

ISSN 2414-3146

Received 8 March 2016 Accepted 16 March 2016

Edited by I. Brito, University of Antofagasta, Chile

Keywords: crystal structure; chiral thiosemicarbazone; hydrogen-bonded polymer; non-centrosymmetric dimer.

CCDC reference: 1469055

Structural data: full structural data are available from iucrdata.iucr.org

2-[(*E*)-(2*S*,5*R*)-2-Isopropyl-5-methylcyclohexylidene]-*N*-methylhydrazine-1-carbothioamide

Adriano Bof de Oliveira,^a* Johannes Beck,^b Jörg Daniels^b and Renan Lira de Farias^c

^aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão-SE, Brazil, ^bInstitut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and ^cInstituto de Química, Universidade Estadual Paulista, Rua Francisco Degni s/n, 14801-970 Araraquara-SP, Brazil. *Correspondence e-mail: adriano@daad-alumni.de

There are two molecules in the asymmetric unit of the title compound, $C_{12}H_{23}N_3S$, which are linked by two strong $N-H\cdots S$ hydrogen bonds, building a non-centrosymmetric dimer with graph-set motif $R_2^2(8)$. The molecules are further connected by $N-H\cdots S$ interactions into a two-dimensional hydrogenbonded polymeric structure along the [001] direction. The absolute structure is based on the refinement of the Flack parameter.

Structure description

As part of our ongoing research on the synthesis and chemical structure of thiosemicarbazone derivatives from natural products, we report herein the crystal structure of a (-)-menthone-thiosemicarbazone compound.

In the crystal structure of the title compound, there are two discrete molecules in general positions in the asymmetric unit. As enantiopure (–)-menthone was used in the chemical reaction, both of the crystallographically independent molecules have the same chirality. The atoms C3, C6, C15 and C18 are chiral centres and maintain the chirality of the employed reagent and the obtained product emerges as enantiopure crystals in the non-centrosymmetric space group $P2_1$. The molecules are connected by mutual N– H···S interactions, building a non-centrosymmetric dimer with an $R_2^2(8)$ ring. The thiosemicarbazone entities are not planar and the torsion angles N1–N2–C11–N3 and N4–N5–C23–N6 are 2.4 (3) and 12.5 (3)°, respectively. For the N1–N2 and N4–N5 bonds, the *E* conformation is observed. The cyclohexane rings of the menthone units are in a chair conformation (Fig. 1). Both of these conformations are also observed for the (–)-menthone-3-thiosemicarbazone derivative (Oliveira *et al.*, 2014).

Figure 1

The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines; see Table 1 for details.

In the crystal, the molecules are also connected by symmetry-generated $N-H\cdots S$ hydrogen bonds into a onedimensional polymer along the *b*-axis (Fig. 2 and Table 1). In addition, other hydrogen bonds of the same type, with bridging sulfur atoms, connect the molecules into a two-dimensional polymeric chain along [001].

Partial view of the of the crystal structure of the title compound along the a axis, showing the non non-centrosymmetric dimer and the extended $N-H\cdots S$ interactions along the b axis. The complete two-dimensional hydrogen-bonded polymeric structure is not shown for clarity. Hydrogen bonds are shown as dashed lines; see Table 1 for details.

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2 - H2 \cdot \cdot \cdot S2$	0.88	2.79	3.671 (2)	174
N5 - H5 + S1 N5 - H5 + S1	0.88	2.61	3.356 (2)	147
$N5-H5\cdots S1$ $N6-H6A\cdots S2^{ii}$	0.88	2.61 2.79	3.356 (2) 3.445 (2)	143

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z + 1; (ii) -x + 2, $y + \frac{1}{2}$, -z + 1.

Synthesis and crystallization

The synthesis of the title compound was adapted from a previously reported procedure (Freund & Schander, 1902). In a hydrochloric acid-catalysed reaction, a mixture of (-)-menthone (10 mmol) and 4-methyl-3-thiosemicarbazide (10 mmol) in ethanol (80 mL) was refluxed for 5 h. After cooling and filtering, the title compound was obtained. Colourless plates were obtained by slow evaporation of a solution in the solvent DMSO.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The correct assignment of the

Table 2 Experimental details.	
Crystal data	
Chemical formula	C12H22N2S
M _r	241.39
Crystal system, space group	Monoclinic, $P2_1$
Temperature (K)	123
a, b, c (Å)	11.5579 (5), 9.9279 (4), 12.5271 (5)
β (°)	95.030 (2)
$V(\dot{A}^3)$	1431.90 (10)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.21
Crystal size (mm)	$0.77\times0.30\times0.08$
Data collection	
Diffractometer	Nonius KappaCCD
Absorption correction	Analytical (Alcock, 1970)
T_{\min}, \bar{T}_{\max}	0.857, 0.984
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	23116, 6380, 5069
R _{int}	0.075
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.104, 1.06
No. of reflections	6380
No. of parameters	297
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.24, -0.37
Absolute structure	Flack x determined using 1954 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.00(7)

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

absolute configuration was assured by the Flack parameter of 0.00 (7).

Acknowledgements

We gratefully acknowledge financial support by the State of North Rhine-Westphalia, Germany. ABO is an associate researcher in the project 'Dinitrosyl complexes containing thiol and/or thiosemicarbazone: synthesis, characterization and treatment against cancer', founded by FAPESP, Proc. 2015/12098–0, and acknowledges Professor José Clayston Melo Pereira (UNESP, Brazil) for his support in this work.

References

Alcock, N. W. (1970). *Crystallographic Computing*, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Oliveira, A. B. de, Beck, J., Daniels, J., de Farias, R. L. & de Godoy Netto, A. V. (2014). *Acta Cryst.* E70, 0903–0904.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology, Vol.* 276, *Macromolecular Crystallography, Part A*, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press, United States.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2016). **1**, x160459 [doi:10.1107/S2414314616004594]

2-[(*E*)-(2*S*,5*R*)-2-Isopropyl-5-methylcyclohexylidene]-*N*-methylhydrazine-1carbothioamide

Adriano Bof de Oliveira, Johannes Beck, Jörg Daniels and Renan Lira de Farias

2-[(E)-(2S,5R)-2-Isopropyl-5-methylcyclohexylidene]-N-methylhydrazine-1-carbothioamide

Crystal data

C₁₂H₂₃N₃S $M_r = 241.39$ Monoclinic, P2₁ Hall symbol: P 2yb a = 11.5579 (5) Å b = 9.9279 (4) Å c = 12.5271 (5) Å $\beta = 95.030 (2)^{\circ}$ $V = 1431.90 (10) \text{ Å}^{3}$ Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube, Nonius KappaCCD Horizonally mounted graphite crystal monochromator Detector resolution: 9 pixels mm⁻¹ CCD scans Absorption correction: analytical (Alcock, 1970)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.104$ S = 1.066380 reflections 297 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 528 $D_x = 1.120 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 80422 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 123 KPlate, colourless $0.77 \times 0.30 \times 0.08 \text{ mm}$

 $T_{\min} = 0.857, T_{\max} = 0.984$ 23116 measured reflections
6380 independent reflections
5069 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.075$ $\theta_{\text{max}} = 27.5^{\circ}, \theta_{\text{min}} = 3.1^{\circ}$ $h = -15 \rightarrow 14$ $k = -12 \rightarrow 12$ $l = -16 \rightarrow 16$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0456P)^2 + 0.1712P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.24 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.36 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 1954 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.00 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.73525 (19)	0.1924 (3)	0.71879 (19)	0.0293 (5)
C2	0.71388 (19)	0.0693 (3)	0.78399 (18)	0.0302 (5)
H2A	0.6428	0.0234	0.7526	0.036*
H2B	0.7005	0.0970	0.8578	0.036*
C3	0.81593 (19)	-0.0294 (3)	0.78822 (19)	0.0365 (5)
Н3	0.8226	-0.0636	0.7139	0.044*
C4	0.9285 (2)	0.0439 (3)	0.8247 (2)	0.0420 (7)
H4A	0.9947	-0.0193	0.8238	0.050*
H4B	0.9251	0.0763	0.8991	0.050*
C5	0.9473 (2)	0.1634 (3)	0.7512 (2)	0.0424 (7)
H5A	0.9547	0.1297	0.6778	0.051*
H5B	1.0210	0.2087	0.7763	0.051*
C6	0.84778 (19)	0.2668 (3)	0.74798 (19)	0.0330 (5)
H6	0.8592	0.3319	0.6889	0.040*
C7	0.8407 (2)	0.3491 (3)	0.8524 (2)	0.0451 (7)
H7	0.8211	0.2855	0.9101	0.054*
C8	0.7447 (3)	0.4539 (3)	0.8378 (2)	0.0536 (8)
H8A	0.7419	0.5055	0.9042	0.080*
H8B	0.6700	0.4087	0.8205	0.080*
H8C	0.7602	0.5149	0.7793	0.080*
С9	0.9558 (3)	0.4164 (4)	0.8886 (3)	0.0687 (10)
H9A	0.9843	0.4656	0.8284	0.103*
H9B	1.0126	0.3476	0.9137	0.103*
H9C	0.9446	0.4793	0.9471	0.103*
C10	0.7951 (2)	-0.1501 (3)	0.8595 (2)	0.0463 (7)
H10A	0.8580	-0.2155	0.8555	0.069*
H10B	0.7208	-0.1925	0.8351	0.069*
H10C	0.7929	-0.1198	0.9338	0.069*
C11	0.58527 (19)	0.3497 (2)	0.49598 (19)	0.0272 (5)
C12	0.3993 (2)	0.2741 (3)	0.4070 (2)	0.0376 (6)
H12A	0.3523	0.3538	0.4193	0.056*
H12B	0.3512	0.1931	0.4095	0.056*
H12C	0.4296	0.2808	0.3366	0.056*
N1	0.65657 (16)	0.2190 (2)	0.64304 (16)	0.0293 (5)
N2	0.66934 (17)	0.3292 (2)	0.57647 (17)	0.0309 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H2	0.7296	0.3834	0.5863	0.037*
N3	0.49569 (16)	0.2660 (2)	0.48970 (16)	0.0306 (5)
H3A	0.4944	0.2019	0.5382	0.037*
S1	0.59813 (5)	0.47563 (6)	0.40686 (5)	0.03005 (15)
C13	0.75271 (18)	0.7836 (3)	0.26402 (18)	0.0284 (5)
C14	0.7259 (2)	0.6502 (3)	0.20902 (19)	0.0322 (5)
H14A	0.7458	0.5760	0.2602	0.039*
H14B	0.7746	0.6403	0.1483	0.039*
C15	0.5962 (2)	0.6393 (3)	0.16702 (19)	0.0333 (5)
H15	0.5489	0.6421	0.2301	0.040*
C16	0.5633 (2)	0.7605 (3)	0.0968 (2)	0.0412 (6)
H16A	0.4794	0.7564	0.0729	0.049*
H16B	0.6070	0.7577	0.0323	0.049*
C17	0.5897 (2)	0.8927 (3)	0.1569 (2)	0.0425 (6)
H17A	0.5428	0.8975	0.2192	0.051*
H17B	0.5670	0.9693	0.1089	0.051*
C18	0.7195 (2)	0.9054 (3)	0.1962 (2)	0.0337 (5)
H18	0.7634	0.8985	0.1310	0.040*
C19	0.7520 (2)	1.0418 (3)	0.2477 (2)	0.0380 (6)
H19	0.8317	1.0329	0.2850	0.046*
C20	0.6707 (2)	1.0854 (3)	0.3315 (2)	0.0486 (7)
H20A	0.5934	1.1043	0.2961	0.073*
H20B	0.7015	1.1668	0.3681	0.073*
H20C	0.6651	1.0131	0.3841	0.073*
C21	0.7570 (3)	1.1512 (3)	0.1618 (3)	0.0549 (8)
H21A	0.6799	1.1620	0.1234	0.082*
H21B	0.8129	1.1249	0.1112	0.082*
H21C	0.7813	1.2366	0.1960	0.082*
C22	0.5731 (2)	0.5053 (3)	0.1103 (2)	0.0441 (7)
H22A	0.4907	0.4990	0.0848	0.066*
H22B	0.5936	0.4314	0.1602	0.066*
H22C	0.6203	0.4992	0.0491	0.066*
C23	0.89897 (19)	0.7001 (2)	0.51244 (18)	0.0264 (5)
C24	1.0523 (2)	0.8330 (3)	0.6096 (2)	0.0418 (6)
H24A	1.0229	0.8081	0.6779	0.063*
H24B	1.0749	0.9282	0.6116	0.063*
H24C	1.1200	0.7774	0.5976	0.063*
N4	0.80179 (16)	0.8028 (2)	0.35901 (16)	0.0290 (4)
N5	0.82468 (16)	0.6882 (2)	0.42301 (16)	0.0284 (4)
Н5	0.7916	0.6106	0.4055	0.034*
N6	0.96169 (16)	0.8114 (2)	0.52266 (16)	0.0326 (5)
H6A	0.9481	0.8756	0.4747	0.039*
S2	0.90891 (5)	0.57300 (6)	0.60289 (5)	0.03129 (15)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C1	0.0226 (11)	0.0391 (14)	0.0259 (12)	-0.0002 (10)	0.0012 (9)	0.0003 (10)

C2	0.0238 (11)	0.0398 (14)	0.0267 (12)	-0.0056 (11)	-0.0003 (9)	0.0046 (11)
C3	0.0321 (12)	0.0480 (15)	0.0286 (12)	0.0019 (12)	-0.0014 (9)	0.0066 (12)
C4	0.0287 (12)	0.0542 (18)	0.0420 (15)	0.0028 (12)	-0.0027 (10)	0.0173 (13)
C5	0.0241 (12)	0.0587 (18)	0.0440 (15)	-0.0019 (12)	0.0000 (10)	0.0178 (13)
C6	0.0253 (11)	0.0475 (15)	0.0251 (12)	-0.0060 (11)	-0.0038 (9)	0.0073 (11)
C7	0.0456 (15)	0.0631 (19)	0.0257 (13)	-0.0186 (14)	-0.0022 (11)	0.0035 (12)
C8	0.0587 (18)	0.060 (2)	0.0449 (17)	-0.0211 (16)	0.0193 (14)	-0.0158 (14)
C9	0.064 (2)	0.094 (3)	0.0449 (19)	-0.034 (2)	-0.0157 (15)	-0.0006 (18)
C10	0.0439 (15)	0.0507 (17)	0.0425 (16)	-0.0014 (13)	-0.0061 (12)	0.0131 (13)
C11	0.0218 (11)	0.0333 (14)	0.0264 (13)	0.0006 (10)	0.0023 (9)	-0.0010 (10)
C12	0.0234 (11)	0.0545 (16)	0.0332 (13)	-0.0072 (12)	-0.0067 (10)	0.0055 (12)
N1	0.0257 (10)	0.0340 (11)	0.0276 (11)	-0.0025 (8)	-0.0012 (8)	0.0034 (9)
N2	0.0253 (10)	0.0367 (11)	0.0296 (11)	-0.0056 (9)	-0.0042 (8)	0.0044 (9)
N3	0.0228 (9)	0.0401 (12)	0.0280 (10)	-0.0045 (9)	-0.0028 (7)	0.0062 (9)
S 1	0.0250 (3)	0.0327 (3)	0.0315 (3)	-0.0010 (3)	-0.0026 (2)	0.0036 (3)
C13	0.0190 (10)	0.0412 (14)	0.0249 (12)	0.0031 (10)	0.0016 (9)	0.0014 (11)
C14	0.0268 (12)	0.0423 (14)	0.0275 (12)	0.0002 (11)	0.0021 (9)	-0.0057 (11)
C15	0.0255 (12)	0.0468 (15)	0.0273 (13)	-0.0028 (11)	0.0002 (9)	-0.0012 (11)
C16	0.0312 (12)	0.0596 (18)	0.0309 (13)	-0.0061 (13)	-0.0078 (10)	0.0042 (13)
C17	0.0320 (13)	0.0521 (17)	0.0407 (15)	-0.0039 (12)	-0.0116 (11)	0.0084 (13)
C18	0.0292 (12)	0.0405 (14)	0.0310 (13)	0.0028 (11)	-0.0004 (10)	0.0033 (11)
C19	0.0314 (12)	0.0396 (16)	0.0416 (15)	0.0002 (11)	-0.0048 (11)	0.0042 (12)
C20	0.0408 (14)	0.0474 (16)	0.0566 (18)	0.0070 (13)	-0.0018 (13)	-0.0115 (14)
C21	0.0588 (18)	0.0495 (18)	0.0535 (19)	-0.0042 (15)	-0.0122 (14)	0.0127 (15)
C22	0.0342 (13)	0.0651 (19)	0.0330 (14)	-0.0115 (13)	0.0023 (11)	-0.0111 (13)
C23	0.0221 (11)	0.0331 (13)	0.0239 (12)	0.0025 (10)	0.0011 (9)	-0.0002 (10)
C24	0.0366 (14)	0.0486 (16)	0.0377 (15)	-0.0136 (12)	-0.0115 (11)	0.0039 (12)
N4	0.0238 (9)	0.0333 (11)	0.0295 (11)	0.0037 (8)	0.0005 (8)	0.0013 (9)
N5	0.0252 (10)	0.0320 (11)	0.0270 (10)	-0.0022 (8)	-0.0026 (8)	0.0016 (8)
N6	0.0321 (11)	0.0357 (12)	0.0283 (11)	-0.0025 (9)	-0.0065 (8)	0.0040 (9)
S2	0.0281 (3)	0.0348 (4)	0.0302 (3)	-0.0015 (3)	-0.0020 (2)	0.0035 (3)

Geometric parameters (Å, °)

C1—N1	1.283 (3)	C13—N4	1.287 (3)
C1—C2	1.502 (3)	C13—C18	1.508 (4)
C1—C6	1.513 (3)	C13—C14	1.512 (4)
C2—C3	1.531 (4)	C14—C15	1.549 (3)
C2—H2A	0.9900	C14—H14A	0.9900
C2—H2B	0.9900	C14—H14B	0.9900
C3—C4	1.525 (4)	C15—C16	1.519 (4)
C3—C10	1.526 (4)	C15—C22	1.520 (4)
С3—Н3	1.0000	C15—H15	1.0000
C4—C5	1.529 (4)	C16—C17	1.531 (4)
C4—H4A	0.9900	C16—H16A	0.9900
C4—H4B	0.9900	C16—H16B	0.9900
C5—C6	1.539 (4)	C17—C18	1.543 (3)
С5—Н5А	0.9900	C17—H17A	0.9900

С5—Н5В	0.9900	C17—H17B	0.9900
C6—C7	1.550 (4)	C18—C19	1.532 (4)
С6—Н6	1.0000	C18—H18	1.0000
C7—C8	1.521 (4)	C19—C20	1.532 (4)
C7—C9	1.522 (4)	C19—C21	1.533 (4)
C7—H7	1 0000	C19—H19	1 0000
C8—H8A	0.9800	C20—H20A	0.9800
C8—H8B	0.9800	C_{20} H20R	0.9800
C8—H8C	0.9800	C_{20} H20D	0.9800
	0.9800	C21_H21A	0.9800
$C_0 H_0 B$	0.9800	C_{21} H_{21R}	0.9800
C_{0} Hoc	0.9800	C_{21} H_{21C}	0.9800
	0.9800	C_{21} H_{21A}	0.9800
C10_H10R	0.9800	C22—1122A	0.9800
	0.9800	C22—1122B	0.9800
C10—HIOC	0.9800	C_{22} $M_{C_{22}}$ $M_{C_{22}}$	0.9800
	1.525 (5)	C23—N0	1.322(3)
C11—N2	1.353 (3)	C23—N5	1.356 (3)
	1.691 (2)	C23—S2	1.693 (2)
C12—N3	1.455 (3)	C24—N6	1.459 (3)
C12—H12A	0.9800	C24—H24A	0.9800
C12—H12B	0.9800	C24—H24B	0.9800
C12—H12C	0.9800	C24—H24C	0.9800
N1—N2	1.392 (3)	N4—N5	1.403 (3)
N2—H2	0.8800	N5—H5	0.8800
N3—H3A	0.8800	N6—H6A	0.8800
N1—C1—C2	115.5 (2)	N4—C13—C18	118.2 (2)
N1—C1—C6	128.1 (2)	N4—C13—C14	127.4 (2)
C2—C1—C6	116.4 (2)	C18—C13—C14	114.43 (19)
C1—C2—C3	112.13 (19)	C13—C14—C15	111.7 (2)
C1—C2—H2A	109.2	C13—C14—H14A	109.3
C3—C2—H2A	109.2	C15—C14—H14A	109.3
C1—C2—H2B	109.2	C13—C14—H14B	109.3
C3—C2—H2B	109.2	C15—C14—H14B	109.3
H2A—C2—H2B	107.9	H14A—C14—H14B	107.9
C4—C3—C10	111.9 (2)	C16—C15—C22	113.4 (2)
C4—C3—C2	109.8 (2)	C16—C15—C14	109.1 (2)
C10—C3—C2	111.2 (2)	C22—C15—C14	110.2 (2)
С4—С3—Н3	107.9	C16—C15—H15	108.0
С10—С3—Н3	107.9	С22—С15—Н15	108.0
С2—С3—Н3	107.9	C14—C15—H15	108.0
C3—C4—C5	110.6 (2)	C15—C16—C17	111.4 (2)
C3—C4—H4A	109.5	C15—C16—H16A	109.3
С5—С4—Н4А	109.5	C17—C16—H16A	109.3
C3—C4—H4B	109.5	C15—C16—H16B	109.3
C5—C4—H4B	109.5	C17—C16—H16B	109.3
H4A—C4—H4B	108.1	H16A—C16—H16B	108.0
C1	112.8(2)	C16 C17 C18	1110(2)

C4	109.0	C16—C17—H17A	109.2
C6-C5-H5A	109.0	C_{18} C_{17} H_{17A}	109.2
C_{4} C_{5} H5B	109.0	C16 C17 H17R	109.2
C6 C5 H5B	100.0	$C_{10} = C_{17} = H_{17} B$	109.2
	107.8	H_{17} C_{17} H_{17} H_{17}	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.8 (2)	$\frac{111}{A} - \frac{11}{C12} - \frac{11}{C12} = \frac{11}{C12} - \frac{11}{C12} = 11$	107.9
C1 - C0 - C3	107.0(2) 110.70(10)	C_{13} C_{10} C_{17}	113.46 (19)
C1 = C0 = C7	110.70 (19)	C13 - C18 - C17	107.8(2)
C_{3}	115.1 (2)	C12 - C18 - C17	113.7 (2)
	107.7	C13-C18-H18	106.4
С5—С6—Н6	107.7	C19—C18—H18	106.4
С/—С6—Н6	107.7	C17—C18—H18	106.4
C8—C7—C9	110.2 (3)	C20—C19—C18	113.4 (2)
C8—C7—C6	110.5 (2)	C20—C19—C21	110.1 (2)
C9—C7—C6	111.9 (2)	C18—C19—C21	110.7 (2)
С8—С7—Н7	108.0	С20—С19—Н19	107.5
С9—С7—Н7	108.0	C18—C19—H19	107.5
С6—С7—Н7	108.0	C21—C19—H19	107.5
С7—С8—Н8А	109.5	С19—С20—Н20А	109.5
С7—С8—Н8В	109.5	C19—C20—H20B	109.5
H8A—C8—H8B	109.5	H20A—C20—H20B	109.5
С7—С8—Н8С	109.5	С19—С20—Н20С	109.5
H8A—C8—H8C	109.5	H20A—C20—H20C	109.5
H8B—C8—H8C	109.5	H20B-C20-H20C	109.5
С7—С9—Н9А	109.5	C19—C21—H21A	109.5
С7—С9—Н9В	109.5	C19—C21—H21B	109.5
H9A—C9—H9B	109.5	H21A—C21—H21B	109.5
С7—С9—Н9С	109.5	C19—C21—H21C	109.5
Н9А—С9—Н9С	109.5	H21A—C21—H21C	109.5
H9B—C9—H9C	109.5	H21B—C21—H21C	109.5
C3-C10-H10A	109.5	C15—C22—H22A	109.5
C3-C10-H10B	109.5	C15—C22—H22B	109.5
H10A - C10 - H10B	109.5	$H_{22}A - C_{22} - H_{22}B$	109.5
C_3 — C_10 — H_10C	109.5	C_{15} C_{22} H_{22} C_{22} H_{22} H	109.5
H10A - C10 - H10C	109.5	$H_{22}A = C_{22} = H_{22}C$	109.5
H10B-C10-H10C	109.5	$H_{22}R = C_{22} = H_{22}C$	109.5
N3N2	107.5 117.1(2)	N6_C23_N5	107.5 117.0(2)
N3 C11 S1	117.1(2) 122 56 (18)	N6 C23 S2	117.0(2) 123 64 (17)
$N_{2} = C_{11} = S_{1}$	122.30(18) 120.20(18)	N0-C23-S2 N5-C23-S2	123.04(17)
$N_2 = C_{11} = S_1$	120.29 (18)	N5 - C25 - S2	119.51 (10)
N3-C12-H12D	109.5	NO-C24-H24A	109.5
	109.5	NO - C24 - H24D	109.5
H12A - C12 - H12B	109.5	$H_24A - C_24 - H_24B$	109.5
N3—C12—H12C	109.5	N6—C24—H24C	109.5
H12A—C12—H12C	109.5	H24A—C24—H24C	109.5
H12B—C12—H12C	109.5	H24B—C24—H24C	109.5
CI—NI—N2	119.97 (19)	C13—N4—N5	117.0 (2)
C11—N2—N1	117.26 (19)	C23—N5—N4	118.4 (2)
C11—N2—H2	121.4	C23—N5—H5	120.8
N1—N2—H2	121.4	N4—N5—H5	120.8

C11—N3—C12	123.6 (2)	C23—N6—C24	123.2 (2)
C11—N3—H3A	118.2	C23—N6—H6A	118.4
C12—N3—H3A	118.2	C24—N6—H6A	118.4
N1—C1—C2—C3	125.8 (2)	N4—C13—C14—C15	126.1 (2)
C6-C1-C2-C3	-52.4 (3)	C18—C13—C14—C15	-55.5 (3)
C1—C2—C3—C4	52.6 (3)	C13—C14—C15—C16	53.7 (3)
C1-C2-C3-C10	177.1 (2)	C13—C14—C15—C22	178.8 (2)
C10—C3—C4—C5	179.6 (2)	C22-C15-C16-C17	-179.2 (2)
C2—C3—C4—C5	-56.4 (3)	C14—C15—C16—C17	-56.0 (3)
C3—C4—C5—C6	59.1 (3)	C15—C16—C17—C18	59.1 (3)
N1—C1—C6—C5	-126.7 (3)	N4-C13-C18-C19	1.8 (3)
C2-C1-C6-C5	51.2 (3)	C14—C13—C18—C19	-176.7 (2)
N1—C1—C6—C7	106.7 (3)	N4-C13-C18-C17	-126.6 (2)
C2-C1-C6-C7	-75.4 (3)	C14—C13—C18—C17	54.9 (3)
C4—C5—C6—C1	-53.9 (3)	C16—C17—C18—C13	-55.9 (3)
C4—C5—C6—C7	70.1 (3)	C16—C17—C18—C19	174.7 (2)
C1—C6—C7—C8	-61.2 (3)	C13—C18—C19—C20	-76.8 (3)
C5—C6—C7—C8	176.3 (2)	C17—C18—C19—C20	48.6 (3)
C1—C6—C7—C9	175.6 (2)	C13-C18-C19-C21	158.9 (2)
C5—C6—C7—C9	53.1 (3)	C17—C18—C19—C21	-75.6 (3)
C2-C1-N1-N2	-178.62 (19)	C18—C13—N4—N5	175.85 (18)
C6-C1-N1-N2	-0.7 (4)	C14—C13—N4—N5	-5.9 (3)
N3—C11—N2—N1	2.4 (3)	N6-C23-N5-N4	-12.5 (3)
S1-C11-N2-N1	-176.24 (16)	S2-C23-N5-N4	168.60 (15)
C1—N1—N2—C11	178.0 (2)	C13—N4—N5—C23	165.0 (2)
N2-C11-N3-C12	-179.2 (2)	N5-C23-N6-C24	-174.4 (2)
S1—C11—N3—C12	-0.6 (3)	S2-C23-N6-C24	4.4 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.88	2.79	3.671 (2)	174
0.88	2.61	3.378 (2)	147
0.88	2.61	3.356 (2)	143
0.88	2.79	3.445 (2)	132
	<i>D</i> —H 0.88 0.88 0.88 0.88 0.88	D—H H···A 0.88 2.79 0.88 2.61 0.88 2.61 0.88 2.79	D—H H···A D···A 0.88 2.79 3.671 (2) 0.88 2.61 3.378 (2) 0.88 2.61 3.356 (2) 0.88 2.79 3.445 (2)

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1; (ii) -*x*+2, *y*+1/2, -*z*+1.