

IUCrData

ISSN 2414-3146

Received 5 January 2016 Accepted 19 February 2016

Edited by J. Simpson, University of Otago, New Zealand

Keywords: germanium(IV); sulfide; bis(amido)silane; germanethione dimer; crystal structure.

CCDC reference: 1454736

Structural data: full structural data are available from iucrdata.iucr.org

1,3,7,9-Tetrakis[2,6-bis(1-methylethyl)phenyl]-2,2,8,8-tetraphenyl-5,10-dithia-1,3,7,9-tetraaza-2,8-disila-4,6-digermadispiro[3.1.3.1]decane acetonitrile monosolvate

Wenzhen Guo, Fengle Ma and Wenjun Zheng*

Institute of Organic Chemistry and College of Chemical and Materials Science, Shanxi Normal University, Gongyuan Street 1, Linfen, Shanxi Province 041004, People's Republic of China. *Correspondence e-mail: wjzheng_sxnu@qq.com;_wjzheng@sxnu.edu.cn

In the compound, $[\eta^2(N,N)-Ph_2Si(NDipp)_2Ge(\mu-S)]_2 \cdot CH_3CN$ (Dipp = 2,6iPr₂C₆H₃), C₇₂H₈₈Ge₂N₄S₂Si₂ \cdot CH₂CN, the dimeric germanethione complex lies about an inversion centre with the two Ge^{IV} atoms bridged by two sulfide ligands forming the central Ge₂S₂ ring. Each Ge^{IV} atom is also coordinated by two N atoms from the bulky bis(amido)silane ligands in a slightly distorted tetrahedral coordination geometry. An acetonitrile solvent molecule, disordered about an inversion centre, is also present.

Structure description

Reaction of the arylamido germylene [Ph₂Si(DippN)₂Ge:] with elemental sulfur gave the new germanethione dimer 1,3,7,9-tetrakis[2,6-bis(1-methylethyl)phenyl]-2,2,8,8-tetrakis(1-phenyl)-5,10-dithia-1,3,7,9-tetraaza-2,8-disila-4,6-digermadispiro[3.1.3.1]decane, $[\eta^2(N,N)-\text{Ph}_2\text{Si}(\text{DippN})_2\text{Ge}(\mu-\text{S})]_2$ (Dipp = 2,6 $-i\text{Pr}_2\text{C}_6\text{H}_3$) which crystallizes as an acetonitrile solvate. A related compound $[\eta^2(N,N)-\text{Me}_2\text{Si}(\text{DippN})_2\text{Ge}(\mu-\text{O})]_2$, was prepared previously by a similar process involving the direct reaction of $[\eta^2(N,N)-\text{Me}_2\text{Si}(\text{DippN})_2\text{Ge}:]$, with dioxygen (Yang *et al.*, 2012).

The Ge^{IV} complex lies about an inversion centre with the two Ge atoms bridged by two sulfido ligands forming the central Ge₂S₂ ring. Each Ge atom is also coordinated by two nitrogen atoms from the bulky bis(amido)silane ligands in a slightly distorted tetrahedral coordination geometry. The molecular structure is dimeric in the solid state and contains planar NSiNGe and Ge₂S₂ arrays that are inclined to one another by 89.42 (8)°, with average endocyclic Ge–S and Ge–N bond lengths of 2.2320 (9) and 1.845 (3) Å,

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Only one component of the disordered acetonitrile solvent molecule is shown and H atoms are omitted for clarity. Atoms labelled A are related to other atoms by the symmetry operation -x + 1, -y + 1, z.

respectively (Fig. 1). The Ge-S bond lengths of 2.2590 (10) and 2.2050 (9) Å are reasonably similar to those found in $[\eta^2(N,N)-i\Pr_2Si(DippN)_2Ge(\mu-S)]_2$ [Ge-S = 2.1992 (3) and 2.2577 (3) Å; Al-Rafia *et al.*, 2010] and also those found in other closely related bis-sulfide derivatives (Sen *et al.*, 2011; Bazinet *et al.*, 2001; Wegner *et al.*, 2000). An acetonitrile solvent molecule, disordered about an inversion centre such that each disorder component has equal occupancy, is found in the crystal lattice.

Synthesis and crystallization

A solution of [Ph₂Si(DippN)₂Ge:] (0.600 g, 1.0 mmol) (Yang et al., 2012) in 10 ml dry ether was slowly added drop-wise to a stirred solution of sulfur (0.037 g, 1.2 mmol) in dry ether (30 ml) at room temperature. After the mixture was stirred for 36 h at room temperature, the clear yellow solution was filtered through Celite. The volatile components of the filtrate were removed under reduced pressure to afford the title complex as colorless crystals at -30° C (0.45 g, 71%). M.p. 320 K (decomposition). ¹H NMR (298 K, CDCl₃): $\delta = 7.29$ – 6.96 (m, 24 H, Ar-H), 3.64 (m, 8 H, Me₂CH), 0.98 (d, 24 H, CH_3), 0.55 (d, 24 H, CH_3) p.p.m.; ${}^{13}C{}^{1}H{}$ NMR (298 K, $CDCl_3$): $\delta = 26.0 (s, (CH_3)_2C), 28.3 (s, (CH_3)_2C), 123.7, 125.1,$ 127.3, 130.0, 134.7, 135.5, 136.6, 147.6 (8 s, C for Ph ring) p.p.m. Elemental analysis (%): Calculated for C72H88Ge2N4S2Si4 (the solvent molecule was removed under high vacuum): C 67.76, H 6.90, N 4.39; found: C 67.74, H 6.88, N 4.38.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. A difference Fourier synthesis following location of all the non-hydrogen atoms of the germanethione complex revealed additional peaks consistent

Table 1Experimental details.	
Crystal data	
Chemical formula	$C_{72}H_{88}Ge_2N_4S_2Si_2\cdot C_2H_3N$
$M_{\rm r}$	1316.00
Crystal system, space group	Triclinic, P1
Temperature (K)	153
<i>a</i> , <i>b</i> , <i>c</i> (Å)	11.0447 (5), 13.4587 (6), 13.9291 (6)
α, β, γ (°)	64.297 (4), 82.371 (4), 85.629 (4)
$V(Å^3)$	1848.74 (14)
Z	1
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.94
Crystal size (mm)	$0.15 \times 0.13 \times 0.11$
Data collection	
Diffractometer	Agilent SuperNova Dual Source diffractometer with an Eos detector
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2012)
T_{\min}, T_{\max}	0.871, 0.903
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13757, 7010, 5534
R _{int}	0.037
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.609
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.138, 1.08
No. of reflections	7010
No. of parameters	405
No. of restraints	5
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.75, -0.38

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

with the presence of an acetonitrile solvent molecule. This solvent molecule was disordered about an inversion centre and was refined with equal occupancy for the atoms of each disorder component.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC; grant No. 21272143).

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Al-Rafia, S. M. I., Lummis, P. A., Ferguson, M. J., McDonald, R. & Rivard, E. (2010). *Inorg. Chem.* 49, 9709–9717.
- Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2001). J. Am. Chem. Soc. 123, 11162–11167.
- Sen, S. S., Ghadwal, R. S., Kratzert, D., Stern, D., Roesky, H. W. & Stalke, D. (2011). Organometallics, 30, 1030–1033.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Wegner, G. L., Jockisch, A., Schier, A. & Schmidbaur, H. (2000). Z. *Naturforsch. Teil B*, **55**, 347–351.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, D., Guo, J., Wu, H., Ding, Y. & Zheng, W. (2012). *Dalton Trans.* **41**, 2187–2194.

full crystallographic data

IUCrData (2016). **1**, x160299 [https://doi.org/10.1107/S2414314616002996]

1,3,7,9-Tetrakis[2,6-bis(1-methylethyl)phenyl]-2,2,8,8-tetraphenyl-5,10-dithia-1,3,7,9-tetraaza-2,8-disila-4,6-digermadispiro[3.1.3.1]decane acetonitrile monosolvate

Wenzhen Guo, Fengle Ma and Wenjun Zheng

1,3,7,9-Tetrakis[2,6-bis(1-methylethyl)phenyl]-2,2,8,8-tetraphenyl-5,10-dithia-1,3,7,9-tetraaza-2,8-disila-4,6-digermadispiro[3.1.3.1]decane acetonitrile monosolvate

Crystal data

 $C_{72}H_{88}Ge_{2}N_{4}S_{2}Si_{2}\cdot C_{2}H_{3}N$ $M_{r} = 1316.00$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 11.0447 (5) Å b = 13.4587 (6) Å c = 13.9291 (6) Å a = 64.297 (4)° $\beta = 82.371$ (4)° $\gamma = 85.629$ (4)° V = 1848.74 (14) Å³

Data collection

Agilent SuperNova Dual Source
diffractometer with an Eos detector
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
$T_{\min} = 0.871, T_{\max} = 0.903$
13757 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.138$ S = 1.087010 reflections 405 parameters 5 restraints Primary atom site location: structure-invariant direct methods Z = 1 F(000) = 694 $D_x = 1.182 \text{ Mg m}^{-3}$ Melting point: 320 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3142 reflections $\theta = 2.2-27.0^{\circ}$ $\mu = 0.94 \text{ mm}^{-1}$ T = 153 KBlock, colorless $0.15 \times 0.13 \times 0.11 \text{ mm}$

7010 independent reflections 5534 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 25.7^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -13 \rightarrow 13$ $k = -16 \rightarrow 16$ $I = -14 \rightarrow 16$ 5839 standard reflections every 1 reflections intensity decay: none

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.066P)^2 + 1.4505P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.75$ e Å⁻³ $\Delta\rho_{min} = -0.38$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.5999 (3)	0.8105 (3)	0.8258 (3)	0.0343 (8)	
C2	0.7166 (4)	0.8406 (3)	0.8332 (3)	0.0432 (9)	
C3	0.7231 (5)	0.9309 (4)	0.8568 (4)	0.0664 (13)	
H3	0.7992	0.9523	0.8620	0.080*	
C4	0.6212 (6)	0.9890 (4)	0.8726 (4)	0.0758 (15)	
H4	0.6284	1.0488	0.8880	0.091*	
C5	0.5104 (5)	0.9585 (4)	0.8656 (4)	0.0649 (13)	
Н5	0.4415	0.9978	0.8770	0.078*	
C6	0.4960 (4)	0.8698 (3)	0.8419 (3)	0.0455 (9)	
C7	0.3688 (4)	0.8415 (3)	0.8343 (3)	0.0526 (10)	
H7	0.3753	0.7737	0.8239	0.063*	
C8	0.3135 (5)	0.9325 (4)	0.7373 (4)	0.0771 (15)	
H8A	0.3124	1.0014	0.7425	0.116*	
H8B	0.2316	0.9138	0.7364	0.116*	
H8C	0.3621	0.9390	0.6724	0.116*	
C9	0.2836 (5)	0.8191 (5)	0.9380 (5)	0.0907 (19)	
H9A	0.2061	0.7952	0.9328	0.136*	
H9B	0.2721	0.8855	0.9481	0.136*	
H9C	0.3195	0.7627	0.9979	0.136*	
C10	0.8328 (4)	0.7778 (4)	0.8211 (3)	0.0529 (10)	
H10	0.8167	0.7357	0.7819	0.063*	
C11	0.8684 (5)	0.6954 (4)	0.9310 (4)	0.0730 (14)	
H11A	0.8005	0.6490	0.9711	0.109*	
H11B	0.8902	0.7347	0.9693	0.109*	
H11C	0.9368	0.6507	0.9216	0.109*	
C12	0.9418 (5)	0.8525 (5)	0.7581 (5)	0.0852 (17)	
H12A	1.0091	0.8086	0.7455	0.128*	
H12B	0.9655	0.8884	0.7988	0.128*	
H12C	0.9187	0.9069	0.6907	0.128*	
C13	0.6486 (4)	0.4640 (3)	0.7428 (3)	0.0407 (8)	
C14	0.5671 (4)	0.3995 (4)	0.7257 (4)	0.0573 (11)	
C15	0.6130 (6)	0.3145 (5)	0.7004 (6)	0.0928 (19)	
H15	0.5597	0.2724	0.6876	0.111*	
C16	0.7335 (8)	0.2918 (6)	0.6940 (7)	0.117 (3)	
H16	0.7626	0.2342	0.6768	0.140*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C17	0.8142 (6)	0.3521 (5)	0.7124 (5)	0.0923 (19)
H17	0.8972	0.3347	0.7076	0.111*
C18	0.7741 (4)	0.4396 (3)	0.7384 (4)	0.0558 (11)
C19	0.4309 (5)	0.4185 (5)	0.7355 (5)	0.0757 (15)
H19	0.4156	0.4803	0.7553	0.091*
C20	0.3639 (9)	0.3199 (7)	0.8245 (8)	0.170 (5)
H20A	0.3710	0.2591	0.8054	0.254*
H20B	0 2792	0 3393	0.8342	0 254*
H20C	0.3993	0.2992	0.8901	0.254*
C21	0.3781(7)	0.2552 0.4528(9)	0.6297 (7)	0.151 (4)
H21A	0.4010	0.3988	0.6024	0.121 (1)
H21R H21B	0.4095	0.5231	0.5789	0.227
H21C	0.4095	0.4580	0.5785	0.227
C22	0.2907 0.8674 (4)	0.4008(A)	0.0411 0.7626 (4)	0.227 0.0604 (14)
022	0.8074 (4)	0.4998 (4)	0.7620 (4)	0.0094 (14)
H22	0.8295	0.5089	0.7002	0.085°
0.23	0.9825 (6)	0.5280 (7)	0.0815 (0)	0.135 (3)
H23A	1.0348	0.4643	0.6977	0.203*
H23B	1.0252	0.5858	0.6857	0.203*
H23C	0.9596	0.5535	0.6105	0.203*
C24	0.9062 (5)	0.4330 (5)	0.8741 (5)	0.0804 (15)
H24A	0.9575	0.4766	0.8906	0.121*
H24B	0.9505	0.3679	0.8765	0.121*
H24C	0.8350	0.4121	0.9257	0.121*
C25	0.7362 (3)	0.7545 (3)	0.5812 (3)	0.0386 (8)
C26	0.7889 (4)	0.8533 (4)	0.5569 (3)	0.0545 (11)
H26	0.7620	0.8915	0.5978	0.065*
C27	0.8806 (5)	0.8973 (5)	0.4733 (4)	0.0737 (15)
H27	0.9140	0.9646	0.4584	0.088*
C28	0.9219 (5)	0.8424 (5)	0.4131 (4)	0.0829 (17)
H28	0.9851	0.8708	0.3581	0.100*
C29	0.8699 (6)	0.7446 (5)	0.4338 (4)	0.0883 (19)
H29	0.8971	0.7076	0.3918	0.106*
C30	0.7771 (5)	0.7006 (4)	0.5170 (3)	0.0645 (13)
H30	0.7420	0.6347	0.5299	0.077*
C31	0.4652 (3)	0.7543 (3)	0.6081 (3)	0.0380 (8)
C32	0.3480 (4)	0.7169 (4)	0.6525 (3)	0.0536 (10)
H32	0.3362	0.6614	0.7219	0.064*
C33	0.2480 (4)	0.7609 (4)	0.5951 (4)	0.0670 (13)
H33	0.1702	0.7349	0.6262	0.080*
C34	0.2645 (5)	0.8431 (4)	0.4920 (4)	0.0695 (14)
H34	0 1976	0.8722	0.4536	0.083*
C35	0.3779 (5)	0.8816(4)	0.4464 (4)	0.0703 (14)
H35	0.3886	0.9373	0 3770	0.084*
C36	0.4777(4)	0.8376 (3)	0.5037(3)	0.0528 (10)
H36	0 5550	0 8643	0.4716	0.063*
C38	-0.0273(16)	-0.0191 (14)	0.9955 (15)	0.128 (6)
H38A	-0.1136	-0.0196	0.9995	0.123 (0)
1130A 1130A	0.0120	-0.0783	0.9925	0.193
1120D	0.0120	0.0703	0.7014	0.175

0.50 0.50 0.50

H38C	-0.0128	-0.0286	1.0654	0.193*	0.50
Ge1	0.55890 (3)	0.57094 (3)	0.88889 (3)	0.03020 (13)	
N1	0.5904 (3)	0.7178 (2)	0.8016 (2)	0.0311 (6)	
N2	0.6031 (3)	0.5576 (2)	0.7626 (2)	0.0343 (6)	
N3	0.1041 (12)	0.1467 (8)	0.8636 (8)	0.114 (4)	0.50
S 1	0.36302 (8)	0.52913 (8)	0.95938 (7)	0.0412 (2)	
Si1	0.60204 (9)	0.69914 (7)	0.68380 (7)	0.0309 (2)	
C37	0.0482 (11)	0.0770 (9)	0.9190 (9)	0.158 (9)	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.045 (2)	0.0297 (17)	0.0255 (16)	-0.0063 (15)	-0.0003 (14)	-0.0094 (13)
C2	0.051 (2)	0.044 (2)	0.0345 (19)	-0.0137 (17)	-0.0031 (17)	-0.0147 (16)
C3	0.081 (4)	0.063 (3)	0.067 (3)	-0.026 (3)	-0.012 (3)	-0.033 (2)
C4	0.106 (5)	0.057 (3)	0.081 (4)	-0.011 (3)	-0.008 (3)	-0.046 (3)
C5	0.087 (4)	0.048 (3)	0.067 (3)	0.003 (2)	0.000 (3)	-0.034 (2)
C6	0.058 (3)	0.037 (2)	0.0371 (19)	-0.0023 (17)	0.0035 (17)	-0.0134 (16)
C7	0.046 (3)	0.041 (2)	0.062 (3)	0.0037 (18)	0.0064 (19)	-0.0183 (19)
C8	0.066 (4)	0.063 (3)	0.091 (4)	0.009 (3)	-0.019 (3)	-0.021 (3)
C9	0.079 (4)	0.081 (4)	0.092 (4)	-0.005 (3)	0.036 (3)	-0.030 (3)
C10	0.045 (2)	0.066 (3)	0.052 (2)	-0.016 (2)	-0.0043 (19)	-0.027 (2)
C11	0.066 (3)	0.071 (3)	0.080 (3)	0.000 (3)	-0.024 (3)	-0.026 (3)
C12	0.058 (3)	0.113 (5)	0.085 (4)	-0.036 (3)	0.006 (3)	-0.041 (3)
C13	0.050 (2)	0.0343 (19)	0.0366 (19)	-0.0032 (16)	0.0024 (16)	-0.0155 (15)
C14	0.066 (3)	0.052 (2)	0.063 (3)	-0.009 (2)	0.000 (2)	-0.035 (2)
C15	0.104 (5)	0.081 (4)	0.130 (5)	0.001 (3)	-0.014 (4)	-0.078 (4)
C16	0.124 (7)	0.102 (5)	0.170 (8)	0.028 (5)	-0.019 (5)	-0.105 (6)
C17	0.073 (4)	0.089 (4)	0.126 (5)	0.025 (3)	-0.004 (4)	-0.063 (4)
C18	0.050 (3)	0.048 (2)	0.065 (3)	0.0047 (19)	0.001 (2)	-0.023 (2)
C19	0.065 (3)	0.091 (4)	0.098 (4)	-0.026 (3)	0.003 (3)	-0.065 (3)
C20	0.151 (8)	0.147 (7)	0.220 (11)	-0.093 (6)	0.100 (8)	-0.107 (8)
C21	0.083 (5)	0.271 (11)	0.178 (8)	0.031 (6)	-0.054 (5)	-0.162 (9)
C22	0.041 (3)	0.057 (3)	0.097 (4)	0.002 (2)	-0.007 (2)	-0.021 (3)
C23	0.058 (4)	0.160 (7)	0.119 (6)	-0.027 (4)	0.002 (4)	0.005 (5)
C24	0.060 (3)	0.090 (4)	0.093 (4)	0.004 (3)	-0.009 (3)	-0.041 (3)
C25	0.037 (2)	0.042 (2)	0.0282 (17)	-0.0048 (15)	0.0030 (14)	-0.0084 (15)
C26	0.056 (3)	0.062 (3)	0.040 (2)	-0.023 (2)	0.0070 (19)	-0.0171 (19)
C27	0.064 (3)	0.091 (4)	0.052 (3)	-0.044 (3)	0.007 (2)	-0.015 (3)
C28	0.053 (3)	0.112 (5)	0.050 (3)	-0.017 (3)	0.020 (2)	-0.008 (3)
C29	0.097 (5)	0.101 (4)	0.051 (3)	0.011 (4)	0.028 (3)	-0.030 (3)
C30	0.080 (4)	0.060 (3)	0.047 (2)	-0.011 (2)	0.020 (2)	-0.023 (2)
C31	0.040 (2)	0.0387 (19)	0.0339 (18)	-0.0034 (15)	-0.0050 (15)	-0.0139 (15)
C32	0.042 (2)	0.059 (3)	0.050(2)	-0.0059 (19)	-0.0017 (19)	-0.015 (2)
C33	0.037 (3)	0.079 (3)	0.085 (4)	-0.005 (2)	-0.009 (2)	-0.034 (3)
C34	0.059 (3)	0.086 (4)	0.070 (3)	0.012 (3)	-0.032 (3)	-0.034 (3)
C35	0.070 (4)	0.078 (3)	0.046 (3)	0.008 (3)	-0.019 (2)	-0.009 (2)
C36	0.048 (3)	0.061 (3)	0.038 (2)	-0.004(2)	-0.0073 (18)	-0.0090 (19)

data reports

C38 Ge1 N1 N2 N3 S1 S11 C27	0.085 (13) 0.0324 (2) 0.0337 (16) 0.0418 (18) 0.185 (14) 0.0318 (5) 0.0323 (5)	0.118 (15) 0.0288 (2) 0.0311 (14) 0.0314 (15) 0.074 (7) 0.0476 (5) 0.0330 (5)	0.194 (19) 0.02414 (18) 0.0255 (13) 0.0276 (14) 0.072 (7) 0.0295 (4) 0.0241 (4)	$\begin{array}{c} -0.046 (10) \\ -0.00556 (14) \\ -0.0047 (11) \\ -0.0092 (12) \\ -0.027 (8) \\ -0.0063 (4) \\ -0.0062 (4) \\ 0.042 (15) \end{array}$	-0.002 (13) 0.00189 (13) 0.0001 (11) 0.0045 (12) 0.007 (7) -0.0011 (4) 0.0015 (4)	-0.074 (13) -0.00704 (14) -0.0096 (11) -0.0116 (12) -0.023 (5) -0.0027 (4) -0.0094 (4)
C37	0.20 (2)	0.103 (16)	0.16 (2)	-0.043(15)	0.008 (18)	-0.046(14)

Geometric parameters (Å, °)

C1—C6	1.397 (5)	C21—H21C	0.9600
C1—C2	1.410 (5)	C22—C24	1.520 (7)
C1—N1	1.441 (4)	C22—C23	1.535 (8)
C2—C3	1.399 (6)	С22—Н22	0.9800
C2—C10	1.513 (6)	С23—Н23А	0.9600
C3—C4	1.368 (7)	С23—Н23В	0.9600
С3—Н3	0.9300	С23—Н23С	0.9600
C4—C5	1.349 (7)	C24—H24A	0.9600
C4—H4	0.9300	C24—H24B	0.9600
C5—C6	1.395 (6)	C24—H24C	0.9600
С5—Н5	0.9300	C25—C26	1.377 (5)
C6—C7	1.511 (6)	C25—C30	1.391 (5)
С7—С9	1.539 (6)	C25—Si1	1.864 (4)
C7—C8	1.539 (6)	C26—C27	1.383 (6)
С7—Н7	0.9800	С26—Н26	0.9300
C8—H8A	0.9600	C27—C28	1.358 (8)
C8—H8B	0.9600	С27—Н27	0.9300
C8—H8C	0.9600	C28—C29	1.374 (8)
С9—Н9А	0.9600	C28—H28	0.9300
С9—Н9В	0.9600	C29—C30	1.388 (7)
С9—Н9С	0.9600	С29—Н29	0.9300
C10—C11	1.533 (6)	С30—Н30	0.9300
C10—C12	1.538 (6)	C31—C32	1.388 (6)
C10—H10	0.9800	C31—C36	1.395 (5)
C11—H11A	0.9600	C31—Si1	1.877 (4)
C11—H11B	0.9600	C32—C33	1.391 (6)
C11—H11C	0.9600	С32—Н32	0.9300
C12—H12A	0.9600	C33—C34	1.379 (7)
C12—H12B	0.9600	С33—Н33	0.9300
C12—H12C	0.9600	C34—C35	1.357 (7)
C13—C18	1.400 (6)	С34—Н34	0.9300
C13—C14	1.405 (6)	C35—C36	1.388 (6)
C13—N2	1.444 (4)	С35—Н35	0.9300
C14—C15	1.380 (6)	С36—Н36	0.9300
C14—C19	1.505 (7)	C38—C38 ⁱ	0.88 (3)
C15—C16	1.343 (9)	C38—C37 ⁱ	1.11 (3)
С15—Н15	0.9300	C38—C37	1.495 (9)

C16—C17	1.367 (9)	C38—H38A	0.9600
C16—H16	0.9300	C38—H38B	0.9599
C17—C18	1.400 (7)	C38—H38C	0.9600
C17—H17	0.9300	Ge1—N2	1.843 (3)
$C_{18} - C_{22}$	1 514 (7)	Ge1—N1	1.847 (3)
C19-C21	1.524(9)	Gel—Sl ⁱⁱ	22050(9)
C19 - C20	1.521(9) 1.525(9)	Gel—Sl	2.2000(9) 2 2590(10)
C19H19	0.9800	Gel—Sil	2.2390 (10)
C20_H20A	0.9600	N1—Si1	1.752(3)
C_{20} H20R	0.9600	N2 Sil	1.732(3)
C20 H20C	0.9600	N2 C27	1.001 (0)
C_{20} H21A	0.9000	$S1 Ge1^{ii}$	1.091(9)
C21_H21P	0.9000	C_{27} C_{28i}	2.2030(9)
C21—H21B	0.9000	037-038	1.11 (5)
C6—C1—C2	120.3 (3)	C23—C22—H22	107.9
C6—C1—N1	121.0 (3)	C22—C23—H23A	109.5
C2—C1—N1	118.7 (3)	C22—C23—H23B	109.5
C3—C2—C1	117.5 (4)	H23A—C23—H23B	109.5
C_{3} — C_{2} — C_{10}	119.2 (4)	C22—C23—H23C	109.5
C1 - C2 - C10	123.3(3)	H23A—C23—H23C	109.5
C4-C3-C2	122.3(5)	H_{23B} C_{23} H_{23C}	109.5
C4—C3—H3	118.9	C22—C24—H24A	109.5
С2—С3—Н3	118.9	C^{22} C^{24} $H^{24}B$	109.5
$C_{5} - C_{4} - C_{3}$	119.3 (4)	H24A - C24 + H24B	109.5
C5-C4-H4	120.3	C^{22} C^{24} $H^{24}C$	109.5
$C_3 - C_4 - H_4$	120.3	H24A - C24 - H24C	109.5
C4 - C5 - C6	120.3 122.1(5)	H24R - C24 - H24C	109.5
C4 - C5 - H5	119.0	$C_{26} = C_{25} = C_{30}$	1174(4)
С6С5Н5	119.0	$C_{26} = C_{25} = C_{30}$	1233(3)
C_{5} C_{6} C_{1}	119.6 (4)	$C_{20} = C_{25} = S_{11}$	123.3(3) 118.8(3)
$C_{5} - C_{6} - C_{7}$	118.9(4)	C_{25} C_{25} C_{27}	121.9(4)
$C_{1} - C_{6} - C_{7}$	110.5(4) 122.5(3)	$C_{25} = C_{26} = H_{26}$	119.0
C6-C7-C9	122.3(3) 111 8 (4)	$C_{27} = C_{26} = H_{26}$	119.0
C6-C7-C8	111.0(4) 111.4(4)	C_{28} C_{27} C_{26} C_{26}	119.0 120.0(5)
C9 - C7 - C8	110.4(4)	$C_{28} = C_{27} = C_{20}$	120.0 (3)
СбС7Н7	107 7	$C_{26} = C_{27} = H_{27}$	120.0
С9—С7—Н7	107.7	$C_{20} = C_{27} = C_{127}$	120.0 119 7 (4)
C8 - C7 - H7	107.7	C_{27} C_{28} H_{28}	120.2
C7 - C8 - H8A	109.5	C_{29} C_{28} H_{28}	120.2
C7 - C8 - H8B	109.5	C_{28} C_{29} C_{30}	120.2
H_{8A} C_{8} H_{8B}	109.5	$C_{28} = C_{29} = H_{29}$	110.7
C7 - C8 - H8C	109.5	$C_{20} = C_{20} = H_{20}$	119.7
	109.5	$C_{20} = C_{20} = C_{20}$	119.7 120.4(5)
	109.5	$C_{29} = C_{30} = C_{29}$	120.4 (5)
C7 - C9 - H9A	109.5	$C_{25} = C_{30} = H_{30}$	110.8
C7 - C9 - H9R	109.5	$C_{22} = C_{30} = 1150$	117.0 (A)
H0A (0 H0R)	109.5	$C_{32} = C_{31} = C_{30}$	122 5 (3)
C7_C9_H9C	109.5	C_{36} C_{31} S_{11}	122.3(3) 120 A(3)
	107.5	0.00 0.01 0.01	120.7(3)

Н9А—С9—Н9С	109.5	C31—C32—C33	121.2 (4)
H9B—C9—H9C	109.5	C31—C32—H32	119.4
C2-C10-C11	110.7 (4)	С33—С32—Н32	119.4
C2-C10-C12	113.7 (4)	C34—C33—C32	119.9 (4)
C11—C10—C12	109.0 (4)	С34—С33—Н33	120.0
C2—C10—H10	107.7	С32—С33—Н33	120.0
C11—C10—H10	107.7	C35—C34—C33	120.3 (4)
C12—C10—H10	107.7	С35—С34—Н34	119.9
C10-C11-H11A	109.5	С33—С34—Н34	119.9
C10-C11-H11B	109.5	C34—C35—C36	119.8 (4)
H11A—C11—H11B	109.5	С34—С35—Н35	120.1
C10—C11—H11C	109.5	С36—С35—Н35	120.1
H11A—C11—H11C	109.5	C35—C36—C31	121.8 (4)
H11B—C11—H11C	109.5	С35—С36—Н36	119.1
C10—C12—H12A	109.5	С31—С36—Н36	119.1
C10—C12—H12B	109.5	C38 ⁱ —C38—C37 ⁱ	97 (3)
H12A—C12—H12B	109.5	C38 ⁱ —C38—C37	47 (2)
C10—C12—H12C	109.5	C37 ⁱ —C38—C37	144.4 (16)
H12A—C12—H12C	109.5	C38 ⁱ —C38—H38A	140.5
H12B—C12—H12C	109.5	C37 ⁱ —C38—H38A	85.0
C18—C13—C14	120.5 (4)	С37—С38—Н38А	121.2
C18—C13—N2	119.6 (3)	C38 ⁱ —C38—H38B	110.0
C14—C13—N2	119.9 (4)	C37 ⁱ —C38—H38B	89.8
C15—C14—C13	119.1 (5)	С37—С38—Н38В	101.7
C15—C14—C19	118.5 (5)	H38A—C38—H38B	109.5
C13—C14—C19	122.4 (4)	C38 ⁱ —C38—H38C	58.0
C16—C15—C14	120.9 (6)	C37 ⁱ —C38—H38C	39.9
C16—C15—H15	119.6	С37—С38—Н38С	104.9
C14—C15—H15	119.6	H38A—C38—H38C	109.5
C15—C16—C17	121.0 (5)	H38B—C38—H38C	109.5
C15—C16—H16	119.5	N2—Ge1—N1	82.41 (12)
C17—C16—H16	119.5	N2—Ge1—S1 ⁱⁱ	124.77 (9)
C16—C17—C18	121.2 (6)	N1—Ge1—S1 ⁱⁱ	125.33 (9)
C16—C17—H17	119.4	N2—Ge1—S1	114.90 (10)
C18—C17—H17	119.4	N1—Ge1—S1	116.58 (9)
C13—C18—C17	117.3 (5)	S1 ⁱⁱ —Ge1—S1	94.97 (3)
C13—C18—C22	124.1 (4)	N2—Ge1—Si1	41.47 (9)
C17—C18—C22	118.6 (5)	N1—Ge1—Si1	41.92 (8)
C14—C19—C21	112.4 (5)	S1 ⁱⁱ —Ge1—Si1	146.78 (4)
C14—C19—C20	112.5 (6)	S1—Ge1—Si1	118.22 (3)
C21—C19—C20	110.9 (6)	C1—N1—Si1	135.0 (2)
C14—C19—H19	106.8	C1—N1—Ge1	131.7 (2)
С21—С19—Н19	106.8	Sil—N1—Gel	93.30 (12)
С20—С19—Н19	106.8	C13—N2—Si1	133.6 (2)
C19—C20—H20A	109.5	C13—N2—Ge1	131.2 (2)
C19—C20—H20B	109.5	Si1—N2—Ge1	93.92 (13)
H20A—C20—H20B	109.5	Ge1 ⁱⁱ —S1—Ge1	85.03 (3)
C19—C20—H20C	109.5	N2—Si1—N1	88.31 (13)

H20A—C20—H20C	109.5	N2—Si1—C25	116.31 (15)
H20B-C20-H20C	109.5	N1—Si1—C25	119.45 (15)
C19—C21—H21A	109.5	N2—Si1—C31	114.79 (15)
C19—C21—H21B	109.5	N1—Si1—C31	113.02 (15)
H21A—C21—H21B	109.5	C25—Si1—C31	104.96 (16)
C19—C21—H21C	109.5	N2—Si1—Ge1	44.61 (9)
H21A—C21—H21C	109.5	N1—Si1—Ge1	44.78 (9)
H21B—C21—H21C	109.5	C25—Si1—Ge1	138.43 (12)
C18—C22—C24	111.4 (4)	C31—Si1—Ge1	116.59 (12)
C18 - C22 - C23	113.1 (5)	N_{3} C 37 C 38^{i}	144.0 (16)
C_{24} C_{22} C_{23}	108.3(5)	N_{3} C_{37} C_{38}	179 4 (4)
C18 - C22 - H22	107.9	$C_{38^{i}}$ C_{37} C_{38}	35.6(16)
C_{24} C_{22} H_{22}	107.9	030 037 030	55.0 (10)
	107.9		
C6—C1—C2—C3	0.0 (5)	Sil—Gel—Nl—Cl	179.5 (4)
N1—C1—C2—C3	180.0 (3)	N2—Ge1—N1—Si1	10.54 (13)
C6-C1-C2-C10	177.6 (3)	S1 ⁱⁱ —Ge1—N1—Si1	138.19 (8)
N1—C1—C2—C10	-2.3 (5)	S1—Ge1—N1—Si1	-103.55 (10)
C1—C2—C3—C4	0.1 (7)	C18—C13—N2—Si1	76.5 (5)
C10-C2-C3-C4	-177.7 (4)	C14—C13—N2—Si1	-102.1(4)
C2-C3-C4-C5	0.2 (8)	C18—C13—N2—Ge1	-86.7(4)
$C_{3}-C_{4}-C_{5}-C_{6}$	-0.5(8)	C14—C13—N2—Ge1	94.7 (4)
C4-C5-C6-C1	0.6(7)	N1—Ge1— $N2$ —C13	157.2 (3)
C4-C5-C6-C7	-1794(4)	$S1^{ii}$ —Ge1—N2—C13	291(4)
$C_{2}^{2}-C_{1}^{2}-C_{6}^{2}-C_{5}^{2}$	-0.3(5)	S1 - Ge1 - N2 - C13	-87.0(3)
$N_1 - C_1 - C_6 - C_5$	1797(3)	$Si1_Ge1_N2_C13$	167.9(4)
$C_{2}-C_{1}-C_{6}-C_{7}$	179.7(3)	$N1$ _Ge1_ $N2$ _Si1	-10.64(13)
$N_1 - C_1 - C_6 - C_7$	-0.4(5)	$S1^{ii}$ Ge1 N2 Si1	-138.79(8)
C_{5} C_{6} C_{7} C_{9}	-56.7(5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105 20 (11)
$C_{3} = C_{0} = C_{7} = C_{9}$	123 A (4)	$\frac{S1-Ge1-N2-S11}{N2-Ge1}$	103.20(11) 132.18(10)
$C_1 - C_0 - C_7 - C_9$	123.4(4)	$N_2 = Ge1 = S_1 = Ge1^{ii}$	-122.18(10)
$C_{3} - C_{6} - C_{7} - C_{8}$	-112.7(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155.64 (9)
$C_1 = C_0 = C_1 = C_8$	112.7 (4) 91.2 (5)	$S_1 = Ge_1 = S_1 = Ge_1^{ii}$	17867(2)
C_{3} C_{2} C_{10} C_{11}	01.3(3)	SII - GeI - SI - GeI	178.07(3)
C1 = C2 = C10 = C11	-90.3(4)	C_{13} N_2 S_{11} N_1	-130.2(3)
C_{3} C_{2} C_{10} C_{12}	-41.8(3)	Ge1 = N2 = S11 = N1	11.15(15)
C1 = C2 = C10 = C12	140.0(4)	$C_{13} = N_2 = S_{11} = C_{23}$	-34.0(4)
C18 - C13 - C14 - C15	-2.3(7)	Ge1 - N2 - S11 - C23	133.41(13)
$N_2 - C_{13} - C_{14} - C_{15}$	1/0.1(4)	C_{13} N2 Si1 C31	89.1 (4)
13 - 13 - 14 - 19	1/0.5 (5)	Ge1 = N2 = S11 = C31	-103.53(10)
N2	-4.8 (6)	C13—N2—S11—Gel	-16/.4(4)
C13 - C14 - C15 - C16	1.2 (10)	C1 - N1 - S11 - N2	169.4 (3)
C19—C14—C15—C16	-17/.9(7)	Gel—NI—SII—N2	-11.09 (13)
C14—C15—C16—C17	0.1 (12)	C1—N1—S11—C25	49.9 (4)
C15—C16—C17—C18	-0.1(12)	Gel—NI—Sil—C25	-130.60 (15)
C14—C13—C18—C17	2.4 (7)	C1 - N1 - S11 - C31	-/4.3 (4)
N2-C13-C18-C17	-176.2 (4)	Gel—Nl—Sıl—C3l	105.21 (15)
C14—C13—C18—C22	-175.9 (4)	Cl—Nl—Sil—Gel	-179.5 (4)
N2-C13-C18-C22	5.4 (6)	C26—C25—Si1—N2	-141.4 (3)

C16—C17—C18—C13	-1.2 (9)	C30—C25—Si1—N2	46.3 (4)
C16—C17—C18—C22	177.3 (6)	C26—C25—Si1—N1	-37.4 (4)
C15—C14—C19—C21	-64.4 (8)	C30—C25—Si1—N1	150.2 (3)
C13—C14—C19—C21	116.5 (6)	C26—C25—Si1—C31	90.6 (4)
C15—C14—C19—C20	61.7 (7)	C30-C25-Si1-C31	-81.8 (4)
C13—C14—C19—C20	-117.4 (6)	C26—C25—Si1—Ge1	-91.1 (4)
C13—C18—C22—C24	101.9 (5)	C30-C25-Si1-Ge1	96.5 (3)
C17—C18—C22—C24	-76.4 (6)	C32—C31—Si1—N2	40.0 (4)
C13—C18—C22—C23	-135.8 (5)	C36—C31—Si1—N2	-141.3 (3)
C17—C18—C22—C23	45.9 (7)	C32—C31—Si1—N1	-59.3 (4)
C30-C25-C26-C27	-1.2 (7)	C36—C31—Si1—N1	119.4 (3)
Si1—C25—C26—C27	-173.6 (4)	C32—C31—Si1—C25	168.9 (3)
C25—C26—C27—C28	-0.6 (8)	C36—C31—Si1—C25	-12.4 (4)
C26—C27—C28—C29	1.8 (9)	C32—C31—Si1—Ge1	-9.8 (4)
C27—C28—C29—C30	-1.2 (9)	C36—C31—Si1—Ge1	168.9 (3)
C28—C29—C30—C25	-0.6 (9)	N1—Ge1—Si1—N2	164.10 (19)
C26—C25—C30—C29	1.7 (7)	S1 ⁱⁱ —Ge1—Si1—N2	81.03 (15)
Si1—C25—C30—C29	174.5 (4)	S1—Ge1—Si1—N2	-96.56 (15)
C36—C31—C32—C33	-0.1 (6)	N2—Ge1—Si1—N1	-164.10 (19)
Si1—C31—C32—C33	178.7 (3)	S1 ⁱⁱ —Ge1—Si1—N1	-83.07 (14)
C31—C32—C33—C34	0.1 (7)	S1—Ge1—Si1—N1	99.34 (13)
C32—C33—C34—C35	-0.3 (8)	N2—Ge1—Si1—C25	-78.9 (2)
C33—C34—C35—C36	0.3 (8)	N1—Ge1—Si1—C25	85.2 (2)
C34—C35—C36—C31	-0.3 (8)	S1 ⁱⁱ —Ge1—Si1—C25	2.1 (2)
C32—C31—C36—C35	0.1 (6)	S1—Ge1—Si1—C25	-175.49 (18)
Si1—C31—C36—C35	-178.7 (4)	N2—Ge1—Si1—C31	99.21 (19)
C6-C1-N1-Si1	95.0 (4)	N1—Ge1—Si1—C31	-96.68 (18)
C2-C1-N1-Si1	-85.0 (4)	S1 ⁱⁱ —Ge1—Si1—C31	-179.76 (13)
C6-C1-N1-Ge1	-84.3 (4)	S1—Ge1—Si1—C31	2.66 (14)
C2-C1-N1-Ge1	95.7 (4)	C38 ⁱ —C38—C37—N3	45 (39)
N2—Ge1—N1—C1	-170.0 (3)	C37 ⁱ —C38—C37—N3	45 (39)
S1 ⁱⁱ —Ge1—N1—C1	-42.3 (3)	$C37^{i}$ — $C38$ — $C37$ — $C38^{i}$	0.000 (8)
S1—Ge1—N1—C1	76.0 (3)		

Symmetry codes: (i) -x, -y, -z+2; (ii) -x+1, -y+1, -z+2.