

ISSN 2414-3146

Received 19 January 2016 Accepted 20 January 2016

Edited by M. Zeller, Youngstown State University, USA

Keywords: crystal structure; guanidinium salt; tetraphenylborate; hydrogen bonds.

CCDC reference: 1448754

Structural data: full structural data are available from iucrdata.iucr.org

N,N,N',N'-Tetramethyl-*N''*-[2-(trimethylazaniumyl)ethyl]guanidinium bis(tetraphenylborate) acetone disolvate

Ioannis Tiritiris and Willi Kantlehner*

Fakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany. *Correspondence e-mail: willi.kantlehner@hs-aalen.de

The asymmetric unit of the title solvated salt, $C_{10}H_{26}N_4^{2+}\cdot 2C_{24}H_{20}B^{-}\cdot 2C_3H_6O$, comprises one cation, two tetraphenylborate ions and two acetone solvent molecules. The N and methyl C atoms of the terminal trimethylammonium group are disordered over two sets of sites, with a refined occupancy ratio of 0.846 (3):0.154 (3). The C–N bond lengths in the central C₃N unit of the guanidinium ion range between 1.3308 (16) and 1.3508 (16) Å, indicating a degree of double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN₃ plane. The C–N bond lengths in the terminal trimethylammonium group have values close to that of a typical single bond, and the second positive charge is localized there. In the crystal, the guanidinium ion is connected by N–H···O and C–H···O hydrogen bonds with the acetone molecules. C–H··· π interactions are present between the guanidinium H atoms and the phenyl rings of the tetraphenylborate ions, leading to the formation of a two-dimensional supramolecular pattern along the *bc* plane.

Structure description

 ω -Aminoalkylguanidines like N''-[2-(dimethylamino)ethyl]- N,N,N',N'-tetramethylguanidine (Tiritiris & Kantlehner, 2012) and its corresponding imine-nitrogen atom protonated guanidinium salts are well known in the literature (tetraphenylborate salt: Tiritiris & Kantlehner, 2012; bicarbonate salt: Tiritiris *et al.*, 2011). Electrophiles can attack on the nitrogen atom of the (dimethylamino)ethyl group in these salts. By alkylation of the chloride salt with one equivalent of dimethyl sulfate and after anion

Figure 1

The structure of the title compound, with displacement ellipsoids at the 50% probability level. All H atoms (except for H3) have been omitted for the sake of clarity. Only the major population of the disordered $[NMe_3]^+$ group is shown.

exchange with sodium tetraphenylborate, the here-presented crystalline title compound emerged. The asymmetric unit of the structure comprises one cation, two tetraphenylborate ions and two acetone molecules (Fig. 1). The nitrogen and the methyl carbon atoms of the terminal trimethylammonium group are disordered over two sets of sites with a refined occupancy ratio of 0.846 (3):0.154 (3) (Fig. 2). Prominent bond parameters in the guanidinium ion are: C1-N1 =1.3308(16) Å, C1-N2 = 1.3425(16) Å and C1-N3 =1.3508 (16) Å, indicating partial double-bond character for all. The N-C1-N angles range from 118.36 (12) to $121.02 (11)^{\circ}$, indicating that the carbon centre C1 adopts a nearly ideal trigonal-planar environment. One of the two positive charges is completely delocalized in the CN₃ plane, while the second positive charge is localized at the terminal trimethylammonium group. The N–C bond lengths in the $[NMe_3]^+$ group have values close to a typical single bond [d(N-C)] =1.464 (17)–1.55 (3) Å].

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C23–C28, C29–C34, C35–C40 and C53–C58 rings, respectively.

D 11	TT 4	D (D II I
D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.86 (2)	2.07 (2)	2.777 (2)	140 (2)
0.98	2.48	3.329 (2)	144
0.98	2.20	3.131 (2)	158
0.99	2.43	3.353 (2)	155
0.98	2.68	3.306 (2)	122
0.98	3.11	3.612 (2)	115
0.98	2.95	3.409 (2)	110
0.98	2.48	3.337 (2)	146
0.98	2.98	3.543 (2)	108
	<i>D</i> -H 0.86 (2) 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98	$\begin{array}{c cccc} D-H & H \cdots A \\ \hline 0.86 (2) & 2.07 (2) \\ 0.98 & 2.48 \\ 0.98 & 2.20 \\ 0.99 & 2.43 \\ 0.98 & 2.68 \\ 0.98 & 3.11 \\ 0.98 & 2.95 \\ 0.98 & 2.48 \\ 0.98 & 2.98 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry code: (i) -x + 1, -y, -z.

The C-N and C-C bond lengths in the dication are in very good agreement with the values obtained for N,N,N',N' tetramethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate (Tiritiris, 2013*b*). The bond lengths and angles in both tetraphenylborate ions are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens *et al.*, 2012*a*).

In the crystal, the guanidinium ion is connected by N– H···O and C–H···O hydrogen bonds (Fig. 3) with the acetone molecules (Table 1). C–H··· π interactions between the hydrogen atoms of –N(CH₃) groups of the guanidinium ion and the phenyl carbon atoms of the tetraphenylborate ions are present (Table 1). This leads to the formation of a twodimensional supramolecular pattern along the *ac* plane (Fig. 4). Such C–H··· π interactions have been also observed in *N*-[3-(benzyldimethylazaniumyl)propyl]-*N'*,*N'*,*N''*,*N''*-tetramethylguanidinium bis(tetraphenylborate) (Tiritiris, 2013*a*)

C8B H8B1 C9A H7A H9A3 H7A O1

Figure 2

The structure of the guanidinium ion. All hydrogen atoms (except for H3) are omitted for the sake of clarity. The nitrogen and carbon atoms of the terminal $[NMe_3]^+$ group are disordered between the opaque (minor population) and dark (major population) positions.

Figure 3

 $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (black dashed lines) between the guanidinium ion and the acetone molecules, including the minor population (opaque) and major population (dark) of the disordered $[NMe_3]^+$ group.

 $C-H\cdots\pi$ interactions (brown dashed lines) between the hydrogen atoms of the guanidinium ion and the phenyl rings (centroids) of the tetraphenylborate ions (view along *bc*), including the minor population (opaque) and major population (dark) of the disordered [NMe₃]⁺ group.

and N,N,N',N'-tetramethyl-N''-[3-(trimethylazaniumyl)propyl]guanidinium bis(tetraphenylborate) acetone disolvate (Tiritiris, 2013*b*).

Synthesis and crystallization

The title compound was obtained by reaction of N,N,N',N'tetramethyl-N''-[2-(dimethylamino)ethyl]guanidinium chloride (Tiritiris & Kantlehner, 2012) with one equivalent of dimethyl sulfate in acetonitrile at room temperature. After evaporation of the solvent, the crude N,N,N',N'-tetramethyl-N''-[2-(trimethylazaniumyl)ethyl]guanidinium chloride methyl sulfate (I) was washed with diethyl ether and dried *in vacuo*. 1.00 g (2.87 mmol) of (I) was dissolved in 20 ml acetonitrile and 1.96 g (5.74 mmol) of sodium tetraphenylborate in 20 ml acetonitrile was added. After stirring for one h at room temperature, the precipitated sodium chloride and sodium methyl sulfate was filtered off. The title compound crystallized from a saturated acetone solution after several weeks at 273 K, forming colorless single crystals. Yield: 2.18 g (88%).

Dimethyl sulfate is carcinogenic, mutagenic and highly poisonous. During the use appropriate precautions must be taken.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The The atoms N4, C8, C9 and C10 of the $[NMe_3]^+$ group are disordered over two sets of sites [N4A/N4B, C8A/C8B, C9A/C9B and C10A/C10B] with a refined occupancy ratio of 0.846 (3):0.154 (3). The two moieties were constrained to have similar geometries, and the

Experimental details.	
Crystal data	
Chemical formula	$C_{10}H_{26}N_4^{2+} \cdot 2C_{24}H_{20}B^- \cdot 2C_3H_6O$
M _r	956.92
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	11.4419 (3), 14.1461 (5), 18.8503 (9)
$lpha,eta,\gamma(^\circ)$	110.6352 (13), 101.824 (1), 97.8879 (8)
$V(Å^3)$	2720.70 (18)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.07
Crystal size (mm)	$0.33 \times 0.24 \times 0.13$
Data collection	
Diffractometer	Bruker–Nonius KappaCCD
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22310, 13295, 10609
R _{int}	0.021
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.666
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.138, 1.02
No. of reflections	13295
No. of parameters	680
No. of restraints	6
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.58, -0.32

Computer programs: COLLECT (Hooft, 2004), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2005).

anisotropic displacement parameters of equivalent atoms were constrained to be identical.

Acknowledgements

The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

Table 0

- Behrens, U., Hoffmann, F. & Olbrich, F. (2012a). Organometallics, **31**, 905–913.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, D-53002 Bonn, Germany.
- Hooft, R. W. W. (2004). *COLLECT*. Bruker–Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Shaldride, G. M. (2008). *Acta Cryst.* A64, 112, 122
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Tiritiris, I. (2013a). Acta Cryst. E69, 0899.
- Tiritiris, I. (2013b). Acta Cryst. E69, 0337-0338.
- Tiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B, 67, 685–698.
- Tiritiris, I., Mezger, J., Stoyanov, E. V. & Kantlehner, W. (2011). Z. Naturforsch. Teil B, 66, 407–418.

full crystallographic data

IUCrData (2016). **1**, x160129 [https://doi.org/10.1107/S2414314616001292]

N,N,N',N'-Tetramethyl-*N''*-[2-(trimethylazaniumyl)ethyl]guanidinium bis(tetraphenylborate) acetone disolvate

Ioannis Tiritiris and Willi Kantlehner

N,*N*,*N'*,*N'*-Tetramethyl-*N''*-[2-(trimethylazaniumyl)ethyl]guanidinium bis(tetraphenylborate) acetone disolvate

Z = 2

F(000) = 1032 $D_x = 1.168 \text{ Mg m}^{-3}$

 $\theta = 0.4-28.3^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.33 \times 0.24 \times 0.13 \text{ mm}$

 $R_{\rm int} = 0.021$

 $h = -15 \rightarrow 15$

 $k = -16 \rightarrow 18$ $l = -24 \rightarrow 25$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 11355 reflections

10609 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.2^{\circ}$

Crystal data

$C_{10}H_{26}N_4{}^{2+}\cdot 2C_{24}H_{20}B^-\cdot 2C_3H_6O$
$M_r = 956.92$
Triclinic, $P\overline{1}$
a = 11.4419 (3) Å
b = 14.1461 (5) Å
c = 18.8503 (9) Å
$\alpha = 110.6352 \ (13)^{\circ}$
$\beta = 101.824 \ (1)^{\circ}$
$\gamma = 97.8879 \ (8)^{\circ}$
$V = 2720.70 (18) \text{ Å}^3$

Data collection

Bruker–Nonius KappaCCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ scans, and ω scans
22310 measured reflections
13295 independent reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: mixed
$wR(F^2) = 0.138$	H atoms treated by a mixture of independent
S = 1.02	and constrained refinement
13295 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0705P)^2 + 1.2222P]$
680 parameters	where $P = (F_o^2 + 2F_c^2)/3$
6 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.58 \; { m e} \; { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min}$ = -0.32 e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.59093 (10)	0.41666 (8)	0.31479 (6)	0.0158 (2)	
N2	0.75655 (10)	0.34377 (8)	0.34002 (6)	0.0160 (2)	
N3	0.56432 (10)	0.26444 (9)	0.33777 (7)	0.0160 (2)	
Н3	0.5979 (17)	0.2332 (14)	0.3649 (11)	0.030 (5)*	
C1	0.63681 (11)	0.34267 (10)	0.33081 (7)	0.0142 (2)	
C2	0.48354 (12)	0.44848 (11)	0.33871 (8)	0.0182 (3)	
H2A	0.4108	0.4169	0.2933	0.027*	
H2B	0.4971	0.5242	0.3582	0.027*	
H2C	0.4710	0.4256	0.3806	0.027*	
C3	0.64100 (13)	0.46827 (11)	0.26869 (8)	0.0212 (3)	
H3A	0.6852	0.5396	0.3035	0.032*	
H3B	0.5738	0.4694	0.2276	0.032*	
H3C	0.6975	0.4303	0.2443	0.032*	
C4	0.85097 (12)	0.44027 (11)	0.37520 (8)	0.0213 (3)	
H4A	0.8133	0.4991	0.3947	0.032*	
H4B	0.8905	0.4479	0.3354	0.032*	
H4C	0.9125	0.4386	0.4191	0.032*	
C5	0.80177 (13)	0.24885 (11)	0.32670 (9)	0.0232 (3)	
H5A	0.8248	0.2398	0.3765	0.035*	
H5B	0.8736	0.2540	0.3063	0.035*	
H5C	0.7372	0.1892	0.2883	0.035*	
C6	0.43715 (11)	0.21537 (10)	0.29157 (7)	0.0170 (3)	
H6A	0.3835	0.2625	0.3101	0.020*	
H6B	0.4105	0.1506	0.2989	0.020*	
C7	0.42530 (12)	0.19057 (11)	0.20429 (8)	0.0208 (3)	
H7A	0.4279	0.2558	0.1955	0.025*	
H7B	0.4971	0.1640	0.1911	0.025*	
N4A	0.3105 (4)	0.1127 (3)	0.1488 (2)	0.0178 (4)	0.846 (3)
C8A	0.19893 (18)	0.1358 (2)	0.17388 (14)	0.0382 (6)	0.846 (3)
H8A1	0.2064	0.1348	0.2263	0.057*	0.846 (3)
H8A2	0.1265	0.0833	0.1362	0.057*	0.846 (3)
H8A3	0.1903	0.2045	0.1756	0.057*	0.846 (3)
C9A	0.29953 (19)	0.11284 (18)	0.06795 (11)	0.0304 (5)	0.846 (3)
H9A1	0.2325	0.0554	0.0295	0.046*	0.846 (3)
H9A2	0.3766	0.1045	0.0541	0.046*	0.846 (3)
H9A3	0.2824	0.1787	0.0676	0.046*	0.846 (3)
C10A	0.32390 (19)	0.00665 (14)	0.14393 (12)	0.0330 (5)	0.846 (3)
H10A	0.3262	0.0024	0.1949	0.049*	0.846 (3)
H10B	0.4002	-0.0059	0.1304	0.049*	0.846 (3)
H10C	0.2541	-0.0457	0.1033	0.049*	0.846 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

N4B	0.299 (2)	0.1157 (16)	0.1554 (13)	0.0178 (4)	0.154 (3)
C8B	0.2084 (11)	0.1796 (11)	0.1593 (8)	0.0382 (6)	0.154 (3)
H8B1	0.2325	0.2345	0.1412	0.057*	0.154 (3)
H8B2	0.2040	0.2109	0.2138	0.057*	0.154 (3)
H8B3	0.1279	0.1361	0.1255	0.057*	0.154 (3)
C9B	0.3109 (11)	0.0687 (10)	0.0737 (6)	0.0304 (5)	0.154 (3)
H9B1	0.3659	0.1193	0.0638	0.046*	0.154 (3)
H9B2	0.2300	0.0488	0.0360	0.046*	0.154 (3)
H9B3	0.3446	0.0071	0.0675	0.046*	0.154 (3)
C10B	0.2609 (11)	0.0254 (8)	0.1770 (7)	0.0330 (5)	0.154 (3)
H10D	0.1931	-0.0261	0.1340	0.049*	0.154 (3)
H10E	0.2342	0.0500	0.2252	0.049*	0.154 (3)
H10F	0.3305	-0.0064	0.1857	0.049*	0.154 (3)
B1	0.77548 (13)	0.27582 (11)	0.04141 (8)	0.0138 (3)	
C11	0.88932 (11)	0.27236 (9)	-0.00039 (7)	0.0136 (2)	
C12	0.95590 (11)	0.19452 (10)	-0.01608 (7)	0.0155 (2)	
H12	0.9370	0.1389	-0.0002	0.019*	
C13	1.04867 (12)	0.19517 (11)	-0.05401 (8)	0.0189 (3)	
H13	1.0916	0.1410	-0.0629	0.023*	
C14	1.07830 (12)	0.27478 (11)	-0.07873 (8)	0.0193 (3)	
H14	1.1417	0.2759	-0.1043	0.023*	
C15	1.01347 (12)	0.35294 (10)	-0.06543 (8)	0.0190 (3)	
H15	1.0316	0.4074	-0.0827	0.023*	
C16	0.92198 (12)	0.35140 (10)	-0.02680(8)	0.0171 (3)	
H16	0.8797	0.4060	-0.0179	0.021*	
C17	0.64551 (12)	0.25013 (10)	-0.02617 (8)	0.0156 (2)	
C18	0.53451 (12)	0.26090 (10)	-0.00582(8)	0.0181 (3)	
H18	0.5359	0.2833	0.0482	0.022*	
C19	0.42312 (12)	0.24021 (11)	-0.06130 (9)	0.0224 (3)	
H19	0.3509	0.2492	-0.0447	0.027*	
C20	0.41749 (13)	0.20643 (11)	-0.14102(9)	0.0248 (3)	
H20	0.3418	0.1921	-0.1792	0.030*	
C21	0.52392 (14)	0.19396 (11)	-0.16378 (8)	0.0248 (3)	
H21	0.5211	0.1700	-0.2181	0.030*	
C22	0.63568 (13)	0.21642 (10)	-0.10724 (8)	0.0200 (3)	
H2	0.7076	0.2086	-0.1244	0.024*	
C23	0.80202 (11)	0.39532 (10)	0.10867 (7)	0.0144 (2)	
C24	0.90731 (12)	0.43503 (10)	0.17312 (8)	0.0195 (3)	
H24	0.9599	0.3903	0.1791	0.023*	
C25	0.93838 (13)	0.53692 (11)	0.22868 (8)	0.0223 (3)	
H25	1.0107	0.5599	0.2712	0.027*	
C26	0.86385(13)	0.60503 (11)	0.22215 (8)	0.0215 (3)	
H26	0.8841	0.6745	0.2599	0.026*	
C27	0.75911 (13)	0.56894 (10)	0.15907 (8)	0.0199 (3)	
H27	0.7068	0.6141	0.1535	0.024*	
C28	0.73019 (12)	0.46676 (10)	0.10378 (8)	0.0166 (3)	
H28	0.6586	0.4446	0.0609	0.020*	
C29	0.77013 (11)	0.18967 (10)	0.08248 (7)	0.0146(2)	
			····	···· ··· (-)	

~ • •				
C30	0.87714 (12)	0.17699 (10)	0.12790 (8)	0.0170 (3)
H30	0.9530	0.2229	0.1379	0.020*
C31	0.87737 (12)	0.10107 (10)	0.15866 (8)	0.0182 (3)
H31	0.9523	0.0957	0.1882	0.022*
C32	0.76808 (13)	0.03260 (10)	0.14644 (8)	0.0185 (3)
H32	0.7676	-0.0199	0.1669	0.022*
C33	0.66014 (12)	0.04320 (10)	0.10369 (8)	0.0186 (3)
H33	0.5845	-0.0018	0.0954	0.022*
C34	0.66199 (12)	0.11944 (10)	0.07278 (8)	0.0164 (2)
H34	0.5865	0.1244	0.0437	0.020*
B2	0.21218 (12)	0.21890 (11)	0.46170 (8)	0.0132 (3)
C35	0.18977 (11)	0.10369 (10)	0.39032 (7)	0.0146 (2)
C36	0.07262 (12)	0.05578 (10)	0.33620 (8)	0.0162 (2)
H36	0.0083	0.0913	0.3421	0.019*
C37	0.04716 (13)	-0.04096 (11)	0.27466 (8)	0.0209 (3)
H37	-0.0329	-0.0695	0.2394	0.025*
C38	0.13855 (14)	-0.09602(11)	0.26452 (9)	0.0263 (3)
H38	0.1218	-0.1622	0.2228	0.032*
C39	0.25467 (14)	-0.05202(11)	0.31674 (9)	0.0255(3)
H39	0.3181	-0.0886	0.3110	0.031*
C40	0.27898(12)	0.04579(10)	0.37778 (8)	0.021
H40	0.3596	0.0742	0.4123	0.023*
C41	0.09474(11)	0.21976 (9)	0.49961(7)	0.023 0.0134(2)
C42	0.02629(11)	0.29574(10)	0.19901(7)	0.0158(2)
H42	0.0450	0.3485	0.4906	0.019*
C43	-0.06912(12)	0.29718 (11)	0.4200	0.01^{-1}
С 4 5 Н/3	-0.1141	0.3/08	0.5510	0.0213 (5)
C44	-0.00777(12)	0.3498 0.22214 (11)	0.5510	0.020
U11	-0.1612	0.22214 (11)	0.57477 (0)	0.025*
C45	-0.03243(12)	0.2230 0.14465 (11)	0.0007	0.023
C45	0.05245(12)	0.14403 (11)	0.50592 (8)	0.0198(3)
П43 С46	-0.0312	0.0920	0.5054	0.024°
	0.00078 (12)	0.14559 (10)	0.52616 (6)	0.0170(3)
H40	0.1051	0.0891	0.5215	0.021^{+}
C4/	0.33983(11)	0.24479(9)	0.53140(7)	0.0143(2)
C48	0.34464 (12)	0.26164 (10)	0.61014 (8)	0.01/2 (3)
H48	0.2704	0.2597	0.6253	0.021*
C49	0.45487 (13)	0.28120 (11)	0.66708 (8)	0.0227 (3)
H49	0.4539	0.2924	0.7197	0.027*
C50	0.56528 (13)	0.28439 (11)	0.64765 (9)	0.0243 (3)
H50	0.6397	0.2955	0.6859	0.029*
C51	0.56484 (12)	0.27095 (10)	0.57047 (9)	0.0219 (3)
H51	0.6396	0.2738	0.5560	0.026*
C52	0.45479 (12)	0.25341 (10)	0.51484 (8)	0.0172 (3)
H52	0.4571	0.2469	0.4633	0.021*
C53	0.21969 (11)	0.31079 (10)	0.42702 (7)	0.0134 (2)
C54	0.15048(11)	0.29751 (10)	0.35213 (7)	0.0160(2)
H54	0.1023	0.2304	0.3175	0.019*

H55	0.1013	0.3659	0.2749	0.022*
C56	0.21772 (12)	0.47772 (10)	0.37494 (8)	0.0179 (3)
H56	0.2169	0.5330	0.3575	0.021*
C57	0.28783 (12)	0.49490 (10)	0.44999 (8)	0.0183 (3)
H57	0.3352	0.5624	0.4844	0.022*
C58	0.28817 (12)	0.41266 (10)	0.47442 (8)	0.0169 (3)
H58	0.3371	0.4260	0.5256	0.020*
01	0.34685 (13)	0.37036 (10)	0.13799 (8)	0.0436 (3)
C59	0.31258 (14)	0.44161 (12)	0.12440 (9)	0.0257 (3)
C60	0.37217 (16)	0.49196 (14)	0.07953 (11)	0.0353 (4)
H60A	0.4042	0.5662	0.1119	0.053*
H60B	0.3118	0.4827	0.0311	0.053*
H60C	0.4398	0.4601	0.0661	0.053*
C61	0.20691 (17)	0.47985 (18)	0.15014 (11)	0.0436 (5)
H61A	0.1306	0.4408	0.1088	0.065*
H61B	0.2178	0.5537	0.1599	0.065*
H61C	0.2028	0.4702	0.1986	0.065*
O2	0.59749 (11)	0.08463 (11)	0.35934 (9)	0.0449 (3)
C62	0.62729 (14)	0.00823 (11)	0.45296 (9)	0.0259 (3)
H62A	0.5788	0.0548	0.4785	0.039*
H62B	0.7044	0.0173	0.4914	0.039*
H62C	0.5808	-0.0638	0.4326	0.039*
C63	0.65441 (13)	0.03302 (11)	0.38676 (9)	0.0242 (3)
C64	0.75574 (14)	-0.00695 (13)	0.35534 (9)	0.0286 (3)
H64A	0.7550	0.0038	0.3067	0.043*
H64B	0.7439	-0.0812	0.3443	0.043*
H64C	0.8347	0.0304	0.3945	0.043*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0143 (5)	0.0173 (5)	0.0180 (5)	0.0052 (4)	0.0070 (4)	0.0075 (4)
N2	0.0124 (5)	0.0165 (5)	0.0177 (5)	0.0045 (4)	0.0041 (4)	0.0046 (4)
N3	0.0131 (5)	0.0191 (5)	0.0167 (5)	0.0029 (4)	0.0019 (4)	0.0094 (4)
C1	0.0139 (6)	0.0168 (6)	0.0105 (5)	0.0029 (5)	0.0032 (4)	0.0040 (5)
C2	0.0159 (6)	0.0206 (6)	0.0199 (6)	0.0081 (5)	0.0077 (5)	0.0070 (5)
C3	0.0214 (7)	0.0247 (7)	0.0251 (7)	0.0066 (5)	0.0110 (6)	0.0157 (6)
C4	0.0137 (6)	0.0227 (7)	0.0233 (7)	0.0003 (5)	0.0027 (5)	0.0069 (6)
C5	0.0174 (6)	0.0205 (7)	0.0302 (8)	0.0093 (5)	0.0066 (6)	0.0064 (6)
C6	0.0137 (6)	0.0203 (6)	0.0167 (6)	0.0010 (5)	0.0037 (5)	0.0082 (5)
C7	0.0149 (6)	0.0249 (7)	0.0165 (6)	0.0003 (5)	0.0031 (5)	0.0031 (5)
N4A	0.0136 (11)	0.0206 (6)	0.0163 (9)	0.0037 (5)	0.0039 (5)	0.0041 (6)
C8A	0.0192 (8)	0.0409 (14)	0.0380 (11)	0.0090 (9)	0.0061 (8)	-0.0036 (10)
C9A	0.0329 (10)	0.0352 (12)	0.0164 (8)	-0.0008 (9)	0.0011 (7)	0.0088 (8)
C10A	0.0389 (11)	0.0190 (8)	0.0346 (10)	-0.0014 (7)	0.0027 (8)	0.0101 (8)
N4B	0.0136 (11)	0.0206 (6)	0.0163 (9)	0.0037 (5)	0.0039 (5)	0.0041 (6)
C8B	0.0192 (8)	0.0409 (14)	0.0380 (11)	0.0090 (9)	0.0061 (8)	-0.0036 (10)
C9B	0.0329 (10)	0.0352 (12)	0.0164 (8)	-0.0008 (9)	0.0011 (7)	0.0088 (8)

C10B	0.0389 (11)	0.0190 (8)	0.0346 (10)	-0.0014 (7)	0.0027 (8)	0.0101 (8)
B1	0.0127 (6)	0.0164 (6)	0.0145 (6)	0.0044 (5)	0.0039 (5)	0.0082 (5)
C11	0.0124 (5)	0.0144 (6)	0.0129 (6)	0.0028 (4)	0.0023 (5)	0.0048 (5)
C12	0.0146 (6)	0.0158 (6)	0.0157 (6)	0.0039 (5)	0.0035 (5)	0.0061 (5)
C13	0.0170 (6)	0.0236 (7)	0.0174 (6)	0.0086 (5)	0.0056 (5)	0.0078 (5)
C14	0.0158 (6)	0.0245 (7)	0.0164 (6)	0.0023 (5)	0.0060 (5)	0.0063 (5)
C15	0.0210 (6)	0.0185 (6)	0.0174 (6)	0.0016 (5)	0.0069 (5)	0.0070 (5)
C16	0.0199 (6)	0.0160 (6)	0.0170 (6)	0.0049 (5)	0.0065 (5)	0.0071 (5)
C17	0.0151 (6)	0.0135 (6)	0.0177 (6)	0.0041 (5)	0.0027 (5)	0.0061 (5)
C18	0.0155 (6)	0.0179 (6)	0.0213 (6)	0.0045 (5)	0.0036 (5)	0.0087 (5)
C19	0.0151 (6)	0.0189 (6)	0.0322 (8)	0.0038 (5)	0.0026 (6)	0.0112 (6)
C20	0.0210 (7)	0.0201 (7)	0.0278 (7)	0.0030 (5)	-0.0055 (6)	0.0104 (6)
C21	0.0277 (7)	0.0239 (7)	0.0179 (7)	0.0044 (6)	-0.0009 (6)	0.0070 (6)
C22	0.0202 (6)	0.0194 (6)	0.0183 (6)	0.0054 (5)	0.0020 (5)	0.0066 (5)
C23	0.0142 (6)	0.0173 (6)	0.0143 (6)	0.0048 (5)	0.0063 (5)	0.0075 (5)
C24	0.0202 (6)	0.0192 (6)	0.0175 (6)	0.0054 (5)	0.0028 (5)	0.0064 (5)
C25	0.0242 (7)	0.0213 (7)	0.0167 (6)	0.0025 (5)	0.0026 (5)	0.0047 (5)
C26	0.0275 (7)	0.0158 (6)	0.0207 (7)	0.0033 (5)	0.0115 (6)	0.0046 (5)
C27	0.0229 (7)	0.0175 (6)	0.0254 (7)	0.0072 (5)	0.0121 (6)	0.0114 (5)
C28	0.0167 (6)	0.0181 (6)	0.0183 (6)	0.0047 (5)	0.0070 (5)	0.0094 (5)
C29	0.0139 (6)	0.0163 (6)	0.0137 (6)	0.0038 (5)	0.0053 (5)	0.0051 (5)
C30	0.0160 (6)	0.0193 (6)	0.0178 (6)	0.0044 (5)	0.0055 (5)	0.0091 (5)
C31	0.0189 (6)	0.0212 (6)	0.0159 (6)	0.0058 (5)	0.0039 (5)	0.0089 (5)
C32	0.0253 (7)	0.0158 (6)	0.0169 (6)	0.0057 (5)	0.0083 (5)	0.0077 (5)
C33	0.0192 (6)	0.0166 (6)	0.0196 (6)	0.0016 (5)	0.0088 (5)	0.0055 (5)
C34	0.0140 (6)	0.0165 (6)	0.0191 (6)	0.0044 (5)	0.0060 (5)	0.0064 (5)
B2	0.0125 (6)	0.0136 (6)	0.0139 (6)	0.0039 (5)	0.0033 (5)	0.0057 (5)
C35	0.0153 (6)	0.0154 (6)	0.0146 (6)	0.0046 (5)	0.0049 (5)	0.0070 (5)
C36	0.0157 (6)	0.0167 (6)	0.0168 (6)	0.0044 (5)	0.0047 (5)	0.0070 (5)
C37	0.0192 (6)	0.0207 (7)	0.0173 (6)	0.0007 (5)	0.0010 (5)	0.0046 (5)
C38	0.0288 (8)	0.0203 (7)	0.0215 (7)	0.0062 (6)	0.0043 (6)	-0.0004 (6)
C39	0.0249 (7)	0.0210 (7)	0.0259 (7)	0.0111 (6)	0.0071 (6)	0.0015 (6)
C40	0.0169 (6)	0.0183 (6)	0.0189 (6)	0.0055 (5)	0.0037 (5)	0.0041 (5)
C41	0.0129 (6)	0.0137 (6)	0.0115 (6)	0.0035 (4)	0.0011 (4)	0.0035 (5)
C42	0.0147 (6)	0.0157 (6)	0.0171 (6)	0.0052 (5)	0.0038 (5)	0.0063 (5)
C43	0.0176 (6)	0.0226 (7)	0.0244 (7)	0.0086 (5)	0.0081 (5)	0.0073 (6)
C44	0.0171 (6)	0.0242 (7)	0.0203 (7)	0.0043 (5)	0.0090 (5)	0.0060 (5)
C45	0.0204 (6)	0.0201 (6)	0.0203 (6)	0.0019 (5)	0.0077 (5)	0.0092 (5)
C46	0.0189 (6)	0.0170 (6)	0.0196 (6)	0.0066 (5)	0.0072 (5)	0.0083 (5)
C47	0.0149 (6)	0.0120 (5)	0.0159 (6)	0.0038 (4)	0.0029 (5)	0.0057 (5)
C48	0.0209 (6)	0.0142 (6)	0.0167 (6)	0.0045 (5)	0.0032(5)	0.0072 (5)
C49	0.0286(7)	0.0190 (6)	0.0173 (6)	0.0032 (5)	-0.0018(6)	0.0087(5)
C50	0.0209(7)	0.0178 (6)	0.0279(7)	0.0041(5)	-0.0069(6)	0.0095 (6)
C51	0.0148 (6)	0.0160 (6)	0.0310 (8)	0.0032(5)	0.0011 (6)	0.0078 (6)
C52	0.0150 (6)	0.0160 (6)	0.0203 (6)	0.0043(5)	0.0041(5)	0.0070(5)
C53	0.0115(5)	0.0163 (6)	0.0151 (6)	0.0060(4)	0.0058(5)	0.0070(5)
C54	0.0142 (6)	0.0182 (6)	0.0153 (6)	0.0044(5)	0.0000(5)	0.007(5)
C55	0.0167(6)	0.0102(0) 0.0241(7)	0.0170 (6)	0.0014(5)	0.0030(5)	0.0007(5)
055	0.0107 (0)	0.0271 (7)	0.01/0(0)	0.0071 (3)	0.0037 (3)	0.0109(3)

C56	0.0196 (6)	0.0199 (6)	0.0216 (7)	0.0098 (5)	0.0093 (5)	0.0130 (5)	
C57	0.0225 (6)	0.0136 (6)	0.0191 (6)	0.0035 (5)	0.0064 (5)	0.0065 (5)	
C58	0.0200 (6)	0.0158 (6)	0.0149 (6)	0.0038 (5)	0.0037 (5)	0.0066 (5)	
01	0.0590 (8)	0.0319 (6)	0.0381 (7)	0.0117 (6)	-0.0032 (6)	0.0205 (6)	
C59	0.0257 (7)	0.0268 (7)	0.0201 (7)	0.0040 (6)	-0.0032 (6)	0.0100 (6)	
C60	0.0362 (9)	0.0363 (9)	0.0447 (10)	0.0149 (7)	0.0185 (8)	0.0223 (8)	
C61	0.0336 (9)	0.0724 (14)	0.0310 (9)	0.0154 (9)	0.0115 (7)	0.0248 (9)	
O2	0.0324 (6)	0.0494 (8)	0.0805 (10)	0.0195 (6)	0.0191 (6)	0.0518 (8)	
C62	0.0277 (7)	0.0211 (7)	0.0344 (8)	0.0084 (6)	0.0161 (6)	0.0120 (6)	
C63	0.0194 (7)	0.0222 (7)	0.0351 (8)	0.0039 (5)	0.0060 (6)	0.0172 (6)	
C64	0.0273 (8)	0.0392 (9)	0.0296 (8)	0.0135 (7)	0.0131 (6)	0.0204 (7)	

Geometric parameters (Å, °)

N1—C1	1.3308 (16)	С25—Н25	0.9500
N1-C2	1.4668 (16)	C26—C27	1.390 (2)
N1—C3	1.4674 (16)	C26—H26	0.9500
N2-C1	1.3425 (16)	C27—C28	1.3967 (19)
N2-C4	1.4609 (17)	C27—H27	0.9500
N2—C5	1.4628 (17)	C28—H28	0.9500
N3—C1	1.3508 (16)	C29—C34	1.4120 (17)
N3—C6	1.4612 (16)	C29—C30	1.4154 (18)
N3—H3	0.855 (19)	C30—C31	1.3888 (18)
C2—H2A	0.9800	С30—Н30	0.9500
C2—H2B	0.9800	C31—C32	1.3955 (19)
C2—H2C	0.9800	C31—H31	0.9500
С3—НЗА	0.9800	C32—C33	1.3875 (19)
С3—Н3В	0.9800	С32—Н32	0.9500
С3—Н3С	0.9800	C33—C34	1.3945 (18)
C4—H4A	0.9800	С33—Н33	0.9500
C4—H4B	0.9800	С34—Н34	0.9500
C4—H4C	0.9800	B2—C41	1.6457 (18)
C5—H5A	0.9800	B2—C53	1.6478 (18)
С5—Н5В	0.9800	B2—C47	1.6496 (18)
С5—Н5С	0.9800	B2—C35	1.6524 (18)
С6—С7	1.5286 (18)	C35—C40	1.4001 (18)
С6—Н6А	0.9900	C35—C36	1.4141 (18)
С6—Н6В	0.9900	C36—C37	1.3917 (19)
C7—N4A	1.504 (5)	С36—Н36	0.9500
C7—N4B	1.55 (3)	C37—C38	1.392 (2)
C7—H7A	0.9900	С37—Н37	0.9500
С7—Н7В	0.9900	C38—C39	1.388 (2)
N4A—C8A	1.487 (3)	C38—H38	0.9500
N4A-C10A	1.501 (3)	C39—C40	1.3989 (19)
N4A—C9A	1.504 (3)	С39—Н39	0.9500
C8A—H8A1	0.9800	C40—H40	0.9500
C8A—H8A2	0.9800	C41—C42	1.3975 (17)
C8A—H8A3	0.9800	C41—C46	1.4078 (17)

С9А—Н9А1	0.9800	C42—C43	1.4051 (18)
С9А—Н9А2	0.9800	C42—H42	0.9500
С9А—Н9А3	0.9800	C43—C44	1.385 (2)
C10A—H10A	0.9800	C43—H43	0.9500
C10A—H10B	0.9800	C44—C45	1.391 (2)
C10A—H10C	0.9800	C44—H44	0.9500
N4B—C8B	1.464 (17)	C45—C46	1.3970 (18)
N4B—C9B	1.491 (17)	C45—H45	0.9500
N4B—C10B	1.508 (17)	C46—H46	0.9500
C8B—H8B1	0.9800	C47—C48	1.4060 (18)
C8B—H8B2	0.9800	C47—C52	1.4119 (18)
C8B—H8B3	0.9800	C48—C49	1.3997 (19)
C9B—H9B1	0.9800	C48—H48	0.9500
C9B—H9B2	0.9800	C49—C50	1.385 (2)
C9B—H9B3	0.9800	C49—H49	0.9500
C10B—H10D	0.9800	C50—C51	1.398 (2)
C10B—H10E	0.9800	С50—Н50	0.9500
C10B—H10F	0.9800	C51—C52	1.3916 (18)
B1—C17	1.6478 (18)	С51—Н51	0.9500
B1—C11	1.6525 (18)	С52—Н52	0.9500
B1—C23	1.6578 (19)	C53—C54	1.4034 (17)
B1—C29	1.6588 (18)	C53—C58	1.4088 (18)
C11—C12	1.4048 (17)	C54—C55	1.3983 (18)
C11—C16	1.4113 (17)	С54—Н54	0.9500
C12—C13	1.3967 (18)	C55—C56	1.3835 (19)
С12—Н12	0.9500	С55—Н55	0.9500
C13—C14	1.3893 (19)	C56—C57	1.3940 (19)
С13—Н13	0.9500	С56—Н56	0.9500
C14—C15	1.393 (2)	C57—C58	1.3940 (18)
C14—H14	0.9500	С57—Н57	0.9500
C15—C16	1.3941 (18)	С58—Н58	0.9500
С15—Н15	0.9500	O1—C59	1.2185 (19)
С16—Н16	0.9500	C59—C60	1.488 (2)
C17—C22	1,4059 (19)	C59—C61	1.492 (2)
C17—C18	1.4124 (18)	С60—Н60А	0.9800
C18—C19	1.3927 (19)	C60—H60B	0.9800
C18—H18	0.9500	С60—Н60С	0.9800
C19—C20	1.392 (2)	C61—H61A	0.9800
С19—Н19	0.9500	С61—Н61В	0.9800
C20—C21	1.385 (2)	С61—Н61С	0.9800
C20—H20	0.9500	O2—C63	1.2177 (18)
C21—C22	1.4012 (19)	C62—C63	1.488 (2)
C21—H21	0.9500	C62—H62A	0.9800
С22—Н2	0.9500	С62—Н62В	0.9800
C23—C28	1.4027 (18)	С62—Н62С	0.9800
C23—C24	1.4058 (18)	C63—C64	1.497 (2)
C24—C25	1.3941 (19)	С64—Н64А	0.9800
C24—H24	0.9500	С64—Н64В	0.9800

data reports

C25—C26	1.392 (2)	C64—H64C	0.9800
C1—N1—C2	122.30 (11)	C25—C24—C23	123.20 (13)
C1—N1—C3	122.05 (11)	C25—C24—H24	118.4
C2—N1—C3	115.58 (10)	C23—C24—H24	118.4
C1—N2—C4	122.22 (11)	C26—C25—C24	120.24 (13)
C1—N2—C5	121.68 (11)	С26—С25—Н25	119.9
C4—N2—C5	115.46 (11)	C24—C25—H25	119.9
C1-N3-C6	125.43 (11)	C_{27} C_{26} C_{25}	118.37 (12)
C1—N3—H3	118 1 (12)	$C_{27} = C_{26} = H_{26}$	120.8
C6—N3—H3	115.1(12) 115.5(12)	C_{25} C_{26} H_{26}	120.8
N1-C1-N2	120.62.(11)	$C_{26} = C_{27} = C_{28}$	120.0
N1—C1—N3	120.02(11) 121.02(11)	C26—C27—H27	119.8
N_2 —C1—N3	118.36(12)	$C_{28} = C_{27} = H_{27}$	119.8
N1 - C2 - H2A	109.5	C_{27} C_{28} C_{23}	123.01 (12)
N1 - C2 - H2B	109.5	$C_{27} = C_{28} = H_{28}$	118.5
$H_2 \Lambda C_2 H_2 B$	109.5	C_{23} C_{28} H_{28}	118.5
N1 C2 H2C	109.5	$C_{23} = C_{23} = C_{23} = C_{23}$	113.77(11)
H_{2} C_{2} H_{2} H_{2}	109.5	$C_{34} = C_{29} = C_{30}$	113.77(11) 124.20(11)
H2R = C2 = H2C	109.5	C_{20} C_{20} P_{1}	124.20(11)
$H_{2} = C_{2} = H_{2} C_{2}$	109.5	$C_{30} - C_{29} - B_{1}$	121.90(11) 123.60(12)
NI C2 H2P	109.5	$C_{31} = C_{30} = C_{23}$	123.00 (12)
N1 - C3 - H3D	109.5	C_{20} C_{20} H_{20}	110.2
NI C2 U2C	109.5	$C_{29} = C_{30} = H_{30}$	110.2 120.24(12)
$NI = C_3 = H_3C$	109.5	$C_{30} = C_{31} = C_{32}$	120.34 (12)
H3A - C3 - H3C	109.5	C30—C31—H31	119.8
H3B—C3—H3C	109.5	C32—C31—H31	119.8
N2—C4—H4A	109.5	C33—C32—C31	118.33 (12)
N2—C4—H4B	109.5	С33—С32—Н32	120.8
H4A—C4—H4B	109.5	С31—С32—Н32	120.8
N2—C4—H4C	109.5	C32—C33—C34	120.45 (12)
H4A—C4—H4C	109.5	С32—С33—Н33	119.8
H4B—C4—H4C	109.5	С34—С33—Н33	119.8
N2—C5—H5A	109.5	C33—C34—C29	123.50 (12)
N2—C5—H5B	109.5	С33—С34—Н34	118.2
H5A—C5—H5B	109.5	С29—С34—Н34	118.2
N2—C5—H5C	109.5	C41—B2—C53	108.14 (10)
H5A—C5—H5C	109.5	C41—B2—C47	109.45 (10)
H5B—C5—H5C	109.5	C53—B2—C47	108.60 (10)
N3—C6—C7	110.06 (10)	C41—B2—C35	108.30 (10)
N3—C6—H6A	109.6	C53—B2—C35	110.78 (10)
С7—С6—Н6А	109.6	C47—B2—C35	111.51 (10)
N3—C6—H6B	109.6	C40—C35—C36	114.79 (11)
С7—С6—Н6В	109.6	C40—C35—B2	125.26 (11)
H6A—C6—H6B	108.2	C36—C35—B2	119.95 (11)
N4A—C7—C6	114.75 (14)	C37—C36—C35	123.07 (12)
C6—C7—N4B	108.6 (6)	С37—С36—Н36	118.5
N4A—C7—H7A	108.6	С35—С36—Н36	118.5
С6—С7—Н7А	108.6	C36—C37—C38	120.22 (12)

N4A—C7—H7B	108.6	С36—С37—Н37	119.9
С6—С7—Н7В	108.6	С38—С37—Н37	119.9
H7A—C7—H7B	107.6	C39—C38—C37	118.52 (13)
C8A—N4A—C10A	110.4 (3)	С39—С38—Н38	120.7
C8A—N4A—C7	112.2 (2)	С37—С38—Н38	120.7
C10A—N4A—C7	108.6 (3)	C38—C39—C40	120.50 (13)
C8A—N4A—C9A	110.0 (3)	С38—С39—Н39	119.7
C10A - N4A - C9A	107.2(2)	C40-C39-H39	119.7
C7—N4A—C9A	107.2(2) 108.3(2)	C_{39} C_{40} C_{35}	122.89(12)
N4A—C8A—H8A1	109.5	C39—C40—H40	118.6
N4A = C8A = H8A2	109.5	C_{35} C_{40} H40	118.6
H8A1 - C8A - H8A2	109.5	C_{42} C_{41} C_{46}	115.6(11)
	109.5	C_{42} C_{41} B_{2}	124 15 (11)
H8A1 - C8A - H8A3	109.5	$C_{42} = C_{41} = B_2$	124.13(11) 120.33(11)
H8A2 C8A H8A3	109.5	C_{41} C_{42} C_{43}	120.55(11) 122.56(12)
MAA = COA = HOA1	109.5	$C_{41} = C_{42} = C_{43}$	122.30 (12)
	109.5	$C_{41} = C_{42} = H_{42}$	118.7
HA - CA - HAA	109.5	C43 - C42 - H42	110.7
$H_{A} = C_{A} = H_{A} = H_{A}$	109.5	C44 - C43 - C42	120.17(12)
N4A - C9A - H9A3	109.5	$C_{44} = C_{43} = H_{43}$	119.9
H9A1 - C9A - H9A3	109.5	C42—C43—H43	119.9
H9A2—C9A—H9A3	109.5	C43 - C44 - C45	119.10 (12)
N4A—C10A—H10A	109.5	C43—C44—H44	120.5
N4A—C10A—H10B	109.5	C45—C44—H44	120.5
H10A—C10A—H10B	109.5	C44—C45—C46	119.87 (12)
N4A—C10A—H10C	109.5	C44—C45—H45	120.1
H10A—C10A—H10C	109.5	C46—C45—H45	120.1
H10B—C10A—H10C	109.5	C45—C46—C41	122.82 (12)
C8B—N4B—C9B	111.1 (16)	C45—C46—H46	118.6
C8B—N4B—C10B	111.3 (16)	C41—C46—H46	118.6
C9B—N4B—C10B	105.4 (14)	C48—C47—C52	115.03 (11)
C8B—N4B—C7	106.7 (14)	C48—C47—B2	124.28 (11)
C9B—N4B—C7	105.0 (13)	С52—С47—В2	120.68 (11)
C10B—N4B—C7	117.2 (15)	C49—C48—C47	122.40 (13)
N4B—C8B—H8B1	109.5	C49—C48—H48	118.8
N4B—C8B—H8B2	109.5	C47—C48—H48	118.8
H8B1—C8B—H8B2	109.5	C50—C49—C48	120.80 (13)
N4B—C8B—H8B3	109.5	С50—С49—Н49	119.6
H8B1—C8B—H8B3	109.5	C48—C49—H49	119.6
H8B2—C8B—H8B3	109.5	C49—C50—C51	118.56 (12)
N4B—C9B—H9B1	109.5	С49—С50—Н50	120.7
N4B—C9B—H9B2	109.5	С51—С50—Н50	120.7
H9B1—C9B—H9B2	109.5	C52—C51—C50	119.99 (13)
N4B—C9B—H9B3	109.5	С52—С51—Н51	120.0
H9B1—C9B—H9B3	109.5	C50—C51—H51	120.0
H9B2—C9B—H9B3	109.5	C51—C52—C47	123.11 (13)
N4B—C10B—H10D	109.5	C51—C52—H52	118.4
N4B— $C10B$ — $H10E$	109.5	C47—C52—H52	118.4
H10D-C10B-H10F	109.5	C54-C53-C58	114 75 (11)

N4B—C10B—H10F	109.5	C54—C53—B2	123.50 (11)
H10D—C10B—H10F	109.5	C58—C53—B2	121.47 (11)
H10E—C10B—H10F	109.5	C55—C54—C53	122.84 (12)
C17—B1—C11	108.93 (10)	С55—С54—Н54	118.6
C17—B1—C23	109.99 (10)	С53—С54—Н54	118.6
C11—B1—C23	106.64 (10)	C56—C55—C54	120.43 (12)
C17—B1—C29	109.94 (10)	С56—С55—Н55	119.8
C11—B1—C29	110.37 (10)	С54—С55—Н55	119.8
C23—B1—C29	110.91 (10)	C55—C56—C57	118.89 (12)
C12—C11—C16	114.93 (11)	С55—С56—Н56	120.6
C12—C11—B1	126.24 (11)	С57—С56—Н56	120.6
C16—C11—B1	118.76 (11)	C56—C57—C58	119.72 (12)
C13—C12—C11	123.01 (12)	С56—С57—Н57	120.1
C13—C12—H12	118.5	С58—С57—Н57	120.1
C11—C12—H12	118.5	C57—C58—C53	123.36(12)
C14—C13—C12	120.17 (12)	С57—С58—Н58	118.3
С14—С13—Н13	119.9	С53—С58—Н58	118.3
С12—С13—Н13	119.9	O1—C59—C60	121.36 (16)
C13—C14—C15	118.84 (12)	01-C59-C61	121.27 (16)
C13—C14—H14	120.6	C60—C59—C61	117.35 (14)
C15—C14—H14	120.6	С59—С60—Н60А	109.5
C14—C15—C16	120.11 (12)	С59—С60—Н60В	109.5
C14—C15—H15	119.9	H60A—C60—H60B	109.5
С16—С15—Н15	119.9	C59—C60—H60C	109.5
C_{15} C_{16} C_{11}	122.93 (12)	H60A - C60 - H60C	109.5
C15—C16—H16	118.5	H60B—C60—H60C	109.5
C11—C16—H16	118.5	C59-C61-H61A	109.5
C_{22} C_{17} C_{18}	114 99 (12)	C_{59} C_{61} H_{61B}	109.5
$C_{22} = C_{17} = B_{1}$	123 53 (11)	H_{61A} $-C_{61}$ $-H_{61B}$	109.5
C18 - C17 - B1	121.48 (11)	C59-C61-H61C	109.5
C19 - C18 - C17	123.04(13)	H_{61A} $-C_{61}$ $-H_{61C}$	109.5
C19 - C18 - H18	118 5	H61B-C61-H61C	109.5
C17 - C18 - H18	118.5	C63 - C62 - H62A	109.5
C_{20} C_{19} C_{18}	120.03 (13)	C63 - C62 - H62R	109.5
C_{20} C_{19} H_{19}	120.05 (15)	H62A - C62 - H62B	109.5
C_{18} C_{19} H_{19}	120.0	C_{63} C_{62} H_{62} H_{62}	109.5
C_{21} C_{20} C_{19}	118 94 (13)	H62A - C62 - H62C	109.5
$C_{21} = C_{20} = H_{20}$	120.5	H62R = C62 = H62C	109.5
C_{19} C_{20} H_{20}	120.5	$\Omega_{2}^{2} = C_{62}^{2} = 102C$	109.5
C_{20} C_{21} C_{22} C_{22}	120.5 120.42(13)	02 - C63 - C64	121.04(14) 120.87(14)
$C_{20} = C_{21} = C_{22}$	110.8	$C_{12} = C_{13} = C_{14}$	120.07(14) 117.48(12)
$C_{20} = C_{21} = H_{21}$	119.8	C63 C64 H64A	117.46 (12)
$C_{22} = C_{21} = C_{121}$	119.0	C63 C64 H64P	109.5
$C_{21} = C_{22} = C_{17}$	122.30 (13)	$H64\Delta - C64 H64B$	109.5
$C_{21} = C_{22} = H_2$	110.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{1} = C_{22} = C_{12}$	110.7	$U_{0} = U_{0} = U_{0$	109.5
$C_{20} = C_{23} = C_{24}$	114./4(12) 124.28(11)	HCAD = CCA = HCAC	109.3
$C_{28} - C_{23} - B_1$	124.38 (11)	но4В—Со4—Но4С	109.5
C24—C23—B1	120.69 (11)		

C2—N1—C1—N2	-151.36 (12)	C23—B1—C29—C30	-73.78 (15)
C3—N1—C1—N2	31.64 (18)	C34—C29—C30—C31	1.59 (19)
C2—N1—C1—N3	29.01 (18)	B1—C29—C30—C31	-175.45 (12)
C3—N1—C1—N3	-147.99 (12)	C29—C30—C31—C32	-0.8 (2)
C4—N2—C1—N1	34.13 (18)	C30—C31—C32—C33	-0.6(2)
C5—N2—C1—N1	-155.46(12)	C31—C32—C33—C34	1.1 (2)
C4—N2—C1—N3	-146.24 (12)	C32—C33—C34—C29	-0.2(2)
C5—N2—C1—N3	24.18 (18)	C30—C29—C34—C33	-1.07(19)
C6—N3—C1—N1	35.61 (19)	B1—C29—C34—C33	175.89 (12)
C6—N3—C1—N2	-144.03(13)	C41—B2—C35—C40	-136.36(12)
C1—N3—C6—C7	46.52 (17)	C53—B2—C35—C40	105.20 (14)
N3—C6—C7—N4A	162.38 (16)	C47—B2—C35—C40	-15.88(17)
N3—C6—C7—N4B	166.3 (7)	C41 - B2 - C35 - C36	43.17 (15)
C6—C7—N4A—C8A	47.0 (3)	C53 - B2 - C35 - C36	-75.27 (14)
C6-C7-N4A-C10A	-75.3 (2)	C47—B2—C35—C36	163.65 (11)
C6—C7—N4A—C9A	168.60 (17)	C40—C35—C36—C37	-0.51(19)
C6-C7-N4B-C8B	80.1 (11)	B2-C35-C36-C37	179.91 (12)
C6-C7-N4B-C9B	-1619(9)	$C_{35} - C_{36} - C_{37} - C_{38}$	0.8(2)
C6-C7-N4B-C10B	-453(13)	$C_{36} - C_{37} - C_{38} - C_{39}$	-0.3(2)
C17 - B1 - C11 - C12	-107.20(13)	C_{37} C_{38} C_{39} C_{40}	-0.4(2)
C_{23} B1 $-C_{11}$ $-C_{12}$	$134\ 13\ (12)$	C_{38} C_{39} C_{40} C_{35}	0.6(2)
C_{29} B1 C_{11} C_{12}	13 59 (17)	$C_{36} - C_{35} - C_{40} - C_{39}$	-0.18(19)
C17 - B1 - C11 - C16	69 79 (14)	$B^2 - C^{35} - C^{40} - C^{39}$	179 37 (13)
C_{23} B1 $-C_{11}$ $-C_{16}$	-48.87(14)	C_{53} B_{2} C_{41} C_{42}	-8.02(16)
C_{29} B1 $-C_{11}$ $-C_{16}$	-16942(11)	C47 - B2 - C41 - C42	110.12(13)
C_{16} C_{11} C_{12} C_{13}	0.78 (18)	C_{35} B2 C_{41} C_{42}	-128 12 (12)
B1-C11-C12-C13	$177 \ 87 \ (12)$	C_{53} B_{2} C_{41} C_{42}	175.05(11)
$C_{11} - C_{12} - C_{13} - C_{14}$	-0.5(2)	C47 = B2 = C41 = C46	-66.81(14)
C12 - C13 - C14 - C15	-0.41(19)	C_{35} B2 C_{41} C46	54 95 (14)
C_{13} C_{14} C_{15} C_{16}	1.02(19)	C46-C41-C42-C43	0 71 (18)
C_{14} C_{15} C_{16} C_{11}	-0.7(2)	$B^2 - C^{41} - C^{42} - C^{43}$	-17635(12)
C_{12} C_{11} C_{16} C_{15}	-0.15(18)	$C_{41} - C_{42} - C_{43} - C_{44}$	0.8(2)
B1 - C11 - C16 - C15	-17747(12)	C42 - C43 - C44 - C45	-1.2(2)
C_{11} B_{1} C_{17} C_{22}	8 33 (16)	C43 - C44 - C45 - C46	0.1(2)
C_{23} B1 C_{17} C_{22}	$124\ 87\ (13)$	C44-C45-C46-C41	14(2)
C_{29} B1 C_{17} C_{22}	-112.72(13)	C42-C41-C46-C45	-1.80(19)
C_{11} B_{1} C_{17} C_{18}	-171.63(11)	B2-C41-C46-C45	175 39 (12)
C_{23} B1 $-C_{17}$ $-C_{18}$	-55.09(15)	C41 - B2 - C47 - C48	1 73 (16)
C_{29} B1 C_{17} C_{18}	67 32 (15)	C_{53} B2 C_{47} C48	119 59 (13)
C_{22} C_{17} C_{18} C_{19}	-0.17(19)	C_{35} B_{2} C_{47} C_{48}	-118.07(13)
B1 - C17 - C18 - C19	179.80(12)	C41 - B2 - C47 - C52	-177.06(11)
C17-C18-C19-C20	0.5(2)	C_{53} B2 C_{47} C_{52}	-59 21 (15)
C18 - C19 - C20 - C21	0.0(2)	C_{35} B_{2} C_{47} C_{52}	63 13 (15)
C19-C20-C21-C22	-0.9(2)	$C_{52} = C_{47} = C_{48} = C_{49}$	-256(18)
C_{20} C_{21} C_{22} C_{17}	13(2)	B_{2} C_{47} C_{48} C_{49}	178 59 (12)
C_{18} C_{17} C_{22} C_{21}	-0.73(19)	C47 - C48 - C49 - C50	-0.2(2)
B1-C17-C22-C21	179 31 (12)	C48 - C49 - C50 - C51	20(2)
$D_1 = 017 = 022 = 021$	1/2.21 (14)		2.0 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5.93 (16) 112.04 (13) -127.76 (12) 179.36 (11) -62.67 (14) 57.53 (15) 0.61 (19) 175.80 (12) 0.1 (2) -0.3 (2) -0.1 (2) 0.9 (2) -1.07 (18) -176.05 (12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.9 (2) \\ -2.2 (2) \\ 3.77 (19) \\ -177.33 (12) \\ -83.82 (14) \\ 157.49 (11) \\ 34.71 (16) \\ 89.73 (13) \\ -28.96 (16) \\ -151.74 (11) \\ 0.06 (18) \\ 174.00 (12) \\ -0.3 (2) \\ 0.2 (2) \end{array}$
C26-C27-C28-C23 C24-C23-C28-C27 B1-C23-C28-C27 C17-B1-C29-C34 C11-B1-C29-C34 C23-B1-C29-C34 C17-B1-C29-C30 C11-B1-C29-C30	-1.07 (18) -176.05 (12) -12.37 (17) -132.55 (12) 109.49 (13) 164.36 (11) 44.17 (16)	B2-C53-C54-C55 C53-C54-C55-C56 C54-C55-C56-C57 C55-C56-C57-C58 C56-C57-C58-C53 C54-C53-C58-C57 B2-C53-C58-C57	$\begin{array}{c} -0.3 (2) \\ 0.2 (2) \\ 0.2 (2) \\ -0.5 (2) \\ 0.32 (19) \\ -173.75 (12) \end{array}$

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C23–C28, C29–C34, C35–C40 and C53–C58 rings, respectively.

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	D—H···A
N3—H3…O2	0.86 (2)	2.07 (2)	2.777 (2)	140 (2)
С9А—Н9А3…О1	0.98	2.48	3.329 (2)	144
C8B—H8B1…O1	0.98	2.20	3.131 (2)	158
C7—H7 <i>A</i> …O1	0.99	2.43	3.353 (2)	155
C3—H3 <i>C</i> ··· <i>Cg</i> 1	0.98	2.68	3.306 (2)	122
$C9A$ — $H9A1$ ··· $Cg2^{i}$	0.98	3.11	3.612 (2)	130
$C9B$ — $H9B2$ ··· $Cg2^{i}$	0.98	2.95	3.409 (2)	110
C10B—H10E···Cg3	0.98	2.48	3.337 (2)	146
C2—H2 <i>C</i> ··· <i>Cg</i> 4	0.98	2.98	3.543 (2)	118

Symmetry code: (i) -x+1, -y, -z.