)	
H16	0.0862	0.8815	0.1390	0.022*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C17	0.20162 (7)	0.76264 (10)	0.18688 (6)	0.01761 (18)	
H17	0.1625	0.6890	0.1895	0.021*	
C18	0.30466 (6)	0.75586 (9)	0.21241 (5)	0.01508 (17)	
H18	0.3341	0.6765	0.2315	0.018*	
C19	0.53348 (6)	0.74262 (8)	0.29627 (5)	0.01362 (16)	
C20	0.62028 (7)	0.67306 (9)	0.29618 (6)	0.01631 (17)	
H20	0.6510	0.6835	0.2513	0.020*	
C21	0.66342 (7)	0.58937 (9)	0.35897 (6)	0.01956 (18)	
H21	0.7224	0.5451	0.3562	0.023*	
C22	0.62051 (7)	0.57050 (9)	0.42547 (6)	0.02021 (19)	
H22	0.6501	0.5147	0.4688	0.024*	
C23	0.53331 (7)	0.63495 (9)	0.42726 (6)	0.01810 (18)	
H23	0.5021	0.6221	0.4716	0.022*	
C24	0.49160 (6)	0.71839 (9)	0.36407 (5)	0.01535 (17)	
H24	0.4320	0.7611	0.3669	0.018*	
C25	0.53179 (6)	0.99115 (9)	0.26813 (6)	0.01544 (17)	
C26	0.51539 (7)	1.02990 (9)	0.34439 (6)	0.01835 (18)	
H26	0.4804	0.9740	0.3725	0.022*	
C27	0.54799 (8)	1.14631 (10)	0.38057 (7)	0.0242 (2)	
H27	0.5351	1.1683	0.4322	0.029*	
C28	0.59942 (8)	1.23028 (10)	0.34106 (8)	0.0279 (2)	
H28	0.6223	1.3097	0.3654	0.034*	
C29	0.61661 (8)	1.19598 (10)	0.26577 (7)	0.0267 (2)	
H29	0.6518	1.2524	0.2382	0.032*	
C30	0.58281 (7)	1.07926 (10)	0.22980 (6)	0.02066 (19)	
H30	0.5948	1.0588	0.1776	0.025*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0133 (3)	0.0207 (4)	0.0138 (3)	0.0001 (3)	0.0034 (3)	0.0011 (3)
C1	0.0132 (4)	0.0139 (4)	0.0144 (4)	-0.0003 (3)	0.0033 (3)	-0.0013 (3)
N2	0.0130 (3)	0.0190 (4)	0.0135 (3)	0.0013 (3)	0.0022 (3)	0.0003 (3)
C2	0.0159 (4)	0.0171 (4)	0.0132 (4)	0.0009 (3)	0.0023 (3)	0.0009 (3)
C3	0.0173 (4)	0.0317 (5)	0.0141 (4)	0.0030 (4)	0.0005 (3)	0.0005 (4)
C4	0.0190 (4)	0.0307 (5)	0.0200 (4)	-0.0057 (4)	0.0073 (3)	0.0030 (4)
C5	0.0201 (4)	0.0298 (5)	0.0124 (4)	0.0000 (4)	0.0023 (3)	0.0001 (3)
C6	0.0150 (4)	0.0251 (5)	0.0212 (4)	0.0057 (3)	0.0023 (3)	-0.0021 (4)
B1	0.0117 (4)	0.0148 (4)	0.0139 (4)	-0.0003 (3)	0.0019 (3)	0.0011 (3)
C7	0.0154 (4)	0.0152 (4)	0.0154 (4)	0.0001 (3)	0.0036 (3)	0.0021 (3)
C8	0.0173 (4)	0.0158 (4)	0.0156 (4)	-0.0005 (3)	0.0036 (3)	0.0001 (3)
С9	0.0251 (5)	0.0179 (4)	0.0148 (4)	-0.0018 (3)	0.0038 (3)	-0.0002 (3)
C10	0.0297 (5)	0.0195 (4)	0.0183 (4)	-0.0013 (4)	0.0112 (4)	0.0007 (3)
C11	0.0211 (4)	0.0248 (5)	0.0241 (5)	0.0005 (4)	0.0109 (4)	0.0029 (4)
C12	0.0157 (4)	0.0240 (5)	0.0190 (4)	0.0007 (3)	0.0046 (3)	0.0033 (4)
C13	0.0132 (4)	0.0165 (4)	0.0114 (4)	0.0000 (3)	0.0024 (3)	-0.0010 (3)
C14	0.0149 (4)	0.0175 (4)	0.0155 (4)	0.0006 (3)	0.0027 (3)	-0.0001 (3)
C15	0.0164 (4)	0.0211 (4)	0.0154 (4)	0.0049 (3)	0.0017 (3)	-0.0006 (3)

C16	0.0122 (4)	0.0280 (5)	0.0148 (4)	0.0010 (3)	0.0015 (3)	-0.0038 (3)
C17	0.0137 (4)	0.0231 (5)	0.0159 (4)	-0.0035 (3)	0.0032 (3)	-0.0040 (3)
C18	0.0139 (4)	0.0170 (4)	0.0140 (4)	-0.0007 (3)	0.0022 (3)	-0.0016 (3)
C19	0.0129 (3)	0.0131 (4)	0.0138 (4)	-0.0020 (3)	0.0010 (3)	-0.0010 (3)
C20	0.0162 (4)	0.0162 (4)	0.0162 (4)	0.0002 (3)	0.0029 (3)	-0.0008 (3)
C21	0.0187 (4)	0.0165 (4)	0.0220 (4)	0.0035 (3)	0.0015 (3)	0.0006 (3)
C22	0.0236 (4)	0.0155 (4)	0.0189 (4)	0.0005 (3)	-0.0008 (3)	0.0031 (3)
C23	0.0210 (4)	0.0170 (4)	0.0157 (4)	-0.0037 (3)	0.0028 (3)	0.0015 (3)
C24	0.0145 (4)	0.0153 (4)	0.0158 (4)	-0.0018 (3)	0.0027 (3)	-0.0003 (3)
C25	0.0113 (3)	0.0154 (4)	0.0175 (4)	0.0009 (3)	-0.0011 (3)	0.0024 (3)
C26	0.0153 (4)	0.0173 (4)	0.0210 (4)	0.0007 (3)	0.0009 (3)	-0.0009 (3)
C27	0.0208 (4)	0.0198 (5)	0.0281 (5)	0.0037 (4)	-0.0027 (4)	-0.0061 (4)
C28	0.0218 (5)	0.0147 (4)	0.0408 (6)	-0.0005 (4)	-0.0066 (4)	-0.0027 (4)
C29	0.0206 (4)	0.0177 (5)	0.0377 (6)	-0.0043 (4)	-0.0018 (4)	0.0083 (4)
C30	0.0174 (4)	0.0189 (4)	0.0237 (5)	-0.0015 (3)	0.0003 (3)	0.0063 (4)

Geometric parameters (Å, °)

N1—C1	1.3249 (11)	C12—H12	0.9500
N1—C4	1.4656 (12)	C13—C18	1.4034 (12)
N1—C3	1.4687 (12)	C13—C14	1.4064 (13)
C1—N2	1.3267 (11)	C14—C15	1.3928 (12)
C1—C2	1.4377 (12)	C14—H14	0.9500
N2—C5	1.4656 (12)	C15—C16	1.3925 (14)
N2-C6	1.4672 (12)	C15—H15	0.9500
$C2-C2^i$	1.1889 (18)	C16—C17	1.3892 (14)
С3—НЗА	0.9800	C16—H16	0.9500
С3—Н3В	0.9800	C17—C18	1.3963 (12)
С3—Н3С	0.9800	C17—H17	0.9500
C4—H4A	0.9800	C18—H18	0.9500
C4—H4B	0.9800	C19—C20	1.4068 (12)
C4—H4C	0.9800	C19—C24	1.4097 (12)
С5—Н5А	0.9800	C20—C21	1.3964 (13)
С5—Н5В	0.9800	C20—H20	0.9500
C5—H5C	0.9800	C21—C22	1.3897 (14)
С6—Н6А	0.9800	C21—H21	0.9500
С6—Н6В	0.9800	C22—C23	1.3904 (14)
С6—Н6С	0.9800	C22—H22	0.9500
B1-C13	1.6404 (13)	C23—C24	1.3942 (13)
B1-C19	1.6514 (13)	C23—H23	0.9500
B1—C7	1.6517 (13)	C24—H24	0.9500
B1—C25	1.6547 (14)	C25—C30	1.4037 (13)
С7—С8	1.4086 (12)	C25—C26	1.4065 (13)
C7—C12	1.4107 (12)	C26—C27	1.3923 (14)
С8—С9	1.3923 (13)	C26—H26	0.9500
С8—Н8	0.9500	C27—C28	1.3905 (17)
C9—C10	1.3863 (14)	C27—H27	0.9500
С9—Н9	0.9500	C28—C29	1.3826 (18)

C10-C11	1.3886 (15)	C28—H28	0.9500
C10—H10	0.9500	C29—C30	1.3978 (15)
C11—C12	1.3953 (14)	С29—Н29	0.9500
C11—H11	0.9500	С30—Н30	0.9500
C1—N1—C4	122.05 (8)	C11—C12—H12	118.5
C1—N1—C3	120.61 (8)	С7—С12—Н12	118.5
C4—N1—C3	116.44 (8)	C18—C13—C14	115.43 (8)
N1—C1—N2	123.66 (8)	C18—C13—B1	123.96 (8)
N1—C1—C2	118.12 (8)	C14—C13—B1	120.08 (8)
N2—C1—C2	118.22 (8)	C15—C14—C13	122.70 (9)
C1—N2—C5	120.52 (8)	C15—C14—H14	118.7
C1—N2—C6	122.11 (8)	C13—C14—H14	118.7
C5—N2—C6	116.41 (8)	C16—C15—C14	120.14 (9)
$C2^{i}$ — $C2$ — $C1$	179.01 (14)	C16—C15—H15	119.9
N1—C3—H3A	109.5	C14—C15—H15	119.9
N1—C3—H3B	109.5	C17—C16—C15	118.87 (8)
НЗА—СЗ—НЗВ	109.5	C17—C16—H16	120.6
N1—C3—H3C	109.5	C15—C16—H16	120.6
НЗА—СЗ—НЗС	109.5	C16—C17—C18	120.17 (9)
НЗВ—СЗ—НЗС	109.5	C16—C17—H17	119.9
N1—C4—H4A	109.5	C18—C17—H17	119.9
N1—C4—H4B	109.5	C17—C18—C13	122.66 (9)
H4A—C4—H4B	109.5	C17—C18—H18	118.7
N1—C4—H4C	109.5	C13—C18—H18	118.7
H4A—C4—H4C	109.5	C20—C19—C24	114.49 (8)
H4B—C4—H4C	109.5	C20—C19—B1	123.97 (8)
N2—C5—H5A	109.5	C24—C19—B1	121.35 (8)
N2—C5—H5B	109.5	C21—C20—C19	123.09 (9)
H5A—C5—H5B	109.5	C21—C20—H20	118.5
N2—C5—H5C	109.5	С19—С20—Н20	118.5
H5A—C5—H5C	109.5	C22—C21—C20	120.35 (9)
H5B—C5—H5C	109.5	C22—C21—H21	119.8
N2—C6—H6A	109.5	C20—C21—H21	119.8
N2—C6—H6B	109.5	C21—C22—C23	118.60 (9)
H6A—C6—H6B	109.5	C21—C22—H22	120.7
N2—C6—H6C	109.5	C23—C22—H22	120.7
H6A—C6—H6C	109.5	C22—C23—C24	120.15 (9)
H6B—C6—H6C	109.5	С22—С23—Н23	119.9
C13—B1—C19	112.11 (7)	С24—С23—Н23	119.9
C13—B1—C7	106.77 (7)	C23—C24—C19	123.30 (8)
C19—B1—C7	113.74 (7)	C23—C24—H24	118.3
C13—B1—C25	107.07 (7)	C19—C24—H24	118.3
C19—B1—C25	106.46 (7)	C30—C25—C26	115.21 (9)
C7—B1—C25	110.54 (7)	C30—C25—B1	124.66 (8)
C8—C7—C12	114.38 (8)	C26—C25—B1	120.07 (8)
C8—C7—B1	121.95 (8)	C27—C26—C25	123.06 (10)
C12—C7—B1	123.46 (8)	С27—С26—Н26	118.5

C9—C8—C7	123.14 (9)	С25—С26—Н26	118.5
С9—С8—Н8	118.4	C28—C27—C26	119.95 (10)
С7—С8—Н8	118.4	C28—C27—H27	120.0
C10—C9—C8	120.53 (9)	С26—С27—Н27	120.0
С10—С9—Н9	119.7	C29—C28—C27	118.76 (10)
С8—С9—Н9	119.7	С29—С28—Н28	120.6
C9—C10—C11	118.50 (9)	С27—С28—Н28	120.6
С9—С10—Н10	120.7	C28—C29—C30	120.73 (10)
C11—C10—H10	120.7	С28—С29—Н29	119.6
C10—C11—C12	120.32 (9)	С30—С29—Н29	119.6
C10—C11—H11	119.8	$C_{29} - C_{30} - C_{25}$	122 28 (10)
C12—C11—H11	119.8	C29—C30—H30	118.9
$C_{11} - C_{12} - C_{7}$	123 09 (9)	$C_{25} = C_{30} = H_{30}$	118.9
	125.09 (9)	625 650 1150	110.9
C4 - N1 - C1 - N2	27.07 (14)	C15-C16-C17-C18	-1.38(14)
$C_3 - N_1 - C_1 - N_2$	-164 18 (9)	C_{16} C_{17} C_{18} C_{13}	0.89(14)
C4-N1-C1-C2	-153.09(9)	C_{14} C_{13} C_{18} C_{17}	0.72(13)
C_{3} N1 C_{1} C_{2}	15 67 (13)	B1-C13-C18-C17	-170.95(8)
$N_1 - C_1 - N_2 - C_5$	-16048(9)	C_{13} B_{1} C_{19} C_{20}	149.05 (8)
$C_2 - C_1 - N_2 - C_5$	19.68 (13)	C7-B1-C19-C20	27.79(12)
$N_1 - C_1 - N_2 - C_6$	31 11 (14)	C_{25} B1 C_{19} C_{20}	-94.19(12)
$C_2 = C_1 = N_2 = C_0$	-1/873(0)	$C_{23} = B_1 = C_{13} = C_{24}$	-36.27(11)
$C_2 = C_1 = N_2 = C_0$	-0.75(12)	C_{13} B_{1} C_{19} C_{24}	-157.52(8)
$C_{13} = B_{1} = C_{7} = C_{8}$	123 44 (0)	$C_{1} = D_{1} = C_{1} = C_{2}$	137.32 (8)
C19 - B1 - C7 - C8	123.44(9) 116.97(0)	C_{23} B_{1} C_{19} C_{24}	1.70(12)
$C_{23} = B_1 = C_7 = C_8$	-110.87(9)	$C_{24} = C_{19} = C_{20} = C_{21}$	-1.70(13)
C13 - B1 - C7 - C12	1/3.08(8)	B1 = C19 = C20 = C21	1/3.32 (9)
C19 = B1 = C7 = C12	-62.12(11)	C19 - C20 - C21 - C22	0.50 (15)
$C_{25} = B_1 = C_7 = C_{12}$	57.56(11)	$C_{20} = C_{21} = C_{22} = C_{23}$	1.03 (14)
C12_C7_C8_C9	-1.99 (14)	C21—C22—C23—C24	-1.24 (14)
B1-C/-C8-C9	172.92 (9)	C22—C23—C24—C19	-0.06 (14)
C7—C8—C9—C10	1.31 (15)	C20—C19—C24—C23	1.48 (13)
C8—C9—C10—C11	0.56 (15)	B1—C19—C24—C23	-173.68 (8)
C9—C10—C11—C12	-1.58 (15)	C13—B1—C25—C30	-114.00 (9)
C10-C11-C12-C7	0.83 (16)	C19—B1—C25—C30	125.92 (9)
C8—C7—C12—C11	0.92 (14)	C7—B1—C25—C30	1.93 (12)
B1—C7—C12—C11	-173.89 (9)	C13—B1—C25—C26	63.10 (10)
C19—B1—C13—C18	-34.32 (12)	C19—B1—C25—C26	-56.98 (10)
C7—B1—C13—C18	90.87 (10)	C7—B1—C25—C26	179.03 (8)
C25—B1—C13—C18	-150.71 (8)	C30—C25—C26—C27	-0.75 (13)
C19—B1—C13—C14	154.37 (8)	B1-C25-C26-C27	-178.12 (8)
C7—B1—C13—C14	-80.44 (10)	C25—C26—C27—C28	-0.03 (15)
C25—B1—C13—C14	37.98 (11)	C26—C27—C28—C29	0.36 (15)
C18—C13—C14—C15	-1.88 (13)	C27—C28—C29—C30	0.14 (15)
B1-C13-C14-C15	170.14 (8)	C28—C29—C30—C25	-1.01 (15)
C13—C14—C15—C16	1.44 (14)	C26—C25—C30—C29	1.26 (13)
C14—C15—C16—C17	0.26 (14)	B1—C25—C30—C29	178.49 (9)

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

Cal Cal and Cal and the	comtraids of the C12 C19	C10 C24 and C25 C20 minor	magin a attiviality
C_{21} , C_{22} and C_{23} are the	centrolds of the CIS-CIS.	C19-C24 and $C23-C30$ rmgs.	respectively.
			, r

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C4—H4 B ···C $g1^{ii}$	0.98	2.85	3.401 (1)	116
С5—Н5 <i>В…С</i> д3 ^{ііі}	0.98	2.59	3.489 (1)	153
C6—H6 <i>B</i> ··· <i>Cg</i> 2 ⁱⁱⁱ	0.98	2.54	3.487 (1)	162

Symmetry codes: (ii) -x+1/2, y-1/2, -z+1/2; (iii) x-1/2, -y+3/2, z-1/2.