

ISSN 2414-3146

Received 18 February 2016 Accepted 26 February 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; racemic; cyclopropane; twofold rotation axis; naphthalene; tetracycle.

CCDC reference: 1456342

Structural data: full structural data are available from iucrdata.iucr.org

(1a*R**,2*R**,7*S**,7a*S**)-*rel*-3,6-Dimethoxy-2-methyl-1a,2,7,7a-tetrahydro-2,7-epoxy-1*H*-cyclopropa[*b*]naphthalene

Alan J. Lough,^a* Emily Carlson^b and William Tam^b

^aDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada, and ^bDepartment of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada. *Correspondence e-mail: alough@chem.utoronto.ca

In the racemic title compound, $C_{14}H_{16}O_3$, the dihedral angle formed by the mean planes of the cyclopropane and benzene rings is 5.0 (2)°. In the crystal, a pair of weak $C-H\cdots O$ hydrogen bonds connect two molecules related by a twofold rotation axis, thus forming a dimer with an $R_2^2(10)$ motif.

Structure description

We have recently investigated the palladium-catalysed cyclopropanation reactions of [2.2.1] heterobicyclic compounds (Carlson *et al.*, 2016). Substituted 7-oxabenzonorbornadiene (I) reacts with diazomethane in the presence of catalytic $Pd(OAc)_2$ in THF to give the cyclopropane (II) as a single stereoisomer (see Fig. 1). The stereochemistry of (II) was determined by this single-crystal X-ray analysis. Of the *exo* or *endo* isomers which could be formed, the reaction was found to give solely the *exo* stereoisomer.

The molecular structure of the title compound is shown in Fig. 2. The dihedral angle formed by the mean planes of the cyclopropane and benzene rings C3/C4/C5 and C1/C7/C8/C9/C10/C11, respectively is 5.0 (2)°. In the crystal, a pair of weak C-H···O hydrogen bonds (Table 1 and Fig. 3) between two molecules related by a twofold rotation axis forms a dimer with an $R_2^2(10)$ motif.

Synthesis and crystallization

HAZARD ALERT! Diazomethane can be fatal if inhaled and capable of detonation if appreciably concentrated. See Carlson *et al.* (2016) for a detailed figure of the experimental apparatus. Alkene (I) (9.2 mmol), $Pd(OAc)_2$ (0.092 mmol) and THF (40 ml) were

The reaction scheme.

Figure 2 The molecular structure of the title compound showing 30% probability ellipsoids.

stirred in a sealed reaction flask at 273 K, connected to a 1:1 glacial acetic acid: water trap and vented to the back of the fumehood. Diazomethane was generated in a separate flask by dropwise addition (2 ml min^{-1}) of 12.5 *M* aqueous NaOH (1.3 mol) to Diazald (23.8 mmol) stirred in 95% EtOH (50 ml), and directed under a steady stream of argon to the reaction flask. Formation of the light-yellow CH₂N₂ was observed with the dissolution of Diazald. Upon completion of the reaction (monitored by TLC and dissipation of any yellow

Figure 3 A pair of molecules connected by weak hydrogen bonds shown as dashed

lines.

Table 1Hydrogen-bond ge	ometry (Å, °).		
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C2-H2A\cdots O2^{i}$	1.00	2.44	3.2777 (17)	141
Symmetry code: (i) -x	$z, y, -z + \frac{1}{2}.$			
Table 2Experimental deta	ils.			
Crystal data Chemical formula M_r Crystal system, spac Temperature (K) a, b, c (Å) β (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm)	e group	C ₁ . 233 Mo 14 16. 97. 233 8 Mo 0.0 0.3	${}_{4}H_{16}O_{3}$ 2.27 pnoclinic, <i>C2/c</i> 7 401 (2), 6.9386 (9 089 (3) 33.8 (5) 0 <i>Ka</i> 9 3 × 0.23 × 0.06), 20.666 (2)
Data collection Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, in observed $[I > 2\sigma(R_{int})]$ $(\sin \theta/\lambda)_{\max}$ (\AA^{-1})	on dependent an [/] reflections	Br Mu 0.7 d 170 0.0 0.0	uker Kappa APE ulti-scan (<i>SADAI</i> 2014) 03, 0.746 093, 2681, 1972 37 50	X DUO CCD 3 <i>S</i> ; Bruker,
Refinement $R[F^2 > 2\sigma(F^2)]$, wR No. of reflections No. of parameters H-atom treatment $\Delta \rho = \Delta \rho + (e^{\frac{1}{2}})^2$	$(F^2), S$	0.0 268 15' H- 0.2	41, 0.104, 1.02 81 7 atom parameters 7 –0.20	constrained

Computer programs: *APEX2* (Bruker, 2014), *SAINT* (Bruker, 2014), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *PLATON* (Spek, 2009), *publCIF* (Westrip, 2010).

colour), the crude reaction mixture was filtered through Celite, rinsed with Et_2O (3 × 10 ml), concentrated and purified by column chromatography (EtOAc:hexanes = 1:9) followed by recrystallization from pentane solution to give the *exo* cyclopropane (II) in the form of colourless plates in 82% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

- Bruker (2014). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
- Carlson, E., Duret, G., Blanchard, N. & Tam, W. (2016). Synth. Commun. 46, 55-62.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2016). **1**, x160341 [doi:10.1107/S2414314616003412]

(1a*R**,2*R**,7*S**,7a*S**)-*rel*-3,6-Dimethoxy-2-methyl-1a,2,7,7a-tetrahydro-2,7-epoxy-1*H*-cyclopropa[*b*]naphthalene

Alan J. Lough, Emily Carlson and William Tam

(1aR*,2R*,7S*,7aS*)-rel-3,6-Dimethoxy-2-methyl-1a,2,7,7a-tetrahydro-2,7-epoxy-1H-cyclopropa[b]naphthalene

F(000) = 992

 $\theta = 2.5 - 27.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Plate, colourless

 $0.33 \times 0.23 \times 0.06 \text{ mm}$

T = 147 K

 $D_{\rm x} = 1.322 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4973 reflections

Crystal data

 $C_{14}H_{16}O_3$ $M_r = 232.27$ Monoclinic, C2/c a = 16.401 (2) Å b = 6.9386 (9) Å c = 20.666 (2) Å $\beta = 97.089$ (3)° V = 2333.8 (5) Å³ Z = 8

Data collection

Bruker Kappa APEX DUO CCD	17093 measured reflections
diffractometer	2681 independent reflections
Radiation source: sealed tube with Bruker	1972 reflections with $I > 2\sigma(I)$
Triumph monochromator	$R_{\rm int} = 0.037$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -21 \rightarrow 21$
(SADABS; Bruker, 2014)	$k = -8 \rightarrow 9$
$T_{\min} = 0.703, \ T_{\max} = 0.746$	$l = -17 \rightarrow 26$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained

Least squares matrix. Tun	heighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.104$	$w = 1/[\sigma^2(F_o^2) + (0.0431P)^2 + 2.2112P]$
<i>S</i> = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
2681 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
157 parameters	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{\min} = -0.20 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.02986 (6)	0.82417 (15)	0.09283 (5)	0.0194 (2)	
O2	0.09941 (7)	1.03830 (15)	0.28403 (5)	0.0253 (3)	
03	0.26711 (6)	1.04938 (15)	0.06547 (5)	0.0248 (3)	
C1	0.11743 (8)	0.9435 (2)	0.17734 (7)	0.0167 (3)	
C2	0.04984 (9)	0.7949 (2)	0.16232 (7)	0.0190 (3)	
H2A	0.0027	0.8064	0.1885	0.023*	
C3	0.09260 (9)	0.5976 (2)	0.16523 (7)	0.0207 (3)	
H3A	0.1212	0.5476	0.2074	0.025*	
C4	0.06766 (10)	0.4617 (2)	0.10921 (8)	0.0249 (3)	
H4A	0.0822	0.3239	0.1154	0.030*	
H4B	0.0148	0.4864	0.0818	0.030*	
C5	0.13667 (9)	0.6032 (2)	0.10507 (7)	0.0191 (3)	
H5A	0.1946	0.5565	0.1073	0.023*	
C6	0.11289 (9)	0.8013 (2)	0.07536 (7)	0.0185 (3)	
C7	0.15865 (9)	0.9463 (2)	0.12220 (7)	0.0167 (3)	
C8	0.22780 (9)	1.0607 (2)	0.12042 (7)	0.0177 (3)	
C9	0.25244 (9)	1.1778 (2)	0.17404 (7)	0.0189 (3)	
H9A	0.2988	1.2596	0.1735	0.023*	
C10	0.20992 (9)	1.1766 (2)	0.22880 (7)	0.0187 (3)	
H10A	0.2273	1.2587	0.2646	0.022*	
C11	0.14249 (9)	1.0565 (2)	0.23120 (7)	0.0173 (3)	
C12	0.11176 (10)	0.8263 (2)	0.00304 (7)	0.0260 (4)	
H12A	0.1676	0.8113	-0.0085	0.039*	
H12B	0.0911	0.9551	-0.0097	0.039*	
H12C	0.0758	0.7287	-0.0198	0.039*	
C13	0.10349 (12)	1.1913 (3)	0.32903 (8)	0.0383 (5)	
H13A	0.0652	1.1671	0.3609	0.057*	
H13B	0.0886	1.3120	0.3059	0.057*	
H13C	0.1595	1.2013	0.3516	0.057*	
C14	0.33542 (10)	1.1738 (3)	0.06247 (8)	0.0320 (4)	
H14A	0.3577	1.1538	0.0211	0.048*	
H14B	0.3779	1.1452	0.0988	0.048*	
H14C	0.3177	1.3081	0.0654	0.048*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0152 (5)	0.0205 (5)	0.0219 (5)	0.0000 (4)	-0.0003 (4)	-0.0001 (4)
02	0.0300 (6)	0.0246 (6)	0.0233 (5)	-0.0053 (5)	0.0113 (5)	-0.0050 (5)
03	0.0249 (6)	0.0280 (6)	0.0232 (5)	-0.0074(5)	0.0095 (4)	-0.0026 (5)
C1	0.0156 (7)	0.0139 (7)	0.0203 (7)	0.0002 (5)	0.0009 (6)	0.0015 (6)
C2	0.0181 (7)	0.0195 (8)	0.0194 (7)	-0.0016 (6)	0.0029 (6)	-0.0003 (6)
C3	0.0221 (8)	0.0168 (7)	0.0233 (7)	-0.0014 (6)	0.0026 (6)	0.0009 (6)
C4	0.0266 (8)	0.0165 (7)	0.0311 (8)	-0.0032 (6)	0.0024 (7)	-0.0021 (6)
C5	0.0177 (7)	0.0157 (7)	0.0239 (7)	0.0002 (6)	0.0030 (6)	-0.0027 (6)

C6	0.0178 (7)	0.0171 (7)	0.0206 (7)	-0.0008 (6)	0.0028 (6)	-0.0009 (6)	
C7	0.0184 (7)	0.0131 (7)	0.0181 (7)	0.0015 (5)	0.0000 (6)	0.0004 (5)	
C8	0.0179 (7)	0.0165 (7)	0.0189 (7)	0.0012 (6)	0.0034 (6)	0.0024 (6)	
C9	0.0163 (7)	0.0159 (7)	0.0242 (7)	-0.0030 (6)	0.0010 (6)	0.0008 (6)	
C10	0.0203 (7)	0.0161 (7)	0.0192 (7)	-0.0001 (6)	-0.0004 (6)	-0.0025 (6)	
C11	0.0186 (7)	0.0156 (7)	0.0179 (7)	0.0023 (6)	0.0029 (6)	0.0009 (6)	
C12	0.0314 (9)	0.0264 (8)	0.0198 (7)	-0.0061 (7)	0.0016 (7)	-0.0013 (6)	
C13	0.0530 (12)	0.0355 (10)	0.0302 (9)	-0.0071 (9)	0.0204 (9)	-0.0129 (8)	
C14	0.0301 (9)	0.0336 (9)	0.0350 (9)	-0.0122 (8)	0.0153 (7)	-0.0030 (8)	

Geometric parameters (Å, °)

01—C2	1.4474 (17)	C5—H5A	1.0000	
O1—C6	1.4598 (16)	C6—C12	1.503 (2)	
O2—C11	1.3776 (16)	C6—C7	1.527 (2)	
O2—C13	1.4074 (19)	C7—C8	1.3886 (19)	
O3—C8	1.3755 (16)	C8—C9	1.393 (2)	
O3—C14	1.4218 (18)	C9—C10	1.4006 (19)	
C1-C11	1.382 (2)	С9—Н9А	0.9500	
C1—C7	1.3951 (19)	C10—C11	1.391 (2)	
C1—C2	1.5177 (19)	C10—H10A	0.9500	
C2—C3	1.536 (2)	C12—H12A	0.9800	
C2—H2A	1.0000	C12—H12B	0.9800	
C3—C4	1.510 (2)	C12—H12C	0.9800	
C3—C5	1.5137 (19)	C13—H13A	0.9800	
С3—НЗА	1.0000	C13—H13B	0.9800	
C4—C5	1.509 (2)	C13—H13C	0.9800	
C4—H4A	0.9900	C14—H14A	0.9800	
C4—H4B	0.9900	C14—H14B	0.9800	
C5—C6	1.536 (2)	C14—H14C	0.9800	
C2—O1—C6	97.26 (10)	C7—C6—C5	104.78 (11)	
C11—O2—C13	117.86 (12)	C8—C7—C1	120.60 (13)	
C8—O3—C14	116.97 (12)	C8—C7—C6	134.34 (12)	
C11—C1—C7	121.62 (13)	C1—C7—C6	105.01 (12)	
C11—C1—C2	133.42 (12)	O3—C8—C7	117.17 (12)	
C7—C1—C2	104.93 (12)	O3—C8—C9	124.78 (13)	
01—C2—C1	100.24 (10)	C7—C8—C9	118.05 (12)	
O1—C2—C3	102.13 (11)	C8—C9—C10	120.98 (13)	
C1—C2—C3	106.21 (11)	С8—С9—Н9А	119.5	
O1—C2—H2A	115.4	С10—С9—Н9А	119.5	
C1—C2—H2A	115.4	C11—C10—C9	120.64 (13)	
С3—С2—Н2А	115.4	C11—C10—H10A	119.7	
C4—C3—C5	59.87 (9)	C9—C10—H10A	119.7	
C4—C3—C2	116.57 (13)	O2—C11—C1	117.11 (12)	
C5—C3—C2	101.93 (12)	O2-C11-C10	124.83 (13)	
С4—С3—НЗА	120.4	C1—C11—C10	118.04 (12)	
С5—С3—НЗА	120.4	C6—C12—H12A	109.5	

С2—С3—НЗА	120.4	C6—C12—H12B	109.5
C5—C4—C3	60.20 (9)	H12A—C12—H12B	109.5
C5—C4—H4A	117.8	C6—C12—H12C	109.5
C3—C4—H4A	117.8	H12A—C12—H12C	109.5
C5—C4—H4B	117.8	H12B—C12—H12C	109.5
C3—C4—H4B	117.8	O2—C13—H13A	109.5
H4A—C4—H4B	114.9	O2—C13—H13B	109.5
C4—C5—C3	59.93 (10)	H13A—C13—H13B	109.5
C4—C5—C6	116.73 (12)	O2—C13—H13C	109.5
C3—C5—C6	103.18 (11)	H13A—C13—H13C	109.5
С4—С5—Н5А	120.1	H13B—C13—H13C	109.5
С3—С5—Н5А	120.1	O3—C14—H14A	109.5
С6—С5—Н5А	120.1	O3—C14—H14B	109.5
O1—C6—C12	109.65 (12)	H14A—C14—H14B	109.5
O1—C6—C7	99.92 (10)	O3—C14—H14C	109.5
C12—C6—C7	119.96 (12)	H14A—C14—H14C	109.5
O1—C6—C5	101.35 (11)	H14B—C14—H14C	109.5
C12—C6—C5	118.17 (12)		
C6-01-C2-C1	53.68 (11)	C11—C1—C7—C6	179.16 (13)
C6—O1—C2—C3	-55.53 (11)	C2—C1—C7—C6	1.12 (14)
C11—C1—C2—O1	147.94 (15)	O1—C6—C7—C8	-150.61 (15)
C7—C1—C2—O1	-34.35 (13)	C12—C6—C7—C8	-30.9 (2)
C11—C1—C2—C3	-106.10 (17)	C5—C6—C7—C8	104.75 (17)
C7—C1—C2—C3	71.61 (14)	O1—C6—C7—C1	32.10 (13)
O1—C2—C3—C4	-27.71 (15)	C12—C6—C7—C1	151.76 (13)
C1—C2—C3—C4	-132.31 (13)	C5—C6—C7—C1	-72.55 (13)
O1—C2—C3—C5	34.38 (13)	C14—O3—C8—C7	176.96 (13)
C1—C2—C3—C5	-70.21 (13)	C14—O3—C8—C9	-3.2(2)
C2—C3—C4—C5	88.68 (14)	C1—C7—C8—O3	177.28 (13)
C3—C4—C5—C6	-90.21 (14)	C6—C7—C8—O3	0.3 (2)
C2—C3—C5—C4	-113.95 (13)	C1—C7—C8—C9	-2.6(2)
C4—C3—C5—C6	113.46 (13)	C6—C7—C8—C9	-179.56 (14)
C2—C3—C5—C6	-0.49 (14)	O3—C8—C9—C10	-178.34 (13)
C2-01-C6-C12	-179.66 (12)	C7—C8—C9—C10	1.5 (2)
C2-01-C6-C7	-52.73 (11)	C8—C9—C10—C11	0.8 (2)
C2C6C5	54.68 (12)	C13—O2—C11—C1	-158.53 (14)
C4—C5—C6—O1	29.64 (15)	C13—O2—C11—C10	22.9 (2)
C3—C5—C6—O1	-33.09 (13)	C7—C1—C11—O2	-177.80 (13)
C4—C5—C6—C12	-90.13 (16)	C2-C1-C11-O2	-0.4 (2)
C3—C5—C6—C12	-152.87 (13)	C7—C1—C11—C10	0.9 (2)
C4—C5—C6—C7	133.21 (13)	C2-C1-C11-C10	178.31 (14)
C3—C5—C6—C7	70.48 (13)	C9—C10—C11—O2	176.62 (13)
C11—C1—C7—C8	1.4 (2)	C9—C10—C11—C1	-2.0 (2)
C2—C1—C7—C8	-176.63 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
$C2-H2A\cdots O2^{i}$	1.00	2.44	3.2777 (17)	141

Symmetry code: (i) -x, y, -z+1/2.