

ISSN 2414-3146

Received 9 January 2016 Accepted 27 January 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 1-benzofuran; acetic acid; hydrogen bonding.

CCDC reference: 1401315

Structural data: full structural data are available from iucrdata.iucr.org

2-(5-Methyl-1-benzofuran-3-yl)acetic acid

N. Ramprasad,^a Ramakrishna Gowda,^b* K. V. Arjuna Gowda^c and Mahantesha Basanagouda^d

^aDepartment of Physics, Govt. First Grade College, Mulbagal, Kolar dist 563 131, Karnataka, India, ^bDepartment of Physics, Govt. College for Women, Kolar 563 101, Karnataka, India, ^cDepartment of Physics, Govt. College for Women, Mandya 571 401, India, and ^dDepartment of Chemistry, P.C. Jabin Science College, Hubli 580 031, Karnataka, India. *Correspondence e-mail: rkgowdaphy@gmail.com

The asymmetric unit of the title compound, $C_{11}H_{10}O_3$, contains two crystallographically independent molecules, A and B, with closely matching conformations (r.m.s. overlay fit = 0.105 Å). In each case, the OH group of the acetic acid residue occupies a position approximately antiperiplanar to the C atom of the heterocycle. A short intramolecular $C-H \cdots O$ contact occurs within each molecule. In the crystal, carboxylic acid A+B dimers generate $R_2^2(8)$ loops.

Structure description

Derivatives of 2,3-dihydro-benzofuranyl-3-acetic acids have been reported to be potent, selective and orally bioavailable G protein-coupled receptor 40 (GPR40) and free fatty acid receptor 1 agonists (FFA1) as glucose-dependent insulinotropic agents (Negoro *et al.* 2012). As part of our studies in this area, we now report the synthesis and crystal structure of the title compound.

All the bond lengths and angles of the title molecule are close to those observed for a similar structure (Gowda *et al.*, 2015). The asymmetric unit of the title compound contains two crystallographically independent molecules (C1–C11,O1–O3 and C12–C22,O4–O6), which are almost identical (Fig. 1). In each molecule there is an intra-molecular C–H···O contact present (Table 1). In the crystal, molecules are linked *via* pairs of O–H···O hydrogen bonds, forming A-B dimers (Table 1 and Fig. 2).

Synthesis and crystallization

6-Methyl-4-bromomethylcoumarin (10 mM) was refluxed in 1 M NaOH (100 ml) for 2 h (the completion of the reaction was monitored by TLC). The reaction mixture was

Figure 1

The molecular structure of the title compound, showing 40% probability displacement ellipsoids.

Figure 2

The crystal packing diagram of the title compound. The dotted lines indicate hydrogen bonds. All H atoms not involved in interactions have been omitted for clarity.

cooled, neutralized with 1 M HCl and the obtained product was filtered and dried. Colourless blocks were obtained by recrystallization from an ethanol and ethyl acetate solvent mixture by slow evaporation technique (m.p. 370–371 K) (Basanagouda *et al.* 2015).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

MB thanks UGC–SWRO, Bangalore, for providing a Minor Research Project (reference No. 1415-MRP/14–15/KAKA067/ UGC-SWRO, Diary No. 1709). The authors also thank the SAIF IIT Madras, Chennai, for the data collection.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Basanagouda, M., Narayanachari, Majati, I. B., Mulimani, S. S., Sunnal, S. B., Nadiger, R. V., Ghanti, A. S., Gudageri, S. F., Naik, R. & Nayak, A. (2015). Synth. Commun. 45, 2195–2202.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots O5^i$	0.82	1.83	2.650 (2)	176
$O4-H4A\cdots O2^{ii}$	0.82	1.90	2.715 (2)	179
$C8-H8\cdots O2$	0.93	2.29	2.855 (3)	118
C19−H19···O5	0.93	2.29	2.843 (3)	118

Symmetry codes: (i) $x, -y - \frac{1}{2}, z + \frac{1}{2}$; (ii) $x, -y - \frac{1}{2}, z - \frac{1}{2}$.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{11}H_{10}O_3$
M _r	190.19
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
a, b, c (Å)	12.2090 (5), 20.3796 (14), 7.4335 (9)
β (°)	95.980 (4)
$V(Å^3)$	1839.5 (3)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.35 \times 0.25 \times 0.20$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2004)
T_{\min}, T_{\max}	0.964, 0.989
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	21006, 3240, 2051
Rint	0.052
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.115, 1.02
No. of reflections	3240
No. of parameters	256
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.16, -0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Bruno et al., 2002).

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389– 397.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gowda, R., Gowda, K. V. A., Reddy, M. K. & Basanagouda, M. (2015). Acta Cryst. E71, o1053–o1054.
- Negoro, N., Sasaki, S., Mikami, S., Ito, M., Tsujihata, Y., Ito, R., Suzuki, M., Takeuchi, K., Suzuki, N., Miyazaki, J., Santou, T., Odani, T., Kanzaki, N., Funami, M., Morohashi, A., Nonaka, M., Matsunaga, S., Yasuma, T. & Momose, Y. (2012). J. Med. Chem. 55, 3960–3974.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). 1, x160170 [https://doi.org/10.1107/S241431461600170X]

2-(5-Methyl-1-benzofuran-3-yl)acetic acid

N. Ramprasad, Ramakrishna Gowda, K. V. Arjuna Gowda and Mahantesha Basanagouda

2-(5-Methyl-1-benzofuran-3-yl)acetic acid

Crystal data

 $C_{11}H_{10}O_3$ $M_r = 190.19$ Monoclinic, $P2_1/c$ a = 12.2090 (5) Å b = 20.3796 (14) Å c = 7.4335 (9) Å $\beta = 95.980$ (4)° V = 1839.5 (3) Å³ Z = 8F(000) = 800

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.964, T_{\max} = 0.989$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.115$ S = 1.023240 reflections 256 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites $D_x = 1.373 \text{ Mg m}^{-3}$ Melting point = 370–371 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4172 reflections $\theta = 2.9-23.9^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.35 \times 0.25 \times 0.20 \text{ mm}$

21006 measured reflections 3240 independent reflections 2051 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -14 \rightarrow 14$ $k = -24 \rightarrow 24$ $l = -8 \rightarrow 8$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0478P)^2 + 0.4188P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.16 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0026 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.81759 (17)	0.05868 (10)	0.6079 (3)	0.0399 (5)
C2	0.83597 (17)	-0.00743 (10)	0.6377 (2)	0.0396 (5)
H2	0.9059	-0.0249	0.6315	0.048*
C3	0.75005 (16)	-0.04785 (10)	0.6770 (2)	0.0363 (5)
C4	0.64678 (17)	-0.02035 (11)	0.6843 (3)	0.0412 (5)
C5	0.62420 (18)	0.04512 (11)	0.6551 (3)	0.0482 (6)
Н5	0.5541	0.0623	0.6604	0.058*
C6	0.71189 (18)	0.08378 (11)	0.6174 (3)	0.0467 (6)
H6	0.7001	0.1284	0.5976	0.056*
C7	0.73877 (17)	-0.11645 (10)	0.7170 (3)	0.0423 (5)
C8	0.63338 (19)	-0.12474 (11)	0.7455 (3)	0.0530 (6)
H8	0.6038	-0.1649	0.7747	0.064*
С9	0.83049 (18)	-0.16488 (10)	0.7216 (3)	0.0539 (6)
H9A	0.8660	-0.1597	0.6117	0.065*
H9B	0.8843	-0.1536	0.8222	0.065*
C10	0.8017 (2)	-0.23539 (11)	0.7389 (3)	0.0493 (6)
C11	0.90915 (18)	0.10371 (11)	0.5656 (3)	0.0508 (6)
H11A	0.9788	0.0833	0.6019	0.076*
H11B	0.9041	0.1443	0.6300	0.076*
H11C	0.9029	0.1123	0.4380	0.076*
C12	0.66060 (18)	0.20598 (11)	0.0042 (3)	0.0442 (5)
C13	0.76168 (19)	0.23023 (11)	-0.0384 (3)	0.0491 (6)
H13	0.7650	0.2730	-0.0810	0.059*
C14	0.85690 (18)	0.19330 (11)	-0.0201 (3)	0.0497 (6)
H14	0.9241	0.2103	-0.0464	0.060*
C15	0.84690 (17)	0.13011 (11)	0.0392 (3)	0.0419 (5)
C16	0.74906 (16)	0.10295 (10)	0.0811 (2)	0.0357 (5)
C17	0.65453 (17)	0.14192 (10)	0.0641 (3)	0.0416 (5)
H17	0.5878	0.1249	0.0929	0.050*
C18	0.77211 (17)	0.03530 (10)	0.1269 (3)	0.0376 (5)
C19	0.87940 (18)	0.02707 (11)	0.1095 (3)	0.0472 (6)
H19	0.9163	-0.0126	0.1301	0.057*
C20	0.68777 (17)	-0.01216 (10)	0.1778 (3)	0.0425 (5)
H20A	0.6595	0.0039	0.2867	0.051*
H20B	0.6271	-0.0120	0.0826	0.051*
C21	0.72311 (19)	-0.08114 (10)	0.2101 (3)	0.0430 (5)
C22	0.56094 (19)	0.24951 (12)	-0.0157 (3)	0.0616 (7)
H22A	0.4962	0.2233	-0.0449	0.092*
H22B	0.5677	0.2807	-0.1107	0.092*
H22C	0.5552	0.2724	0.0958	0.092*
01	0.88003 (13)	-0.27454 (8)	0.6973 (3)	0.0706 (5)
H1A	0.8580	-0.3126	0.6958	0.085*
O2	0.71609 (14)	-0.25546 (8)	0.7889 (2)	0.0660 (5)
O3	0.57310 (12)	-0.06757 (7)	0.7271 (2)	0.0544 (4)
O4	0.64091 (12)	-0.11960 (7)	0.2445 (2)	0.0620 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

11/ 4	0.6621	-0.1575	0.2574	0.074*
05	0.81643 (13)	-0.10129(7)	0.2076 (2)	0.0623 (5)
06	0.92925 (11)	0.08380 (7)	0.0578 (2)	0.0516 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0400 (13)	0.0407 (13)	0.0390 (11)	-0.0006 (10)	0.0046 (9)	-0.0054 (10)
C2	0.0330 (12)	0.0421 (13)	0.0442 (12)	0.0009 (10)	0.0059 (9)	-0.0025 (10)
C3	0.0330 (12)	0.0402 (12)	0.0355 (11)	-0.0001 (10)	0.0024 (9)	-0.0034 (9)
C4	0.0346 (13)	0.0455 (14)	0.0441 (12)	-0.0026 (11)	0.0064 (10)	-0.0047 (10)
C5	0.0376 (13)	0.0485 (15)	0.0587 (14)	0.0076 (11)	0.0061 (11)	-0.0026 (11)
C6	0.0496 (14)	0.0378 (13)	0.0531 (13)	0.0053 (11)	0.0072 (11)	-0.0012 (10)
C7	0.0357 (13)	0.0402 (13)	0.0507 (13)	-0.0037 (10)	0.0036 (10)	-0.0015 (10)
C8	0.0468 (15)	0.0422 (14)	0.0704 (16)	-0.0037 (12)	0.0085 (12)	0.0026 (12)
C9	0.0419 (14)	0.0412 (14)	0.0791 (16)	-0.0035 (11)	0.0081 (12)	0.0046 (12)
C10	0.0429 (14)	0.0405 (14)	0.0645 (15)	-0.0001 (12)	0.0060 (12)	0.0029 (11)
C11	0.0501 (14)	0.0413 (13)	0.0622 (14)	-0.0046 (11)	0.0113 (11)	0.0004 (11)
C12	0.0468 (14)	0.0434 (13)	0.0422 (12)	0.0026 (11)	0.0040 (10)	0.0003 (10)
C13	0.0588 (16)	0.0400 (13)	0.0493 (13)	-0.0039 (12)	0.0096 (11)	0.0025 (10)
C14	0.0431 (14)	0.0505 (15)	0.0564 (14)	-0.0101 (12)	0.0099 (11)	-0.0013 (11)
C15	0.0365 (13)	0.0466 (14)	0.0429 (12)	-0.0016 (11)	0.0048 (10)	-0.0043 (10)
C16	0.0358 (12)	0.0389 (12)	0.0324 (11)	-0.0026 (10)	0.0032 (9)	-0.0027 (9)
C17	0.0374 (13)	0.0454 (13)	0.0425 (12)	-0.0015 (10)	0.0070 (10)	-0.0011 (10)
C18	0.0360 (13)	0.0394 (13)	0.0375 (11)	0.0003 (10)	0.0039 (9)	-0.0033 (9)
C19	0.0458 (15)	0.0405 (14)	0.0552 (14)	0.0004 (11)	0.0056 (11)	0.0002 (11)
C20	0.0422 (13)	0.0413 (13)	0.0442 (12)	0.0015 (10)	0.0060 (10)	-0.0015 (10)
C21	0.0407 (14)	0.0402 (13)	0.0478 (13)	-0.0034 (12)	0.0029 (10)	-0.0051 (10)
C22	0.0600 (16)	0.0539 (15)	0.0712 (17)	0.0101 (13)	0.0086 (13)	0.0099 (13)
01	0.0501 (10)	0.0396 (10)	0.1260 (15)	0.0026 (8)	0.0271 (10)	0.0054 (9)
O2	0.0561 (11)	0.0432 (10)	0.1032 (14)	-0.0048 (9)	0.0294 (10)	0.0024 (9)
03	0.0375 (9)	0.0498 (10)	0.0772 (11)	-0.0027 (8)	0.0120 (8)	0.0010 (8)
O4	0.0472 (10)	0.0385 (9)	0.1025 (13)	-0.0004 (8)	0.0182 (9)	0.0061 (9)
05	0.0395 (10)	0.0424 (10)	0.1051 (13)	0.0036 (8)	0.0082 (9)	0.0007 (9)
O6	0.0374 (9)	0.0500 (10)	0.0683 (10)	-0.0018 (8)	0.0103 (7)	0.0005 (8)

Geometric parameters (Å, °)

C1—C2	1.380 (3)	C12—C13	1.396 (3)	
C1—C6	1.397 (3)	C12—C22	1.501 (3)	
C1C11	1.505 (3)	C13—C14	1.380 (3)	
C2—C3	1.388 (3)	C13—H13	0.9300	
С2—Н2	0.9300	C14—C15	1.371 (3)	
C3—C4	1.386 (3)	C14—H14	0.9300	
C3—C7	1.439 (3)	C15—O6	1.375 (2)	
C4—C5	1.375 (3)	C15—C16	1.381 (3)	
C4—O3	1.377 (2)	C16—C17	1.396 (3)	
C5—C6	1.381 (3)	C16—C18	1.441 (3)	

С5—Н5	0.9300	C17—H17	0.9300
С6—Н6	0.9300	C18-C19	1.340(3)
C7-C8	1 336 (3)	C_{18} C_{20}	1.5 10 (3)
C7 - C9	1.350(3)	C_{19} C_{20}	1.490(3) 1.380(2)
C_{1}^{2}	1.470(3)	C_{10} H_{10}	0.0300
C ⁸ H ⁸	0.0200	C19—1119	1.482(2)
$C_0 = C_1 O$	0.9300	C_{20} H_{20A}	1.465 (5)
C9	1.400 (3)	C20—H20A	0.9700
C9—H9A	0.9700	C20—H20B	0.9700
C10 02	0.9700	C21-03	1.213 (2)
C10—02	1.216 (2)	C21—04	1.319 (2)
C10—O1	1.307 (3)	C22—H22A	0.9600
C11—H11A	0.9600	C22—H22B	0.9600
C11—H11B	0.9600	C22—H22C	0.9600
C11—H11C	0.9600	O1—H1A	0.8200
C12—C17	1.384 (3)	O4—H4A	0.8200
C2—C1—C6	119.0 (2)	C13—C12—C22	119.7 (2)
C2—C1—C11	121.14 (19)	C14—C13—C12	122.7 (2)
C6—C1—C11	119.8 (2)	C14—C13—H13	118.7
C1—C2—C3	119.95 (19)	С12—С13—Н13	118.7
С1—С2—Н2	120.0	C15—C14—C13	116.2 (2)
С3—С2—Н2	120.0	C15—C14—H14	121.9
C4—C3—C2	118.60 (19)	C13—C14—H14	121.9
C4—C3—C7	106.12 (18)	C14—C15—O6	126.0 (2)
C2—C3—C7	135.3 (2)	C14—C15—C16	123.9 (2)
C5—C4—O3	126.13 (19)	O6—C15—C16	110.04 (19)
C5—C4—C3	123.7 (2)	C15—C16—C17	118.54 (19)
03-C4-C3	110.20 (18)	C15-C16-C18	106.53 (18)
C4-C5-C6	116.0(2)	C_{17} $-C_{16}$ $-C_{18}$	134 85 (19)
C4—C5—H5	122.0	C_{12} C_{17} C_{16} C_{16}	119 64 (19)
С6—С5—Н5	122.0	C_{12} C_{17} H_{17}	120.2
C_{5} C_{6} C_{1}	122.0 122.8(2)	$C_{12} C_{17} H_{17}$	120.2
$C_{5} = C_{6} = C_{1}$	118.6	$C_{10} = C_{17} = M_{17}$	120.2 105.42(18)
C_{1} C_{6} H_{6}	118.0	$C_{19} = C_{18} = C_{10}$	103.42(18)
C° C° C° C°	110.0 105.67.(10)	C19 - C10 - C20	130.00(19)
C_{0}	103.07(19) 120.2(2)	C10 - C10 - C20	123.91 (18)
$C_{8} - C_{7} - C_{9}$	130.2(2)	C18 - C19 - 06	112.70 (19)
$C_{3} - C_{7} - C_{9}$	124.08 (19)	C18—C19—H19	123.0
C/-C8-O3	113.0 (2)	06—C19—H19	123.6
C/C8H8	123.5	C21—C20—C18	117.34 (18)
O3—C8—H8	123.5	С21—С20—Н20А	108.0
C10—C9—C7	117.23 (19)	C18—C20—H20A	108.0
С10—С9—Н9А	108.0	C21—C20—H20B	108.0
С7—С9—Н9А	108.0	C18—C20—H20B	108.0
С10—С9—Н9В	108.0	H20A—C20—H20B	107.2
С7—С9—Н9В	108.0	O5—C21—O4	122.4 (2)
Н9А—С9—Н9В	107.2	O5—C21—C20	125.2 (2)
O2-C10-O1	122.7 (2)	O4—C21—C20	112.35 (19)
O2—C10—C9	124.7 (2)	C12—C22—H22A	109.5

O1—C10—C9	112.5 (2)	C12—C22—H22B	109.5
C1—C11—H11A	109.5	H22A—C22—H22B	109.5
C1—C11—H11B	109.5	C12—C22—H22C	109.5
H11A—C11—H11B	109.5	H22A—C22—H22C	109.5
C1—C11—H11C	109.5	H22B—C22—H22C	109.5
H11A—C11—H11C	109.5	C10—O1—H1A	109.5
H11B—C11—H11C	109.5	C4—O3—C8	105.01 (16)
C17—C12—C13	119.0 (2)	C21—O4—H4A	109.5
C17—C12—C22	121.3 (2)	C15—O6—C19	105.31 (16)
C6—C1—C2—C3	-0.2 (3)	C13—C14—C15—O6	176.28 (18)
C11—C1—C2—C3	179.80 (17)	C13—C14—C15—C16	-0.5 (3)
C1—C2—C3—C4	0.3 (3)	C14—C15—C16—C17	-0.6 (3)
C1—C2—C3—C7	-179.0 (2)	O6-C15-C16-C17	-177.81 (16)
C2—C3—C4—C5	-0.1 (3)	C14—C15—C16—C18	176.63 (19)
C7—C3—C4—C5	179.39 (19)	O6-C15-C16-C18	-0.6 (2)
C2—C3—C4—O3	-179.20 (16)	C13—C12—C17—C16	0.1 (3)
C7—C3—C4—O3	0.3 (2)	C22-C12-C17-C16	-179.93 (18)
O3—C4—C5—C6	178.69 (18)	C15—C16—C17—C12	0.8 (3)
C3—C4—C5—C6	-0.2 (3)	C18—C16—C17—C12	-175.5 (2)
C4—C5—C6—C1	0.4 (3)	C15—C16—C18—C19	0.0 (2)
C2-C1-C6-C5	-0.2 (3)	C17—C16—C18—C19	176.6 (2)
C11—C1—C6—C5	179.81 (19)	C15—C16—C18—C20	-178.94 (17)
C4—C3—C7—C8	-0.4 (2)	C17—C16—C18—C20	-2.4 (3)
C2—C3—C7—C8	179.0 (2)	C16—C18—C19—O6	0.6 (2)
C4—C3—C7—C9	179.34 (19)	C20-C18-C19-O6	179.43 (18)
C2—C3—C7—C9	-1.3 (4)	C19—C18—C20—C21	-2.4 (3)
C3—C7—C8—O3	0.3 (2)	C16-C18-C20-C21	176.29 (17)
C9—C7—C8—O3	-179.4 (2)	C18—C20—C21—O5	4.1 (3)
C8—C7—C9—C10	8.2 (4)	C18—C20—C21—O4	-176.54 (17)
C3—C7—C9—C10	-171.4 (2)	C5—C4—O3—C8	-179.2 (2)
C7—C9—C10—O2	-17.1 (4)	C3—C4—O3—C8	-0.2 (2)
C7—C9—C10—O1	164.1 (2)	C7—C8—O3—C4	-0.1 (2)
C17—C12—C13—C14	-1.3 (3)	C14-C15-O6-C19	-176.2 (2)
C22-C12-C13-C14	178.77 (19)	C16—C15—O6—C19	0.9 (2)
C12—C13—C14—C15	1.5 (3)	C18—C19—O6—C15	-0.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
O1—H1A····O5 ⁱ	0.82	1.83	2.650 (2)	176
O4—H4A····O2 ⁱⁱ	0.82	1.90	2.715 (2)	179
С8—Н8…О2	0.93	2.29	2.855 (3)	118
С19—Н19…О5	0.93	2.29	2.843 (3)	118

Symmetry codes: (i) *x*, -*y*-1/2, *z*+1/2; (ii) *x*, -*y*-1/2, *z*-1/2.