ISSN 2414-3146

Received 18 January 2016 Accepted 9 February 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; one-dimensional helical coordination polymer; silver(I); imidazolinylidene.

CCDC reference: 1452331

Structural data: full structural data are available from iucrdata.iucr.org

catena-Poly[silver(I)- μ -[1-(pyridin-2-ylmethyl- κN)-3-(3-sulfonatopropyl)imidazolin-2-ylidene]- κC^2]

Barbara Rietzler,^a Gerhard Laus,^a Volker Kahlenberg^b and Herwig Schottenberger^a*

^aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and ^bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria. *Correspondence e-mail: herwig.schottenberger@uibk.ac.at

The title compound, $[Ag(C_{12}H_{14}N_3O_3S)]_n$, was obtained by deprotonation and metalation of 1-(pyridin-2-ylmethyl)-3-(3-sulfopropyl)imidazolium, inner salt, using silver(I) oxide in methanol. The title compound is a one-dimensional helical coordination polymer. Several $C-H\cdots O$ hydrogen bonds and a short Ag-O contact are observed. The C-Ag-N angle is 168.3 (1)° and the N-C-N 'carbene angle' is 103.8 (3)°.

Structure description

N-Heterocyclic carbene (NHC)–silver complexes are valuable transmetalation reagents or, in other words, carbene transfer agents for the conversion to other metal NHC systems (Lin *et al.*, 2009). Recently, the structural diversity of Ag^I–NHC complexes with pyridyl-substituted imidazolium ligands was discussed in terms of different metal-to-ligand ratios. Increasing degrees of coordination completeness culminated in a polymeric structure (Cui *et al.*, 2012).

In the crystal structure of the title compound, the central $C1-Ag-N3^{i}$ [symmetry code: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$] bonds deviate considerably from linearity with an angle of 168.3 (1)°, and the dihedral angle between the heterocyclic rings is 50.2 (2)°. The molecular structure is shown in Fig. 1. The N-C-N 'carbene angle' is 103.8 (3)°, in accordance with the mean value of 104.0° in imidazol-2-ylidene-Ag-pyridine complexes from the CSD (119 values from 20 entries). The carbene-metal C1-Ag and nitrogenmetal N3-Ag bonds are 2.065 (4) and 2.144 (3) Å long, respectively, among the shortest in those complexes. The molecules of the title compound form a one-dimensional, helical coordination polymer (Fig. 2). Several C-H···O hydrogen bonds (Table 1) and a short Ag-O contact [2.913 (3) Å] are observed (Fig. 3).

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C10-H10···O3 ⁱⁱⁱ	0.95	2.40	3.349 (4)	173
$C6-H6A\cdots O2^{iv}$	0.99	2.51	3.458 (5)	160
$C7 - H7B \cdots O3^{v}$	0.99	2.38	3.367 (5)	175
$C2-H2\cdots O2^{vi}$	0.95	2.53	3.179 (5)	126
$C12-H12\cdots O1^{vii}$	0.95	2.47	3.143 (4)	128
C7 H74 O3 ^{viii}	0.00	2 41	3 257 (1)	1/3

Symmetry codes: (iii) x + 1, y, z + 1; (iv) -x, -y, -z; (v) -x, -y, -z + 1; (vi) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (vii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (viii) $x + \frac{1}{2}, -y - \frac{1}{2}, z + \frac{1}{2}$.

Figure 1

The asymmetric unit of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

The molecules of the title compound forming a one-dimensional, helical coordination polymer. H atoms have been omitted for clarity.

For related structures, see: Catalano & Moore (2005), Garrison et al. (2005), Liu et al. (2007), Ye et al. (2008), Catalano et al. (2011) and Cui et al. (2012). These authors describe other structural motifs with polydentate ligands forming NHC-silver complexes.

Synthesis and crystallization

A suspension of the imidazolium salt (0.40 g, 1.4 mmol) (Tomás-Mendivil et al., 2013) and Ag₂O (0.17 g, 0.7 mmol) in MeOH (15 ml) was stirred at room temperature for 18 h. The

Figure 3

Short contacts in the crystal structure of the title compound. [Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$. For other symmetry codes, see Table 1].

product was collected by filtration, washed with MeOH and Et₂O and dried to yield colourless crystals (0.44 g, 80%). The PXRD (Cu K α radiation) of the bulk material is identical to the one calculated from the single-crystal diffraction data (Fig. 4), indicating phase purity.

Melting point: 247–252°C. ¹H NMR (300 MHz, D₂O): δ 2.24 (*m*, 2H), 2.84 (*m*, 2H), 4.30 (*t*, *J* = 6.7 Hz, 2H), 5.67 (*s*, 2H), 7.45 (s, 1H), 7.51–7.56 (m, 2H), 7.87 (d, J = 7.6 Hz, 1H), 8.12 (t, J = 7.7 Hz, 1H), 8.23 (*m*, 1H) p.p.m. ¹³C NMR (75 MHz, D₂O): δ 26.8, 47.8, 50.4, 57.8, 123.8, 125.0, 125.8, 126.5, 141.2, 152.3, 154.1, 174.1 p.p.m. IR (neat, ATR): v 1597 (w), 1439 (w), 1418

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$[Ag(C_{12}H_{14}N_{3}O_{3}S)]$
$M_{\rm r}$	388.19
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	173
a, b, c (Å)	11.1568 (6), 9.7852 (4), 12.5715 (6)
β (°)	107.055 (10)
$V(\text{\AA}^3)$	1312.09 (12)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.71
Crystal size (mm)	$0.15 \times 0.04 \times 0.03$
Data collection	
Diffractometer	Agilent Xcalibur Ruby Gemini ultra
Absorption correction	Multi-scan (CrysAlis PRO;
	Agilent, 2014)
T_{\min}, T_{\max}	0.936, 1
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8214, 2398, 1921
R _{int}	0.045
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.066, 1.02
No. of reflections	2398
No. of parameters	181
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.45, -0.38

Computer programs: CrysAlis PRO (Agilent, 2014), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006).

(w), 1205 (s), 1157 (s), 1135 (s), 1035 (m), 750 (m), 716 (s), 577 (m), 518 (s) cm⁻¹.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We are grateful to Christoph Langes for the PXRD measurement.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Santa Clara, California, USA.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Catalano, V. J. & Moore, A. L. (2005). Inorg. Chem. 44, 6558-6566.
- Catalano, V. J., Munro, L. B., Strasser, C. E. & Samin, A. F. (2011). *Inorg. Chem.* **50**, 8465–8476.
- Cui, F., Yang, P., Huang, X., Yang, X.-J. & Wu, B. (2012). *Organometallics*, **31**, 3512–3518.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Garrison, J. C., Tessier, C. A. & Youngs, W. J. (2005). J. Organomet. Chem. 690, 6008–6020.
- Lin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S. & Lin, I. J. B. (2009). *Chem. Rev.* 109, 3561–3598.

Figure 4

The observed and calculated powder X-ray diffraction data.

- Liu, B., Chen, W. & Jin, S. (2007). Organometallics, 26, 3660-3667.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tomás-Mendivil, E., Toullec, P. Y., Borge, J., Conejero, S., Michelet, V. & Cadierno, V. (2013). ACS Catal. **3**, 3086–3098.
- Ye, J., Chen, W. & Wang, D. (2008). Dalton Trans. pp. 4015-4022.

full crystallographic data

IUCrData (2016). **1**, x160245 [https://doi.org/10.1107/S2414314616002455]

catena-Poly[silver(I)- μ -[1-(pyridin-2-ylmethyl- κN)-3-(3-sulfonatopropyl)imidazolin-2-ylidene]- κC^2]

Barbara Rietzler, Gerhard Laus, Volker Kahlenberg and Herwig Schottenberger

catena-Poly[silver(I)- μ -[1-(pyridin-2-ylmethyl- κN)-3-(3-sulfonatopropyl)imidazolin-2-ylidene]- κC^2]

Crystal data

[Ag(C₁₂H₁₄N₃O₃S)] $M_r = 388.19$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 11.1568 (6) Å b = 9.7852 (4) Å c = 12.5715 (6) Å $\beta = 107.055$ (10)° V = 1312.09 (12) Å³ Z = 4

Data collection

Agilent Xcalibur Ruby Gemini ultra diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.3575 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.936, T_{\max} = 1$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.066$ S = 1.022398 reflections 181 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 776 $D_x = 1.965 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2698 reflections $\theta = 3.6-27.2^{\circ}$ $\mu = 1.71 \text{ mm}^{-1}$ T = 173 KFragment, colourless $0.15 \times 0.04 \times 0.03 \text{ mm}$

8214 measured reflections 2398 independent reflections 1921 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = -13 \rightarrow 13$ $k = -11 \rightarrow 10$ $l = -11 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0243P)^2 + 0.580P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.45$ e Å⁻³ $\Delta\rho_{min} = -0.38$ e Å⁻³

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ag	0.14608 (3)	0.10604 (3)	0.58234 (2)	0.02486 (11)	
S	-0.03575 (9)	0.10338 (8)	0.17887 (8)	0.0211 (2)	
N3	0.4721 (3)	-0.2244 (3)	0.9083 (2)	0.0166 (7)	
C5	0.1801 (4)	-0.0473 (3)	0.2667 (3)	0.0206 (8)	
H5A	0.1213	-0.1022	0.2948	0.025*	
H5B	0.2375	-0.1113	0.245	0.025*	
N2	0.3417 (3)	-0.1303 (3)	0.6187 (2)	0.0180 (7)	
01	0.0012 (3)	0.2093 (3)	0.2626 (2)	0.0376 (8)	
O2	-0.1035 (3)	0.1553 (3)	0.0696 (2)	0.0340 (7)	
C11	0.6205 (4)	0.0030 (4)	0.9122 (3)	0.0251 (9)	
H11	0.6711	0.0815	0.9136	0.03*	
C8	0.4460 (3)	-0.1385 (3)	0.8205 (3)	0.0162 (8)	
N1	0.3119 (3)	-0.0352 (3)	0.4606 (2)	0.0189 (7)	
C1	0.2724 (4)	-0.0316 (3)	0.5520 (3)	0.0181 (8)	
03	-0.0995 (3)	-0.0096 (2)	0.2142 (2)	0.0279 (6)	
C3	0.4222 (3)	-0.1927 (3)	0.5684 (3)	0.0210 (9)	
H3	0.4797	-0.2642	0.5987	0.025*	
C2	0.4038 (4)	-0.1338 (3)	0.4695 (3)	0.0200 (8)	
H2	0.4455	-0.1549	0.4156	0.024*	
C10	0.6490 (4)	-0.0863 (3)	1.0009 (3)	0.0217 (8)	
H10	0.7202	-0.0721	1.0636	0.026*	
C6	0.1058 (4)	0.0317 (3)	0.1644 (3)	0.0210 (8)	
H6A	0.085	-0.0302	0.0993	0.025*	
H6B	0.1589	0.1063	0.1498	0.025*	
C7	0.3302 (4)	-0.1690 (3)	0.7271 (3)	0.0195 (8)	
H7A	0.3121	-0.2681	0.7269	0.023*	
H7B	0.2584	-0.1195	0.7402	0.023*	
C9	0.5710 (4)	-0.1964 (3)	0.9958 (3)	0.0219 (9)	
H9	0.5883	-0.256	1.0581	0.026*	
C12	0.5181 (4)	-0.0224 (3)	0.8210(3)	0.0217 (9)	
H12	0.4973	0.0387	0.7595	0.026*	
C4	0.2562 (4)	0.0444 (3)	0.3597 (3)	0.0237 (9)	
H4A	0.3235	0.0897	0.3359	0.028*	
H4B	0.2013	0.1162	0.3755	0.028*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

$\frac{U^{23}}{-0.00441(11)}$
-0.00441 (11)
-0.0012 (4)
0.0006 (11)
0.0008 (14)
0.0007 (11)
-0.0195 (12)
0.0114 (12)
-0.0082 (16)
-0.0023 (13)
0.0008 (11)
-0.0014 (13)
0.0033 (11)
-0.0022 (15)
-0.0034 (14)
-0.0062 (15)
0.0002 (15)
0.0000 (14)
-0.0005 (14)
0.0008 (14)
0.0039 (14)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Ag—C1	2.065 (4)	C8—C12	1.391 (5)
Ag—N3 ⁱ	2.144 (3)	C8—C7	1.499 (5)
S—01	1.448 (3)	N1—C1	1.345 (5)
S—O2	1.452 (3)	N1—C2	1.389 (5)
S—O3	1.453 (3)	N1—C4	1.463 (4)
S—C6	1.785 (4)	C3—C2	1.331 (5)
N3—C9	1.338 (5)	С3—Н3	0.95
N3—C8	1.350 (4)	C2—H2	0.95
N3—Ag ⁱⁱ	2.144 (3)	C10—C9	1.375 (5)
C5—C4	1.520 (5)	C10—H10	0.95
С5—С6	1.521 (5)	C6—H6A	0.99
С5—Н5А	0.99	C6—H6B	0.99
С5—Н5В	0.99	C7—H7A	0.99
N2—C1	1.361 (4)	С7—Н7В	0.99
N2—C3	1.383 (5)	С9—Н9	0.95
N2C7	1.456 (4)	C12—H12	0.95
C11—C10	1.379 (5)	C4—H4A	0.99
C11—C12	1.383 (5)	C4—H4B	0.99
C11—H11	0.95		
C1—Ag—N3 ⁱ	168.31 (12)	С2—С3—Н3	126.5
01—S—02	113.30 (16)	N2—C3—H3	126.5

O1—S—O3	112.50 (17)	C3—C2—N1	106.4 (3)
O2—S—O3	112.94 (17)	С3—С2—Н2	126.8
01—S—C6	106.45 (17)	N1—C2—H2	126.8
02-S-C6	105.77 (17)	C9—C10—C11	117.8 (3)
03 - S - C6	105.04 (16)	C9-C10-H10	121.1
C9 - N3 - C8	118 2 (3)	$C_{11} - C_{10} - H_{10}$	121.1
$C9 - N3 - Ag^{ii}$	110.2(3)	C5-C6-S	121.1 113.1(3)
$C_{\text{S}} = N_{\text{S}} = \Delta g^{\text{ii}}$	119.1(2) 122.5(2)	C5-C6-H6A	109
C4-C5-C6	122.3(2) 113 1 (3)	S_C6_H6A	109
$C_4 = C_5 = C_0$	108.0	C_{5} C_{6} H_{6B}	109
C6 C5 H5A	108.9	S C6 H6P	109
C_{0} C_{5} H_{5} H_{5} H_{5}	108.9		107.8
$C_4 = C_5 = H_5 D_5$	108.9	N2 C7 C9	107.8
	108.9	N2 = C7 = U7 A	112.8 (5)
$H_{JA} = C_{J} = H_{JB}$	107.8	$N_2 - C_7 - H_7 A$	109
C1 = N2 = C3	111.0(3)	C8 - C7 - H7A	109
C1 = N2 = C7	124.8 (3)	N2—C/—H/B	109
C3—N2—C7	124.1 (3)	C8—C/—H/B	109
C10—C11—C12	119.7 (3)	Н7А—С7—Н7В	107.8
C10—C11—H11	120.1	N3—C9—C10	123.9 (3)
C12—C11—H11	120.1	N3—C9—H9	118.1
N3—C8—C12	121.3 (3)	С10—С9—Н9	118.1
N3—C8—C7	116.5 (3)	C11—C12—C8	119.1 (3)
C12—C8—C7	122.1 (3)	C11—C12—H12	120.5
C1—N1—C2	111.7 (3)	C8—C12—H12	120.5
C1—N1—C4	124.4 (3)	N1—C4—C5	110.6 (3)
C2—N1—C4	123.7 (3)	N1—C4—H4A	109.5
N1—C1—N2	103.8 (3)	C5—C4—H4A	109.5
N1—C1—Ag	125.9 (2)	N1—C4—H4B	109.5
N2—C1—Ag	130.1 (3)	C5—C4—H4B	109.5
C2—C3—N2	107.1 (3)	H4A—C4—H4B	108.1
C9—N3—C8—C12	-1.1 (5)	C12—C11—C10—C9	-1.7 (5)
Ag ⁱⁱ —N3—C8—C12	174.2 (3)	C4—C5—C6—S	-79.6 (4)
C9—N3—C8—C7	-176.5 (3)	O1—S—C6—C5	68.0 (3)
Ag ⁱⁱ —N3—C8—C7	-1.3 (4)	O2—S—C6—C5	-171.2 (2)
C2—N1—C1—N2	0.0 (4)	O3—S—C6—C5	-51.5 (3)
C4—N1—C1—N2	174.1 (3)	C1—N2—C7—C8	-115.2 (4)
C2—N1—C1—Ag	175.6 (2)	C3—N2—C7—C8	67.1 (4)
C4—N1—C1—Ag	-10.3 (5)	N3—C8—C7—N2	-147.7 (3)
C3—N2—C1—N1	0.1 (4)	C12—C8—C7—N2	36.9 (5)
C7—N2—C1—N1	-177.9 (3)	C8—N3—C9—C10	-1.1 (5)
C3—N2—C1—Ag	-175.3 (3)	Ag ⁱⁱ —N3—C9—C10	-176.6 (3)
C7—N2—C1—Ag	6.8 (5)	C11—C10—C9—N3	2.5 (6)
N3 ⁱ —Ag—C1—N1	-26.1 (8)	C10—C11—C12—C8	-0.4 (5)
$N3^{i}$ Ag $C1$ $N2$	148.3 (5)	N3—C8—C12—C11	1.8 (5)
C1—N2—C3—C2	-0.1 (4)	C7—C8—C12—C11	177.0 (3)
C7—N2—C3—C2	177.9 (3)	C1—N1—C4—C5	-106.9 (4)
N2—C3—C2—N1	0.1 (4)	C2—N1—C4—C5	66.5 (5)

data reports

C1—N1—C2—C3	0.0 (4)	C6—C5—C4—N1	172.4 (3)
C4—N1—C2—C3	-174.2 (3)		

Symmetry codes: (i) -x+1/2, y+1/2, -z+3/2; (ii) -x+1/2, y-1/2, -z+3/2.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	D—H…A
С10—Н10…ОЗ ^{ііі}	0.95	2.40	3.349 (4)	173
C6—H6 <i>A</i> ···O2 ^{iv}	0.99	2.51	3.458 (5)	160
C7—H7 <i>B</i> ···O3 ^v	0.99	2.38	3.367 (5)	175
C2—H2···O2 ^{vi}	0.95	2.53	3.179 (5)	126
C12—H12···O1 ^{vii}	0.95	2.47	3.143 (4)	128
C7—H7A····O3 ^{viii}	0.99	2.41	3.257 (4)	143

Symmetry codes: (iii) x+1, y, z+1; (iv) -x, -y, -z; (v) -x, -y, -z+1; (vi) -x+1/2, y-1/2, -z+1/2; (vii) x+1/2, -y+1/2, z+1/2; (viii) x+1/2, -y-1/2, z+1/2.