ISSN 2414-3146

Received 30 December 2015 Accepted 3 February 2016

Edited by W. Imhof, University Koblenz-Landau, Germany

Keywords: crystal structure; 3-sulfobenzoate; platinum; hydrogen bonding.

CCDC reference: 1451710

Structural data: full structural data are available from iucrdata.iucr.org

Bis(1,10-phenanthroline- $\kappa^2 N, N'$)platinum(II) bis(3-carboxybenzenesulfonate) dihydrate

Jing Liu and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China. *Correspondence e-mail: chezlg@zju.edu.cn

The title complex, $[Pt(C_{12}H_8N_2)_2](C_7H_5O_5S)_2\cdot 2H_2O$, consists of a complex cation $[Pt(1,10\text{-phen})_2]^{2+}$ (1,10-phen = 1,10-phenanthroline), two 3-sulfobenzoate anions and two lattice water molecules. In the crystal, anions and water molecules form hydrogen-bonded centrosymmetric dimers. In addition, π - π interactions are observed between 1,10-phenanthroline ligands and 3-sulfobenzoate anions.

Structure description

Metal complexes with sulfobenzoate ligands or anions have attracted much attention and are very interesting in material science, as they may have potential applications in fluorescence, as electric conductors or may be used as catalysts (Ma & Zhu, 2014; Zheng & Zhu, 2014). Sulfobenzoate ligands have two functional groups, sulfonate and carboxylate, and may therefore either coordinate to metal ions or form abundant hydrogen bonds. Platinum complexes are important in bio- and catalytical chemistry (Li *et al.*, 2011; Palocsay & Rund, 1969). General background to bis(1,10-phenan-throline)platinum and sulfobenzoate complexes and their applications is given by Wernberg & Hazell (1980) and Hazell *et al.* (1986).

Up to now, more than 100 platinum 1,10-phenanthroline complexes have been structurally characterized (CSD Version 5.36, 2015; Groom & Allen, 2015), but no structure analysis of a platinum complex with sulfobenzoate moieties has been reported so far. The title complex is therefore the first 3-sulfobenzoate platinum complex and consists of one centrosymmetric cation and two anions as well as two additional lattice water molecules (Fig. 1). In the cation, the platinum ion is coordinated by four nitrogen donor atoms from two 1,10-phenanthroline ligands in a square-planar geometry (Table 1). The anion is deprotonated at the sulfonate substituent. Two anions and water molecules form hydrogen-bonded centrosymmetric dimers (Table 2 and Fig. 2). There are additional . .

	· · · · · · · · · · · · · · · · · · ·	,	
Pt1-N1	2.022 (7)	S1-O5	
Pt1-N1 ⁱ	2.022 (7)	S1-O4	
$Pt1-N2^{i}$	2.034 (6)	O2-C13	
Pt1-N2	2.034 (6)	O1-C13	
S1-O3	1.357 (10)		

 $N1 - Pt1 - N1^{i}$ 180.0 (4) $N2^i - Pt1 - N2$ 180.0 (5) $N1 - Pt1 - N2^{i}$ 99.9 (3) O3-S1-O5 114.6 (7) N1ⁱ-Pt1-N2ⁱ 80.1 (3) O3 - S1 - O4113.4 (8) N1-Pt1-N2 O5-S1-O4 109.7 (6) 80.1 (3) N1ⁱ-Pt1-N2 99.9 (3)

Symmetry code: (i) -x, -y, -z.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O2-H2A\cdots O1W$	0.82	1.83	2.650 (10)	177
$O1W-H1A\cdots O3^{ii}$	0.85 (2)	2.32 (14)	2.90 (2)	126 (14)
$C6-H6\cdots O2^{iii}$	0.93	2.57	3.468 (13)	161
$\rm C10{-}H1{\cdots}O5^{iv}$	0.93	2.46	3.228 (12)	140

Symmetry codes: (ii) -x + 1, -y + 1, -z; (iii) x, y - 1, z; (iv) $-x + \frac{1}{2}, y - \frac{1}{2}, -z - \frac{1}{2}$.

weak C-H···O contacts linking the anions and cations. Futhermore, π - π stacking interactions between 1,10-phenanthroline ligands and sulfobenzoate anions with centroid-tocentroid distances of 3.549 (5) and 3.733 (5) Å, respectively, are observed.

Figure 1

View of the molecular structure of (I), showing displacement ellipsoids at the 30% probability level. [Symmetry code: (i) -x, -y, -z.]

Figure 2

1.418 (7) 1.479 (10) 1.289 (11) 1.231 (12)

Perspective view of the centrosymmetric hydrogen-bonded dimers consisting of anions and water molecules in (I).

Table 3	
Experimental details.	
Crystal data	
Chemical formula	$[Pt(C_{12}H_8N_2)_2](C_7H_5O_5S)_2 \cdot 2H_2O$
M _r	993.87
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	295
a, b, c (Å)	6.9957 (7), 12.0819 (10), 20.904 (2)
β (°)	97.296 (10)
$V(\dot{A}^3)$	1752.5 (3)
Ζ	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	4.20
Crystal size (mm)	$0.40 \times 0.15 \times 0.13$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur Atlas Gemini ultra
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.285, 0.611
No. of measured, independent and	7677, 3087, 2202
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.047
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.596
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.122, 1.16
No. of reflections	3087
No. of parameters	265
No. of restraints	5
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.35, -0.76

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Synthesis and crystallization

A mixture of K_2PtCl_4 (52 mg, 0.125 mmol), 3-sulfobenzoic acid monosodium salt (48 mg, 0.25 mmol), and 1,10-phenanthroline (50 mg 0.25 mmol) was dissolved in H₂O (15 ml). The resulting mixture was sealed in a 30 ml Teflon-lined autoclave in a stainless-steel reactor and heated to 150°C for 24 h. The resulting clear solution was set aside for about two weeks at room temperature. Brownish needle-shaped crystals were obtained by filtration (Yield: 85 mg, 69%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Although the sulfonate group seems to be disordered due to the elongated displacement parameters of oxygen atoms, disorder has not been resolved because the refinement then did not converge.

Acknowledgements

Support from the National Natural Science Foundation of China is gratefully acknowledged (grant No. 21073157).

References

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Hazell, A., Simonsen, O. & Wernberg, O. (1986). Acta Cryst. C42, 1707–1711.
- Li, Q. P., Zhang, Q., Xian, P. & Song, Y. M. (2011). *Chemistry*, **74**, 164–169.
- Ma, A. Q. & Zhu, L. G. (2014). RSC Adv. 4, 14691-14699.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, UK.
- Palocsay, F. A. & Rund, J. V. (1969). Inorg. Chem. 8, 524-528.
- Wernberg, O. & Hazell, A. (1980). J. Chem. Soc. Dalton Trans. pp. 973.
- Zheng, X. F. & Zhu, L. G. (2014). J. Mol. Struct. 1065, 113-119.

full crystallographic data

IUCrData (2016). 1, x160211 [https://doi.org/10.1107/S241431461600211X]

Bis(1,10-phenanthroline- $\kappa^2 N, N'$)platinum(II) bis(3-carboxybenzenesulfonate) dihydrate

Jing Liu and Long-Guan Zhu

Bis(1,10-phenanthroline- $\kappa^2 N, N'$) platinum(II) bis(3-carboxybenzenesulfonate) dihydrate

Crystal data

[Pt(C₁₂H₈N₂)₂](C₇H₅O₅S)₂·2H₂O $M_r = 993.87$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.9957 (7) Å b = 12.0819 (10) Å c = 20.904 (2) Å $\beta = 97.296$ (10)° V = 1752.5 (3) Å³ Z = 2

Data collection

Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) $T_{\min} = 0.285, T_{\max} = 0.611$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.122$ S = 1.163087 reflections 265 parameters 5 restraints Primary atom site location: structure-invariant direct methods F(000) = 984 $D_x = 1.883 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2156 reflections $\theta = 2.9-29.2^{\circ}$ $\mu = 4.20 \text{ mm}^{-1}$ T = 295 KNeedle, brown $0.40 \times 0.15 \times 0.13 \text{ mm}$

7677 measured reflections 3087 independent reflections 2202 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 25.1^\circ, \ \theta_{min} = 3.4^\circ$ $h = -8 \rightarrow 7$ $k = -14 \rightarrow 11$ $l = -24 \rightarrow 22$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0463P)^2 + 1.9422P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.35$ e Å⁻³ $\Delta\rho_{min} = -0.76$ e Å⁻³

Special details

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.53 (release 17-11-2009 CrysAlis171 .NET) (compiled Nov 17 2009,16:58:22) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O1W	0.4465 (17)	0.3570 (11)	0.1629 (4)	0.135 (5)	
H1A	0.48 (3)	0.413 (4)	0.186 (3)	0.160*	
H1B	0.44 (3)	0.302 (5)	0.189 (2)	0.160*	
Pt1	0.0000	0.0000	0.0000	0.03467 (18)	
S1	0.2546 (4)	0.3824 (3)	-0.22026 (14)	0.0649 (8)	
N1	0.1230 (9)	-0.0662 (5)	0.0841 (3)	0.0354 (16)	
C12	0.1129 (11)	-0.2246 (7)	0.0181 (5)	0.040 (2)	
C11	0.1365 (11)	-0.1803 (7)	0.0815 (4)	0.037 (2)	
C14	0.3660 (11)	0.2165 (7)	-0.0524 (4)	0.0346 (19)	
C19	0.3717 (12)	0.1080 (7)	-0.0727 (4)	0.042 (2)	
H19	0.4000	0.0515	-0.0427	0.050*	
N2	0.0730 (9)	-0.1517 (5)	-0.0315 (3)	0.0356 (16)	
C15	0.3292 (11)	0.3015 (7)	-0.0961 (4)	0.040 (2)	
H15	0.3283	0.3746	-0.0822	0.047*	
C16	0.2934 (12)	0.2762 (8)	-0.1612 (4)	0.042 (2)	
C8	0.1435 (14)	-0.3731 (8)	-0.0563 (6)	0.062 (3)	
H8	0.1646	-0.4472	-0.0652	0.074*	
O2	0.3736 (11)	0.3364 (6)	0.0359 (3)	0.070 (2)	
H2A	0.3916	0.3416	0.0753	0.106*	
C18	0.3351 (13)	0.0836 (8)	-0.1375 (5)	0.047 (2)	
H18	0.3365	0.0106	-0.1515	0.057*	
C4	0.1922 (12)	-0.2446 (8)	0.1343 (5)	0.048 (2)	
01	0.4453 (11)	0.1592 (6)	0.0573 (3)	0.072 (2)	
05	0.4059 (10)	0.3743 (6)	-0.2592 (3)	0.071 (2)	
C7	0.1426 (12)	-0.3370 (7)	0.0087 (5)	0.051 (3)	
C5	0.2090 (15)	-0.3632 (9)	0.1251 (6)	0.065 (3)	
H5	0.2319	-0.4104	0.1604	0.078*	
C17	0.2968 (13)	0.1676 (9)	-0.1812 (5)	0.051 (2)	
H17	0.2728	0.1512	-0.2250	0.061*	
C6	0.1908 (14)	-0.4040 (9)	0.0645 (6)	0.063 (3)	
H6	0.2107	-0.4793	0.0589	0.075*	
C2	0.2373 (14)	-0.0813 (10)	0.1967 (5)	0.060 (3)	
H2	0.2756	-0.0454	0.2356	0.071*	

C13	0.3961 (13)	0.2350 (9)	0.0194 (5)	0.051 (2)	
C9	0.1130 (14)	-0.2979 (9)	-0.1053 (5)	0.058 (3)	
H9	0.1125	-0.3205	-0.1479	0.070*	
C10	0.0829 (13)	-0.1876 (8)	-0.0911 (5)	0.050 (2)	
H10	0.0690	-0.1366	-0.1247	0.060*	
C1	0.1804 (14)	-0.0196 (8)	0.1412 (5)	0.052 (3)	
H1	0.1826	0.0572	0.1440	0.062*	
C3	0.2370 (13)	-0.1932 (10)	0.1941 (5)	0.060 (3)	
Н3	0.2659	-0.2350	0.2314	0.071*	
03	0.249 (2)	0.4796 (7)	-0.1881 (5)	0.158 (6)	
O4	0.0693 (13)	0.3532 (9)	-0.2588 (5)	0.132 (4)	
	. ,				

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1W	0.098 (7)	0.268 (15)	0.039 (5)	0.036 (10)	0.005 (5)	-0.033 (6)
Pt1	0.0381 (3)	0.0305 (3)	0.0373 (3)	0.0038 (3)	0.01218 (19)	0.0002 (2)
S1	0.0707 (18)	0.0720 (19)	0.0559 (17)	0.0306 (16)	0.0230 (14)	0.0305 (15)
N1	0.031 (4)	0.035 (4)	0.043 (4)	0.004 (3)	0.013 (3)	0.003 (3)
C12	0.021 (4)	0.040 (5)	0.063 (6)	0.006 (4)	0.014 (4)	0.001 (4)
C11	0.025 (4)	0.038 (5)	0.051 (6)	0.004 (4)	0.017 (4)	0.008 (4)
C14	0.023 (4)	0.045 (5)	0.036 (5)	-0.004 (4)	0.005 (4)	-0.001 (4)
C19	0.040 (5)	0.046 (5)	0.040 (5)	0.000 (4)	0.006 (4)	0.008 (4)
N2	0.033 (4)	0.034 (4)	0.041 (4)	0.008 (3)	0.007 (3)	0.000 (3)
C15	0.038 (5)	0.037 (5)	0.046 (6)	0.011 (4)	0.014 (4)	0.000 (4)
C16	0.041 (5)	0.051 (6)	0.038 (5)	0.006 (4)	0.014 (4)	0.013 (4)
C8	0.047 (6)	0.037 (6)	0.105 (10)	0.001 (5)	0.020 (6)	-0.027 (6)
02	0.089 (5)	0.082 (6)	0.037 (4)	0.015 (5)	0.001 (4)	-0.015 (4)
C18	0.052 (6)	0.040 (5)	0.051 (6)	-0.012 (5)	0.013 (5)	-0.001 (4)
C4	0.029 (5)	0.062 (6)	0.057 (7)	0.004 (5)	0.013 (4)	0.019 (5)
01	0.094 (6)	0.078 (5)	0.042 (4)	0.001 (5)	-0.006 (4)	0.020 (4)
05	0.071 (5)	0.090 (5)	0.057 (5)	0.016 (4)	0.029 (4)	0.028 (4)
C7	0.033 (5)	0.031 (5)	0.089 (8)	-0.002 (4)	0.004 (5)	0.001 (5)
C5	0.059 (7)	0.053 (7)	0.084 (9)	0.007 (6)	0.016 (6)	0.029 (6)
C17	0.046 (5)	0.070 (7)	0.035 (5)	-0.002 (5)	0.004 (4)	-0.014 (5)
C6	0.052 (6)	0.037 (6)	0.102 (10)	0.003 (5)	0.020 (6)	0.009 (6)
C2	0.058 (6)	0.085 (8)	0.036 (6)	0.021 (6)	0.008 (5)	0.001 (5)
C13	0.034 (5)	0.063 (7)	0.056 (7)	-0.009(5)	0.011 (5)	-0.014 (6)
C9	0.052 (6)	0.054 (7)	0.071 (8)	0.000 (5)	0.014 (5)	-0.029 (6)
C10	0.056 (6)	0.056 (6)	0.041 (6)	0.003 (5)	0.018 (5)	-0.007(5)
C1	0.054 (6)	0.061 (7)	0.041 (6)	0.014 (5)	0.011 (5)	-0.010 (5)
C3	0.043 (5)	0.091 (9)	0.046 (7)	0.011 (6)	0.008 (5)	0.031 (6)
O3	0.328 (19)	0.060 (6)	0.110 (8)	0.082 (8)	0.120 (10)	0.058 (6)
O4	0.078 (6)	0.169 (11)	0.142 (9)	0.017 (7)	-0.013 (6)	0.098 (8)

Geometric parameters (Å, °)

O1W—H1A	0.845 (19)	C16—C17	1.378 (13)
O1W—H1B	0.87 (2)	C8—C9	1.365 (15)
Pt1—N1	2.022 (7)	C8—C7	1.428 (14)
Pt1—N1 ⁱ	2.022 (7)	C8—H8	0.9300
Pt1—N2 ⁱ	2.034 (6)	O2—C13	1.289 (11)
Pt1—N2	2.034 (6)	O2—H2A	0.8200
S1—O3	1.357 (10)	C18—C17	1.368 (13)
S1—O5	1.418 (7)	C18—H18	0.9300
S1—O4	1.479 (10)	C4—C3	1.396 (14)
S1—C16	1.777 (9)	C4—C5	1.452 (14)
N1—C1	1.333 (11)	O1—C13	1.231 (12)
N1-C11	1.384 (10)	C7—C6	1.424 (14)
C12—N2	1.362 (11)	C5—C6	1.349 (15)
C12—C7	1.392 (12)	С5—Н5	0.9300
C12—C11	1.419 (12)	C17—H17	0.9300
C11—C4	1.365 (12)	С6—Н6	0.9300
C14—C15	1.377 (11)	C2—C3	1.353 (15)
C14—C19	1.381 (12)	C2—C1	1.394 (13)
C14—C13	1.505 (12)	C2—H2	0.9300
C19—C18	1.380 (12)	C9—C10	1.388 (13)
С19—Н19	0.9300	С9—Н9	0.9300
N2—C10	1.331 (11)	C10—H10	0.9300
C15—C16	1.386 (12)	C1—H1	0.9300
С15—Н15	0.9300	С3—Н3	0.9300
H1A—O1W—H1B	107 (3)	С7—С8—Н8	120.2
N1—Pt1—N1 ⁱ	180.0 (4)	C13—O2—H2A	109.5
N1—Pt1—N2 ⁱ	99.9 (3)	C17—C18—C19	119.6 (9)
N1 ⁱ —Pt1—N2 ⁱ	80.1 (3)	C17—C18—H18	120.2
N1—Pt1—N2	80.1 (3)	C19—C18—H18	120.2
N1 ⁱ —Pt1—N2	99.9 (3)	C11—C4—C3	118.6 (10)
N2 ⁱ —Pt1—N2	180.0 (5)	C11—C4—C5	118.3 (10)
O3—S1—O5	114.6 (7)	C3—C4—C5	123.1 (9)
O3—S1—O4	113.4 (8)	C12—C7—C6	117.6 (10)
O5—S1—O4	109.7 (6)	C12—C7—C8	116.7 (9)
O3—S1—C16	107.0 (5)	C6—C7—C8	125.2 (10)
O5—S1—C16	106.8 (4)	C6—C5—C4	119.0 (10)
O4—S1—C16	104.6 (5)	С6—С5—Н5	120.5
C1—N1—C11	116.2 (8)	С4—С5—Н5	120.5
C1—N1—Pt1	131.1 (6)	C18—C17—C16	120.8 (9)
C11—N1—Pt1	112.5 (6)	C18—C17—H17	119.6
N2—C12—C7	123.0 (9)	C16—C17—H17	119.6
N2—C12—C11	117.1 (8)	C5—C6—C7	123.0 (10)
C7—C12—C11	119.8 (9)	С5—С6—Н6	118.5
C4—C11—N1	123.3 (9)	С7—С6—Н6	118.5
C4—C11—C12	121.8 (9)	C3—C2—C1	120.1 (10)

N1—C11—C12	114.3 (8)	С3—С2—Н2	119.9
C15—C14—C19	121.0 (8)	C1—C2—H2	119.9
C15—C14—C13	122.8 (8)	O1—C13—O2	124.7 (10)
C19—C14—C13	116.2 (8)	O1—C13—C14	121.6 (9)
C18—C19—C14	119.7 (8)	O2—C13—C14	113.7 (9)
C18—C19—H19	120.2	C8—C9—C10	119.5 (10)
C14—C19—H19	120.2	С8—С9—Н9	120.3
C10—N2—C12	118.2 (8)	С10—С9—Н9	120.3
C10—N2—Pt1	129.9 (6)	N2—C10—C9	122.7 (9)
C12—N2—Pt1	111.9 (6)	N2—C10—H10	118.6
C14—C15—C16	118.8 (8)	С9—С10—Н10	118.6
C14—C15—H15	120.6	N1—C1—C2	122.7 (10)
C16—C15—H15	120.6	N1—C1—H1	118.6
C17—C16—C15	120.0 (8)	C2—C1—H1	118.6
C17—C16—S1	118.9 (7)	C2—C3—C4	118.7 (9)
C15—C16—S1	121.0 (7)	С2—С3—Н3	120.6
C9—C8—C7	119.5 (9)	С4—С3—Н3	120.6
С9—С8—Н8	120.2		
$N2^{i}$ —Pt1—N1—C1	-13.2 (8)	N1—C11—C4—C3	0.4 (13)
N2—Pt1—N1—C1	166.8 (8)	C12—C11—C4—C3	171.7 (8)
N2 ⁱ —Pt1—N1—C11	162.1 (5)	N1—C11—C4—C5	-177.4 (8)
N2—Pt1—N1—C11	-17.9 (5)	C12—C11—C4—C5	-6.1 (13)
C1—N1—C11—C4	4.4 (12)	N2—C12—C7—C6	177.6 (8)
Pt1—N1—C11—C4	-171.7 (6)	C11—C12—C7—C6	1.8 (12)
C1—N1—C11—C12	-167.5 (7)	N2—C12—C7—C8	4.4 (13)
Pt1-N1-C11-C12	16.4 (8)	C11—C12—C7—C8	-171.3 (8)
N2-C12-C11-C4	-174.5 (7)	C9—C8—C7—C12	-0.9 (14)
C7—C12—C11—C4	1.5 (12)	C9—C8—C7—C6	-173.5 (9)
N2-C12-C11-N1	-2.5 (11)	C11—C4—C5—C6	7.5 (14)
C7-C12-C11-N1	173.5 (7)	C3—C4—C5—C6	-170.2 (9)
C15—C14—C19—C18	-1.7 (12)	C19—C18—C17—C16	-0.3 (14)
C13—C14—C19—C18	176.6 (8)	C15—C16—C17—C18	0.1 (14)
C7-C12-N2-C10	-7.2 (12)	S1—C16—C17—C18	176.9 (7)
C11—C12—N2—C10	168.7 (7)	C4—C5—C6—C7	-4.4 (16)
C7-C12-N2-Pt1	171.6 (6)	C12—C7—C6—C5	-0.2 (15)
C11-C12-N2-Pt1	-12.5 (9)	C8—C7—C6—C5	172.3 (10)
N1-Pt1-N2-C10	-165.0 (8)	C15-C14-C13-O1	-173.6 (9)
N1 ⁱ —Pt1—N2—C10	15.0 (8)	C19—C14—C13—O1	8.2 (12)
N1—Pt1—N2—C12	16.4 (5)	C15—C14—C13—O2	3.7 (12)
N1 ⁱ —Pt1—N2—C12	-163.6 (5)	C19—C14—C13—O2	-174.5 (8)
C19—C14—C15—C16	1.4 (12)	C7—C8—C9—C10	0.4 (15)
C13—C14—C15—C16	-176.7 (7)	C12—N2—C10—C9	6.6 (13)
C14—C15—C16—C17	-0.6 (13)	Pt1—N2—C10—C9	-172.0 (7)
C14—C15—C16—S1	-177.4 (6)	C8—C9—C10—N2	-3.3 (15)
O3—S1—C16—C17	177.2 (10)	C11—N1—C1—C2	-4.8 (13)
O5—S1—C16—C17	-59.7 (8)	Pt1—N1—C1—C2	170.4 (7)
O4—S1—C16—C17	56.6 (9)	C3—C2—C1—N1	0.4 (15)

data reports

O3—S1—C16—C15	-6.0 (11)	C1—C2—C3—C4	4.6 (15)
O5—S1—C16—C15	117.2 (8)	C11—C4—C3—C2	-4.9 (14)
O4—S1—C16—C15	-126.6 (8)	C5—C4—C3—C2	172.8 (9)
C14—C19—C18—C17	1.1 (13)		

Symmetry code: (i) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
02—H2 <i>A</i> …O1 <i>W</i>	0.82	1.83	2.650 (10)	177
O1 <i>W</i> —H1 <i>A</i> ···O3 ⁱⁱ	0.85 (2)	2.32 (14)	2.90 (2)	126 (14)
C6—H6····O2 ⁱⁱⁱ	0.93	2.57	3.468 (13)	161
C10—H1…O5 ^{iv}	0.93	2.46	3.228 (12)	140

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*; (iii) *x*, *y*-1, *z*; (iv) -*x*+1/2, *y*-1/2, -*z*-1/2.