

ISSN 2414-3146

Received 4 January 2016 Accepted 27 January 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 5-HT1 serotonin receptor ligands; piperazinium salts; disorder.

CCDC reference: 1450257

Structural data: full structural data are available from iucrdata.iucr.org

4-(3-Chlorophenyl)-1-(3-chloropropyl)piperazin-1ium chloride redetermined at 100 K

Muzzaffar Ahmad Bhat,^a Sanjay K. Srivastava,^a* Pooja Sharma,^a Ambika Chopra^a and Ray J. Butcher^b

^aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India, and ^bDepartment of Chemistry, Howard University, Washington DC 20059, USA. *Correspondence e-mail: sksrivas7@yahoo.com

The crystal structure of the title salt, $C_{13}H_{19}Cl_2N_2^+ \cdot Cl^-$, has been reported previously [Homrighausen & Krause Bauer (2002). *Acta Cryst.* E58, o1395– o1396] based on room-temperature data, where it was found to contain a disordered chloropropyl group. We now present the structure at 100 K in which the chloropropyl group is ordered. The piperazine ring adopts a chair conformation with the exocyclic N–C bonds in equatorial orientations. The dihedral angle between the piperazine ring (all atoms) and the benzene ring is 28.47 (5)°. The chloropropyl group has an extended conformation [N–C–C– C = -177.25 (8) ° and C–C–C–Cl = 174.23 (7)°]. In the crystal, chargeassisted N–H···Cl hydrogen bonds link the cation and anion into ion pairs. Numerous weak C–H···Cl interactions link the ion pairs into a threedimensional network. Short Cl····Cl contacts [3.2419 (4) Å] are also observed.

Structure description

The title compound $C_{13}H_{19}Cl_2N_2^+Cl^-$ belongs to a class of 5-HT1 (5-hydroxytryptamine1) subtype serotonin receptor ligands (Okamoto *et al.*, 1993; Verdonk *et al.*, 1992; Dalpiaz *et al.*, 1996). The structure of the title compound (Fig. 1) has been previously reported (Homrighausen & Krause Bauer, 2002) but was collected at 296 K and contained a disordered chloropropyl group. This redetermination at 100 K shows that the chloropropyl group is ordered. In the crystal, charge-assisted N-H···Cl hydrogen bonds and C-H···Cl secondary interactions occur (Table 1 and Fig. 2), resulting in a three-dimensional supramolecular architecture.

Figure 1

Diagram of $C_{13}H_{19}Cl_2N_2^+Cl^-$, with hydrogen bonds shown as dashed lines. Atomic displacement parameters are shown at the 30% probability level.

Figure 2

Packing daigram viewed along the *a* axis, showing the extensive network of $N-H\cdots Cl$ hydrogen bonds and $C-H\cdots Cl$ secondary interactions (indicated by dashed lines).

Synthesis and crystallization

The title compound was obtained from Sigma Aldrich and crystals suitable for a single-crystal X-ray diffraction study were obtained by dissolving the title compound in ethanol and allowing the solvent to evaporate slowly at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

RJB wishes to acknowledge NSF award 1205608, Partnership for Reduced Dimensional Materials, for partial funding of this research. The authors wish to acknowledge the assistance of Dr Matthias Zeller in the collection of the diffraction data and NSF Grant CHE 0087210, Ohio Board of Regents Grant CAP-491, and Youngstown State University for funds to purchase the X-ray diffractometer.

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

, , ,	2 ())			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H2N\cdots Cl3$	0.929 (15)	2.139 (15)	3.0629 (9)	172.4 (13)
$C8-H8B\cdots Cl3^{1}$	0.99	2.90	3.7757 (10)	147
$C9-H9A\cdots Cl3^{i}$	0.99	2.83	3.7200 (10)	150
$C11 - H11A \cdots Cl3^{ii}$	0.99	2.78	3.6981 (11)	155
$C12 - H12A \cdots Cl1^{iii}$	0.99	2.87	3.5172 (11)	123
$C12 - H12B \cdot \cdot \cdot Cl3$	0.99	2.94	3.6149 (10)	126
$C13 - H13A \cdots Cl3^{ii}$	0.99	2.90	3.7940 (11)	150
$C13-H13B\cdots Cl1^{iii}$	0.99	2.95	3.6095 (12)	125

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 1; (iii) x + 1, y, z.

Τā	able	2	

Experimental detai	ls.
--------------------	-----

Crystal data	
Chemical formula	$C_{13}H_{19}Cl_2N_2^+ \cdot Cl^-$
$\Lambda_{\rm r}$	309.65
Crystal system, space group	Monoclinic, $P2_1/c$
Cemperature (K)	100
, b, c (Å)	10.9608 (9), 9.5199 (8), 14.0262 (11)
3 (°)	95.398 (1)
$V(Å^3)$	1457.1 (2)
2	4
Radiation type	Μο Κα
$\iota (\mathrm{mm}^{-1})$	0.61
Crystal size (mm)	$0.55 \times 0.32 \times 0.30$
Data collection	
Diffractometer	Bruker APEXII
Absorption correction	Multi-scan (SADABS; Sheldrick 1996)
T_{\min}, T_{\max}	0.610, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32810, 4808, 4407
Rint	0.025
$\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.748
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030, 0.083, 1.08
No. of reflections	4808
Jo. of parameters	167
I-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.69, -0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2002), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), SHELXTL (Sheldrick, 2008).

References

ł

N

۲ Н

Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Dalpiaz, A., Ferretti, V., Gilli, P. & Bertolasi, V. (1996). Acta Cryst.
- B**52**, 509–518. Homrighausen, C. L. & Krause Bauer, J. A. (2002). *Acta Cryst.* E**58**, 01395–01396.
- Okamoto, K., Fujii, S. & Tomita, K. (1993). Acta Cryst. C49, 1125-1127.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Verdonk, M. L., Kanters, J. A. & Kroon, J. (1992). Acta Cryst. C48, 2271–2273.

full crystallographic data

IUCrData (2016). **1**, x160168 [https://doi.org/10.1107/S2414314616001681]

4-(3-Chlorophenyl)-1-(3-chloropropyl)piperazin-1-ium chloride redetermined at 100 K

Muzzaffar Ahmad Bhat, Sanjay K. Srivastava, Pooja Sharma, Ambika Chopra and Ray J. Butcher

F(000) = 648

 $\theta = 2.6 - 31.8^{\circ}$

 $\mu = 0.61 \text{ mm}^{-1}$

Block, colourless

 $0.55 \times 0.32 \times 0.30$ mm

T = 100 K

 $D_{\rm x} = 1.412 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9973 reflections

4-(3-Chlorophenyl)-1-(3-chloropropyl)piperazin-1-ium chloride

Crystal data

 $C_{13}H_{19}Cl_2N_2^{+}Cl^{-}$ $M_r = 309.65$ Monoclinic, $P2_1/c$ a = 10.9608 (9) Å b = 9.5199 (8) Å c = 14.0262 (11) Å $\beta = 95.398$ (1)° V = 1457.1 (2) Å³ Z = 4

Data collection

Bruker APEXII diffractometer	4808 independent reflections 4407 reflections with $L > 2\sigma(I)$
umacionicici	++07 follocitolis with $1 > 20(1)$
ω scans	$R_{\rm int} = 0.025$
Absorption correction: multi-scan	$\theta_{\rm max} = 32.1^{\circ}, \theta_{\rm min} = 2.6^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -16 \rightarrow 16$
$T_{\min} = 0.610, \ T_{\max} = 0.746$	$k = -14 \rightarrow 14$
32810 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.030$	and constrained refinement
$wR(F^2) = 0.083$	$w = 1/[\sigma^2(F_o^2) + (0.0462P)^2 + 0.537P]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
4808 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
167 parameters	$\Delta \rho_{\rm max} = 0.69 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	-0.19355 (2)	0.41129 (3)	0.74761 (2)	0.02408 (7)
C12	0.89868 (2)	0.06195 (3)	0.56586 (2)	0.02604 (7)
C13	0.45091 (2)	0.23674 (3)	0.38594 (2)	0.01897 (6)
N1	0.23210 (7)	0.38855 (8)	0.62774 (6)	0.01511 (15)
N2	0.44985 (7)	0.22760 (8)	0.60415 (6)	0.01394 (14)
H2N	0.4481 (13)	0.2217 (15)	0.5379 (11)	0.016 (3)*
C1	0.12197 (9)	0.46460 (10)	0.62867 (7)	0.01423 (16)
C2	0.02649 (9)	0.40667 (10)	0.67638 (7)	0.01616 (17)
H2A	0.0346	0.3152	0.7033	0.019*
C3	-0.07914 (9)	0.48363 (10)	0.68387 (7)	0.01700 (17)
C4	-0.09634 (10)	0.61775 (11)	0.64557 (8)	0.01990 (19)
H4A	-0.1700	0.6685	0.6509	0.024*
C5	-0.00117 (10)	0.67422 (11)	0.59915 (8)	0.02107 (19)
H5A	-0.0097	0.7662	0.5731	0.025*
C6	0.10650 (10)	0.59958 (10)	0.58970 (7)	0.01782 (18)
H6A	0.1695	0.6404	0.5567	0.021*
C7	0.33718 (9)	0.45553 (10)	0.58992 (7)	0.01646 (17)
H7A	0.3409	0.5558	0.6088	0.020*
H7B	0.3285	0.4504	0.5191	0.020*
C8	0.45436 (9)	0.38120 (10)	0.62920 (7)	0.01595 (17)
H8A	0.5254	0.4252	0.6023	0.019*
H8B	0.4654	0.3920	0.6997	0.019*
С9	0.33685 (9)	0.16198 (10)	0.63727 (7)	0.01506 (16)
H9A	0.3424	0.1627	0.7081	0.018*
H9B	0.3309	0.0630	0.6156	0.018*
C10	0.22316 (9)	0.24111 (10)	0.59790 (7)	0.01574 (17)
H10A	0.2145	0.2354	0.5271	0.019*
H10B	0.1498	0.1978	0.6218	0.019*
C11	0.56026 (9)	0.14857 (11)	0.64726 (7)	0.01708 (17)
H11A	0.5382	0.0484	0.6537	0.020*
H11B	0.5840	0.1856	0.7123	0.020*
C12	0.66940 (9)	0.15917 (11)	0.58844 (7)	0.01750 (17)
H12A	0.6965	0.2581	0.5850	0.021*
H12B	0.6468	0.1250	0.5225	0.021*
C13	0.77155 (9)	0.06936 (11)	0.63720 (8)	0.01945 (18)
H13A	0.7406	-0.0268	0.6469	0.023*
H13B	0.7987	0.1095	0.7008	0.023*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	<i>U</i> ²³
Cl1	0.01963 (12)	0.02193 (12)	0.03227 (14)	0.00122 (8)	0.01077 (10)	-0.00347 (9)
C12	0.01862 (12)	0.02468 (13)	0.03645 (15)	0.00401 (9)	0.01116 (10)	0.00181 (10)
C13	0.02473 (12)	0.02111 (12)	0.01101 (10)	-0.00293 (8)	0.00141 (8)	0.00052 (7)
N1	0.0135 (3)	0.0116 (3)	0.0205 (4)	0.0004 (3)	0.0030 (3)	0.0001 (3)

N2	0.0142 (3)	0.0143 (3)	0.0136 (3)	0.0015 (3)	0.0030 (3)	0.0010 (3)
C1	0.0152 (4)	0.0133 (4)	0.0140 (4)	0.0014 (3)	0.0002 (3)	-0.0016 (3)
C2	0.0162 (4)	0.0148 (4)	0.0176 (4)	0.0015 (3)	0.0023 (3)	-0.0006 (3)
C3	0.0160 (4)	0.0173 (4)	0.0178 (4)	0.0009 (3)	0.0023 (3)	-0.0037 (3)
C4	0.0196 (4)	0.0188 (4)	0.0209 (4)	0.0062 (3)	0.0002 (3)	-0.0022 (3)
C5	0.0239 (5)	0.0166 (4)	0.0225 (5)	0.0051 (4)	0.0008 (4)	0.0021 (3)
C6	0.0200 (4)	0.0154 (4)	0.0179 (4)	0.0014 (3)	0.0012 (3)	0.0022 (3)
C7	0.0152 (4)	0.0136 (4)	0.0208 (4)	-0.0006 (3)	0.0026 (3)	0.0019 (3)
C8	0.0149 (4)	0.0141 (4)	0.0189 (4)	-0.0006 (3)	0.0018 (3)	-0.0005 (3)
C9	0.0152 (4)	0.0134 (4)	0.0171 (4)	0.0001 (3)	0.0044 (3)	0.0010 (3)
C10	0.0150 (4)	0.0127 (4)	0.0196 (4)	-0.0002 (3)	0.0018 (3)	-0.0013 (3)
C11	0.0158 (4)	0.0193 (4)	0.0165 (4)	0.0044 (3)	0.0032 (3)	0.0036 (3)
C12	0.0158 (4)	0.0215 (4)	0.0156 (4)	0.0032 (3)	0.0035 (3)	0.0020 (3)
C13	0.0165 (4)	0.0207 (4)	0.0216 (5)	0.0042 (3)	0.0045 (3)	0.0028 (3)

Geometric parameters (Å, °)

Cl1—C3	1.7485 (11)	C7—C8	1.5234 (13)	
Cl2—C13	1.7918 (11)	C7—H7A	0.9900	
N1C1	1.4087 (12)	С7—Н7В	0.9900	
N1C7	1.4592 (12)	C8—H8A	0.9900	
N1-C10	1.4654 (12)	C8—H8B	0.9900	
N2—C9	1.4995 (12)	C9—C10	1.5151 (13)	
N2-C11	1.5029 (12)	С9—Н9А	0.9900	
N2—C8	1.5037 (12)	С9—Н9В	0.9900	
N2—H2N	0.929 (15)	C10—H10A	0.9900	
C1—C6	1.4005 (13)	C10—H10B	0.9900	
C1—C2	1.4067 (14)	C11—C12	1.5191 (14)	
C2—C3	1.3824 (13)	C11—H11A	0.9900	
C2—H2A	0.9500	C11—H11B	0.9900	
C3—C4	1.3912 (14)	C12—C13	1.5193 (14)	
C4—C5	1.3888 (16)	C12—H12A	0.9900	
C4—H4A	0.9500	C12—H12B	0.9900	
C5—C6	1.3945 (14)	C13—H13A	0.9900	
С5—Н5А	0.9500	C13—H13B	0.9900	
С6—Н6А	0.9500			
C1—N1—C7	119.02 (8)	С7—С8—Н8А	109.4	
C1—N1—C10	117.42 (8)	N2—C8—H8B	109.4	
C7—N1—C10	110.40 (8)	C7—C8—H8B	109.4	
C9—N2—C11	108.92 (7)	H8A—C8—H8B	108.0	
C9—N2—C8	110.04 (7)	N2—C9—C10	110.79 (7)	
C11—N2—C8	112.66 (8)	N2—C9—H9A	109.5	
C9—N2—H2N	110.1 (9)	С10—С9—Н9А	109.5	
C11—N2—H2N	108.2 (9)	N2—C9—H9B	109.5	
C8—N2—H2N	106.8 (9)	С10—С9—Н9В	109.5	
C6—C1—C2	118.50 (9)	Н9А—С9—Н9В	108.1	
C6-C1-N1	122.71 (9)	N1—C10—C9	109.97 (8)	

C2-C1-N1	118.65 (8)	N1-C10-H10A	109.7
C3—C2—C1	119.62 (9)	C9—C10—H10A	109.7
С3—С2—Н2А	120.2	N1-C10-H10B	109.7
C1—C2—H2A	120.2	C9—C10—H10B	109.7
C2—C3—C4	122.76 (9)	H10A—C10—H10B	108.2
C2—C3—C11	118.44 (8)	N2-C11-C12	113.18 (8)
C4—C3—Cl1	118.77 (8)	N2—C11—H11A	108.9
C5—C4—C3	117.12 (9)	C12—C11—H11A	108.9
C5—C4—H4A	121.4	N2—C11—H11B	108.9
C3—C4—H4A	121.4	C12—C11—H11B	108.9
C4—C5—C6	121.80 (10)	H11A—C11—H11B	107.8
С4—С5—Н5А	119.1	C11—C12—C13	107.62 (8)
С6—С5—Н5А	119.1	C11—C12—H12A	110.2
C5—C6—C1	120.20 (10)	C13—C12—H12A	110.2
С5—С6—Н6А	119.9	C11—C12—H12B	110.2
С1—С6—Н6А	119.9	C13—C12—H12B	110.2
N1—C7—C8	109.46 (8)	H12A—C12—H12B	108.5
N1—C7—H7A	109.8	C12—C13—Cl2	110.47 (7)
С8—С7—Н7А	109.8	С12—С13—Н13А	109.6
N1—C7—H7B	109.8	Cl2—C13—H13A	109.6
С8—С7—Н7В	109.8	С12—С13—Н13В	109.6
H7A—C7—H7B	108.2	Cl2—C13—H13B	109.6
N2—C8—C7	111.04 (8)	H13A—C13—H13B	108.1
N2—C8—H8A	109.4		
C7—N1—C1—C6	3.76 (14)	C1—N1—C7—C8	158.63 (8)
C10—N1—C1—C6	-133.72 (10)	C10—N1—C7—C8	-61.16 (10)
C7—N1—C1—C2	-171.80 (9)	C9—N2—C8—C7	-54.39 (10)
C10—N1—C1—C2	50.72 (12)	C11—N2—C8—C7	-176.15 (8)
C6—C1—C2—C3	-0.17 (14)	N1—C7—C8—N2	57.77 (10)
N1—C1—C2—C3	175.57 (9)	C11—N2—C9—C10	178.29 (8)
C1—C2—C3—C4	0.26 (15)	C8—N2—C9—C10	54.33 (10)
C1—C2—C3—C11	-177.57 (7)	C1—N1—C10—C9	-157.53 (8)
C2—C3—C4—C5	-0.65 (15)	C7—N1—C10—C9	61.56 (10)
Cl1—C3—C4—C5	177.17 (8)	N2-C9-C10-N1	-57.91 (10)
C3—C4—C5—C6	0.98 (16)	C9—N2—C11—C12	154.36 (8)
C4—C5—C6—C1	-0.93 (16)	C8—N2—C11—C12	-83.25 (10)
C2-C1-C6-C5	0.50 (14)	N2-C11-C12-C13	-177.25 (8)
N1-C1-C6-C5	-175.06 (9)	C11—C12—C13—Cl2	174.23 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D··· A	D—H··· A
N2—H2 <i>N</i> ···Cl3	0.929 (15)	2.139 (15)	3.0629 (9)	172.4 (13)
C8—H8 <i>B</i> ···Cl3 ⁱ	0.99	2.90	3.7757 (10)	147
$C9$ — $H9A$ ···· $C13^{i}$	0.99	2.83	3.7200 (10)	150
C11—H11A···Cl3 ⁱⁱ	0.99	2.78	3.6981 (11)	155
C12—H12A····Cl1 ⁱⁱⁱ	0.99	2.87	3.5172 (11)	123

data reports

C12—H12B···Cl3	0.99	2.94	3.6149 (10)	126
C13—H13A····Cl3 ⁱⁱ	0.99	2.90	3.7940 (11)	150
C13—H13 <i>B</i> ···Cl1 ⁱⁱⁱ	0.99	2.95	3.6095 (12)	125

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x+1, -y, -z+1; (iii) x+1, y, z.